

#### WARNING DO NOT USE THIS MANUAL OR ANY OF THE RELATED MATERIALS IN ANY WAY IN THE OPERATION, USE OR MAINTENANCE OF ANY AIRCRAFT. THESE MATERIALS HAVE BEEN PREPARED AND ARE PROVIDED SOLELY TO GIVE GUIDANCE ON THE LAYOUT AND STRUCTURE OF A TYPICAL AIRCRAFT MANUAL. THESE MATERIALS HAVE NOT BEEN APPROVED BY ANY AVIATION ADMINISTRATION FOR USE ON ANY AIRCRAFT AND SHOULD NEVER BE SO USED UNDER ANY CIRCUMSTANCES. FAILURE TO FOLLOW THIS WARNING COULD LEAD TO SERIOUS INJURY OR DEATH.

# 737-200

# Flight Crew Operations Manual

# The Boeing Company

This document has EAR data with Export Control Classification Numbers (ECCN) of: 9E991. Export of this technology is controlled under the United States Export Administration Regulations (EAR) (15 CFR 730-774). An export license may be required before it is used for development, production or use by foreign persons from specific countries. The controller of this data has the individual responsibility to abide by all export laws.

#### BOEING PROPRIETARY

Copyright © 1995-2016 The Boeing Company. All rights reserved.

Boeing claims copyright in each page of this document only to the extent that the page contains copyrightable subject matter. Boeing also claims copyright in this document as a compilation and/or collective work.

This document includes proprietary information owned by The Boeing Company and/or one or more third parties. Treatment of the document and the information it contains is governed by contract with Boeing. For more information, contact The Boeing Company, P.O. Box 3707, Seattle Washington 98124.

Document Number D6-27370-200A-TBC Revision Number: 42 Revision Date: October 6, 2020



Intentionally Blank

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

# **Preface** Chapter Table of Contents

# Chapter 0 Section TOC

# Volume 1

| Title Page 0                     |
|----------------------------------|
| Preface                          |
| Model Identification 0.1         |
| Introduction                     |
| Abbreviations 0.3                |
| Revision Record 0.4              |
| V1V2 List of Effective Pages 0.5 |
| Bulletin Record 0.6              |
| LimitationsL                     |
| Normal Procedures NP             |
| Supplementary ProceduresSP       |
| Performance Inflight Pl          |

# Volume 2

| Airplane General, Emergency Equipment, Doors, Windows1 |
|--------------------------------------------------------|
| Air Systems                                            |
| Anti-Ice, Rain                                         |
| Automatic Flight                                       |
| Communications                                         |
| Electrical                                             |
| Engines, APU                                           |
| Fire Protection                                        |
| Flight Controls                                        |
| Flight Instruments, Displays 10                        |
| Flight Management, Navigation11                        |
| Fuel                                                   |
| Hydraulics                                             |
| Landing Gear                                           |
| Warning Systems                                        |
|                                                        |

Intentionally Blank

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

# Preface Model Identification

Chapter 0 Section 1

## General

The airplanes listed in the table below are covered in the Flight Crew Operations Manual (FCOM). The table information is used to distinguish data peculiar to one or more, but not all of the airplanes. Where data applies to all airplanes listed, no reference is made to individual airplanes.

Airplane number is supplied by the operator. Registry number is supplied by the national regulatory agency. Serial and tabulation number are supplied by Boeing.

| Airplane | Registry | Serial | Tab    | Model              |
|----------|----------|--------|--------|--------------------|
| Number   | Number   | Number | Number | Miscellaneous Data |
| 1        | BN200    | BN200  | BN200  | 737-200            |



Intentionally Blank

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

# Preface Introduction

Chapter 0 Section 2

# General

This Flight Crew Operations Manual (FCOM) has been prepared by The Boeing Commercial Airplanes, Commercial Aviation Services organization. The purpose of this manual is to:

- provide the necessary operating limitations, procedures, performance, and systems information the flight crew needs to safely and efficiently operate the 737 airplane during all anticipated airline operations
- serve as a comprehensive reference for use during transition training for the 737 airplane
- serve as a review guide for use in recurrent training and proficiency checks
- provide necessary operational data from the FAA approved airplane flight manual (AFM) to ensure that legal requirements are satisfied
- establish standardized procedures and practices to enhance Boeing operational philosophy and policy.

This manual is prepared for the owner/operator named on the title page specifically for the airplanes listed in the "Model Identification" section. It contains operational procedures and information, which apply only to these airplanes. The manual covers the Boeing delivered configuration of these airplanes. Changes to the delivered configuration are incorporated when covered by contractual revision agreements between the owner/operator and The Boeing Company

This manual is not suitable for use for any airplanes not listed in the "Model Identification" section. Further, it may not be suitable for airplanes that have been transferred to other owners/operators.

Owners/operators are solely responsible for ensuring the operational documentation they are using is complete and matches the current configuration of the listed airplanes. This includes the accuracy and validity of all information furnished by the owner/operator or any other party. Owners/operators receiving active revision service are responsible to ensure that any modifications to the listed airplanes are properly reflected in the operational procedures and information contained in this manual.

This manual is structured in a two–volume format with a quick reference handbook (QRH). Volume 1 includes operational limitations, normal and supplementary procedures. Volume 2 contains systems information. The QRH contains all checklists necessary for normal and non–normal procedures as well as in–flight performance data.

#### Preface -Introduction

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

The manual is periodically revised to incorporate pertinent procedural and systems information. Items of a more critical nature will be incorporated in operational bulletins and distributed in a timely manner. In all cases, such revisions and changes must remain compatible with the approved AFM with which the operator must comply. In the event of conflict with the AFM, the AFM shall supersede.

This manual is written under the assumption that the user has had previous multi–engine jet aircraft experience and is familiar with basic jet airplane systems and basic pilot techniques common to airplanes of this type. Therefore, the FCOM does not contain basic flight information that is considered prerequisite training.

Please submit all correspondence regarding the Flight Crew Operations Manual, including bulletin status, through the Service Requests Application (SR App) on the MyBoeingFleet home page.

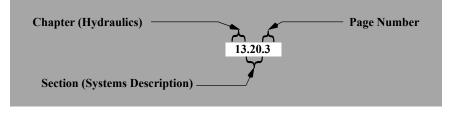
# Organization

The FCOM is organized in the following manner.

Volume 1

- Preface contains general information regarding the manual's purpose, structure, and content. It also contains lists of abbreviations, a record of revisions, bulletins, and a list of effective pages.
- Limitations and Normal Procedures chapters cover operational limitations and normal procedures. All operating procedures are based on a thorough analysis of crew activity required to operate the airplane, and reflect the latest knowledge and experience available.
- Supplementary Procedures chapter covers those procedures accomplished as required rather than routinely on each flight.
- Performance Inflight (PI) chapter contains information necessary for inflight use.

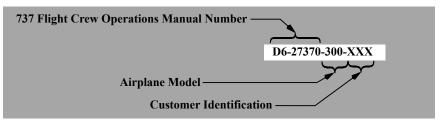
Volume 2 – Chapters 1 through 15 contain general airplane and systems information. These chapters are generally subdivided into sections covering controls and indicators and systems descriptions.


Quick Reference Handbook (QRH) – The QRH covers normal checklists, non–normal checklists, operational information, performance information necessary for inflight use (PI) on an expedited basis, and maneuvers.

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Page Numbering**

The FCOM uses a decimal page numbering system. The page number is divided into three fields; chapter, section, and page. An example of a page number for the hydraulics chapter follows: chapter 13, section 20, page 3.


# **Example Page Number**



# **Page Identification**

Each page is identified by a customer document number and a page date. The customer document number is composed of the general 737 FCOM number, D6–27370–, and is followed by the customer identification. The page date is the date of publication of the manual or the most recent revision date.

# **Example Page Identification**

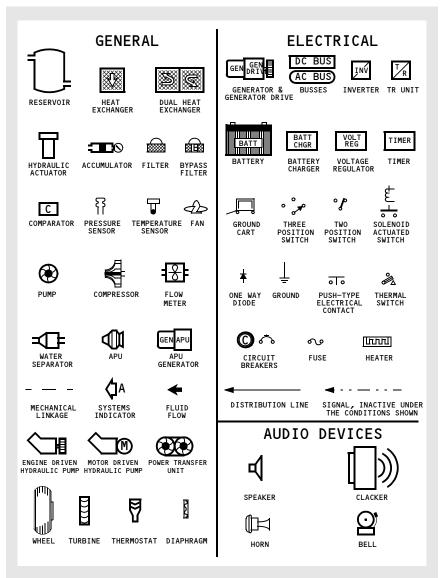


# Warnings, Cautions, and Notes

The following levels of written advisories are used throughout the manual.

WARNING: An operating procedure, technique, etc., that may result in personal injury or loss of life if not carefully followed.

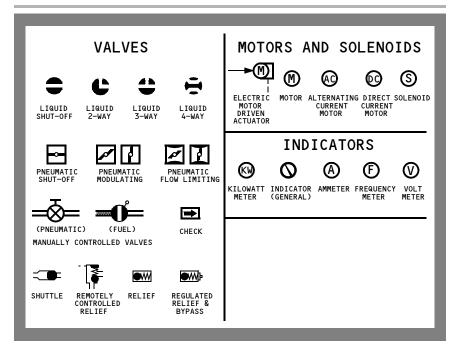
# CAUTION: An operating procedure, technique, etc., that may result in damage to equipment if not carefully followed.


**Note:** An operating procedure, technique, etc., considered essential to emphasize. Information contained in notes may also be safety related.

# Flight Crew Operations Manual Configuration

Customer airplane configuration determines the data provided in this manual. The Boeing Company keeps a list of each airplane configuration as it is built and modified through the service bulletin process. The FCOM does not reflect customer originated modifications without special contract provisions.

### **Schematic Symbols**


Symbols shown are those which may not be identified on schematic illustrations.



#### Preface -Introduction

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual



# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

# Preface

# Abbreviations

Chapter 0 Section 3

## General

The following abbreviations may be found throughout the manual. Some abbreviations may also appear in lowercase letters. Abbreviations having very limited use are explained in the chapter where they are used.

| А     |                                                               |  |  |
|-------|---------------------------------------------------------------|--|--|
| AC    | Alternating Current                                           |  |  |
| ACARS | Aircraft Communications<br>Addressing and<br>Reporting System |  |  |
| ACT   | Active                                                        |  |  |
| ADF   | Automatic Direction<br>Finder                                 |  |  |
| AFDS  | Autopilot Flight Director<br>System                           |  |  |
| AFM   | Airplane Flight Manual<br>(FAA approved)                      |  |  |
| AGL   | Above Ground Level                                            |  |  |
| AI    | Anti-Ice                                                      |  |  |
| AIL   | Aileron                                                       |  |  |
| ALT   | Altitude                                                      |  |  |
| ALTN  | Alternate                                                     |  |  |
| AOA   | Angle of Attack                                               |  |  |
| A/P   | Autopilot                                                     |  |  |
| APU   | Auxiliary Power Unit                                          |  |  |
| ARINC | Aeronautical Radio,<br>Incorporated                           |  |  |
| ARPT  | Airport                                                       |  |  |
| ATA   | Actual Time of Arrival                                        |  |  |
| ATC   | Air Traffic Control                                           |  |  |
| ATT   | Attitude                                                      |  |  |

| В |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 4, 2013 D6-27370-200A-TBC 0.3.1

#### Preface -Abbreviations

# **DO NOT USE FOR FLIGHT**

#### 737 Flight Crew Operations Manual

| DC                | Direct Current                                                    |  |  |
|-------------------|-------------------------------------------------------------------|--|--|
| DDG               | Dispatch Deviations                                               |  |  |
| DDG               | Guide                                                             |  |  |
| DEP ARR           | Departure Arrival                                                 |  |  |
| DES               | Descent                                                           |  |  |
| DISC              | Disconnect                                                        |  |  |
| DME               | Distance Measuring<br>Equipment                                   |  |  |
|                   | E                                                                 |  |  |
| E/D               | End of Descent                                                    |  |  |
| EGT               | Exhaust Gas Temperature                                           |  |  |
| ELEC              | Electrical                                                        |  |  |
| ELEV              | Elevator                                                          |  |  |
| ENG               | Engine                                                            |  |  |
| EXEC              | Execute                                                           |  |  |
| EXT               | Extend                                                            |  |  |
| E/E               | Electrical and Electronic                                         |  |  |
|                   | F                                                                 |  |  |
| F                 | Fahrenheit                                                        |  |  |
| FAF / FAP         | Final Approach Fix /<br>Final Approach Point<br>(interchangeable) |  |  |
| FCTL              | Flight Control                                                    |  |  |
| F/D or<br>FLT DIR | Flight Director                                                   |  |  |
| F/O               | First Officer                                                     |  |  |
| FWD               | Forward                                                           |  |  |
| G                 |                                                                   |  |  |
| GA                | Go–Around                                                         |  |  |
| GEN               | Generator                                                         |  |  |
| GPS               | Global Positioning<br>System                                      |  |  |

| GPWS    | Ground Proximity<br>Warning System |  |  |  |  |
|---------|------------------------------------|--|--|--|--|
| G/S     | Glide Slope                        |  |  |  |  |
| Н       |                                    |  |  |  |  |
| HDG     | Heading                            |  |  |  |  |
| HDG REF | Heading Reference                  |  |  |  |  |
| HDG SEL | Heading Select                     |  |  |  |  |
| HPA     | Hectopascals                       |  |  |  |  |
| HUD     | Head-Up Display                    |  |  |  |  |
|         | Ι                                  |  |  |  |  |
| IAS     | Indicated Airspeed                 |  |  |  |  |
| IDENT   | Identification                     |  |  |  |  |
| IN      | Inches                             |  |  |  |  |
| IND LTS | Indicator Lights                   |  |  |  |  |
| ILS     | Instrument Landing<br>System       |  |  |  |  |
| INBD    | Inboard                            |  |  |  |  |
| INOP    | Inoperative                        |  |  |  |  |
| ISLN    | Isolation                          |  |  |  |  |
|         | K                                  |  |  |  |  |
| К       | Knots                              |  |  |  |  |
| KGS     | Kilograms                          |  |  |  |  |
| KIAS    | Knots Indicated Airspeed           |  |  |  |  |
|         | L                                  |  |  |  |  |
| L       | Left                               |  |  |  |  |
| LBS     | Pounds                             |  |  |  |  |
| LDG ALT | Landing Altitude                   |  |  |  |  |
| LE      | Leading Edge                       |  |  |  |  |
| LIM     | Limit                              |  |  |  |  |
| М       |                                    |  |  |  |  |
| MAG     | Magnetic                           |  |  |  |  |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. 0.3.2 D6-27370-200A-TBC April 1, 2016

# **DO NOT USE FOR FLIGHT**

Preface -Abbreviations

### 737 Flight Crew Operations Manual

| MAN      | Manual                          |  |
|----------|---------------------------------|--|
| MCP      | Mode Control Panel              |  |
| MDA      | Minimum Descent<br>Altitude     |  |
| MEA      | Minimum Enroute<br>Altitude     |  |
| MEL      | Minimum Equipment List          |  |
| MIN      | Minimum                         |  |
| ММО      | Maximum Mach<br>Operating Speed |  |
| MOD      | Modify                          |  |
| MTRS     | Meters                          |  |
|          | Ν                               |  |
| NAV RAD  | Navigation Radio                |  |
| NM       | Nautical Miles                  |  |
| NORM     | Normal                          |  |
| N1       | Low Pressure Rotor<br>Speed     |  |
| N2       | High Pressure Rotor<br>Speed    |  |
|          | 0                               |  |
| OHU      | Overhead Unit                   |  |
| OVHD     | Overhead                        |  |
| OVRD     | Override                        |  |
|          | Р                               |  |
| PASS     | Passenger                       |  |
| PCU      | Power Control Unit              |  |
| PF       | Pilot Flying                    |  |
| PM       | Pilot Monitoring                |  |
| PNL      | Panel                           |  |
| POS      | Position                        |  |
| POS INIT | Position Initialization         |  |
|          |                                 |  |

| PRI         | Primary                                            |  |
|-------------|----------------------------------------------------|--|
|             | R                                                  |  |
| R           | Right                                              |  |
| RA          | Radio Altitude<br>Resolution Advisory              |  |
| REF         | Reference                                          |  |
| RET         | Retract                                            |  |
| RF          | Refill                                             |  |
| RVSM        | Reduced Vertical<br>Separation Minimum             |  |
|             | S                                                  |  |
| SEL         | Select                                             |  |
| SPD         | Speed                                              |  |
| STA         | Station                                            |  |
| STAB        | Stabilizer                                         |  |
| STAT        | Status                                             |  |
| STD         | Standard                                           |  |
|             | Т                                                  |  |
| T or<br>TRU | True                                               |  |
| ТА          | Traffic Advisory                                   |  |
| TAI         | Thermal Anti-Ice                                   |  |
| TAT         | Total Air Temperature                              |  |
| TCAS        | Traffic Alert and<br>Collision Avoidance<br>System |  |
| T/D         | Top of Descent                                     |  |
| ТЕ          | Trailing Edge                                      |  |
| TFC         | Traffic                                            |  |
| THR HOLD    | Throttle Hold                                      |  |
| ТО          | Takeoff                                            |  |
| TO/GA       | Takeoff/Go-Around                                  |  |
|             |                                                    |  |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 1, 2016 D6-27370-200A-TBC

| U                                 |                              |  |  |  |
|-----------------------------------|------------------------------|--|--|--|
| UTC Universal Time<br>Coordinated |                              |  |  |  |
|                                   | V                            |  |  |  |
| VA                                | Design Maneuvering<br>Speed  |  |  |  |
| VMO                               | Maximum Operating<br>Speed   |  |  |  |
| VOR                               | VHF Omnidirectional<br>Range |  |  |  |
| VR                                | Rotation Speed               |  |  |  |
| VREF                              | Reference Speed              |  |  |  |
| V/S                               | Vertical Speed               |  |  |  |
| V1                                | Takeoff Decision Speed       |  |  |  |
| V2                                | Takeoff Safety Speed         |  |  |  |
| W                                 |                              |  |  |  |
| WPT                               | Waypoint                     |  |  |  |
| WXR                               | Weather Radar                |  |  |  |

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

# Preface

**Revision Record** 

Chapter 0 Section 4

# **Revision Transmittal Letter**

To: All holders of The Boeing Company 737 Flight Crew Operations Manual (FCOM), Boeing Document Number D6-27370-200A-TBC.

Subject: Flight Crew Operations Manual Revision.

This revision reflects the most current information available to The Boeing Company 45 days before the subject revision date. The following revision highlights explain changes in this revision. General information below explains the use of revision bars to identify new or revised information.

#### Date Date No. **Revision Date** No. **Revision Date** Filed Filed 31 April 3, 2015 32 November 13, 2015 33 April 1, 2016 34 October 21, 2016 35 October 5, 2017 April 6, 2017 36 37 April 6, 2018 October 15, 2018 38 39 April 5, 2019 40 October 15, 2019 October 6, 2020 41 April 15, 2020 42

### **Revision Record**

# General

The Boeing Company issues FCOM revisions to provide new or revised procedures and information. Formal revisions also incorporate appropriate information from previously issued FCOM bulletins.

The revision date is the approximate date the manual is approved for printing. The revision is mailed a few weeks after this date.

Formal revisions include a Transmittal Letter, a new Revision Record, Revision Highlights, and a current List of Effective Pages. Use the information on the new Revision Record and List of Effective Pages to verify the FCOM content.

Pages containing revised technical material have revision bars associated with the changed text or illustration. Editorial revisions (for example, spelling corrections) may have revision bars with no associated highlight.

The Revision Record should be completed by the person incorporating the revision into the manual.

## **Filing Instructions**

Consult the List of Effective Pages (0.5). Pages identified with an asterisk (\*) are either replacement pages or new (original) issue pages. Remove corresponding old pages and replace or add new pages. Remove pages that are marked DELETED; there are no replacement pages for deleted pages.

Be careful when inserting changes not to throw away pages from the manual that are not replaced. Using the List of Effective Pages (0.5) can help determine the correct content of the manual.

# **Revision Highlights**

This section (0.4) replaces the existing section 0.4 in your manual.

Throughout the manual, airplane effectivity may be updated to reflect coverage as listed on the Preface - Model Identification page, or to show service bulletin airplane effectivity. Highlights are not supplied.

This manual is published from a database; the text and illustrations are marked with configuration information. Occasionally, because the editors rearrange the database markers, or mark items with configuration information due to the addition of new database content, some customers may receive revision bars on content that appears to be unchanged. Pages may also be republished without revision bars due to slight changes in the flow of the document.

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Preface

# **Revision Highlights**

Chapter 0 Section 4

#### **Chapter NP - Normal Procedures**

#### **Section 21 - Amplified Procedures**

#### Preliminary Preflight Procedure - Captain or First Officer

NP.21.1 - Added a reference allowing the use of an observer station when doing the oxygen pressure drop test during the preliminary preflight procedure. An observer station can be used and may be easier.

NP.21.2 - Added a step to verify the OFF light is illuminated when checking that the flight recorder switch guard is closed. Deleted the word "TEST" for standardization with other 737 models.

#### **Before Start Procedure**

NP.21.25 - Standardized the conversion of 1,000 lbs to 453 kgs.

NP.21.25 - Standardized the conversion of 1,000 lbs to 453 kgs.

#### **Descent Procedure**

NP.21.38 - Moved this step earlier to ensure that landing data doesn't require changing anything already set, such as changing the flap setting used and thus changing Vref.

NP.21.38 - Deleted table row "Check landing performance." because it was moved higher in the procedure.



Intentionally Blank

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

# Preface

### V1V2 List of Effective Pages

# Chapter 0

# Section 5

|                  |                  | B.13.3           | October 4, 2013                    |
|------------------|------------------|------------------|------------------------------------|
| Volume 1         |                  | B.13.4           | October 4, 2013                    |
| v orume 1        |                  | B.13.5           | October 4, 2013                    |
| * Title Page 1-2 | October 6, 2020  | B.13.6           | October 4, 2013                    |
| 0.TOC.1-2        | October 4, 2013  | B.19.1           | October 4, 2013                    |
|                  | ,                | B.19.2           | October 4, 2013                    |
| Model Id         | lentification    | B.21.1           | October 4, 2013                    |
| 0.1.1-2          | October 5, 2012  | B.21.2           | October 4, 2013                    |
| Intro            | oduction         | B.26.1<br>B.26.2 | October 4, 2013<br>October 4, 2013 |
| 0.2.1            | October 5, 2012  | B.26.3           | October 4, 2013                    |
| 0.2.2            | October 21, 2012 | B.26.4           | October 4, 2013                    |
| 0.2.3            | April 3, 2015    | B.27.1           | October 4, 2013                    |
| 0.2.4            | April 3, 2015    | B.27.2           | October 4, 2013                    |
| 0.2.5            | October 4, 2013  | D.27.2           | 0010001 4, 2013                    |
| 0.2.6            | October 4, 2013  | Limit            | ations (tab)                       |
| 411.             |                  | L.TOC.1-2        | October 15, 2018                   |
|                  | eviations        | L.10.1           | April 6, 2018                      |
| 0.3.1            | October 4, 2013  | L.10.2           | April 15, 2020                     |
| 0.3.2            | April 1, 2016    | L.10.3           | April 6, 2018                      |
| 0.3.3            | April 1, 2016    | L.10.4           | October 15, 2018                   |
| 0.3.4            | April 1, 2016    | L.10.5           | October 15, 2018                   |
| Revision         | Record (tab)     | L.10.6           | April 6, 2018                      |
| * 0.4.1          | October 6, 2020  | L.10.7           | April 6, 2018                      |
| * 0.4.2          | October 6, 2020  | L.10.8           | April 6, 2018                      |
| 0.4.2            | 0000000 0, 2020  | L.10.9           | October 15, 2018                   |
| Revision         | Highlights       | L.10.10          | October 15, 2018                   |
| * 0.4.3          | October 6, 2020  | L.10.11          | October 15, 2018                   |
| * 0.4.4          | October 6, 2020  | L.10.12          | April 6, 2018                      |
| V1V2 List of     | Effective Pages  | Normal P         | rocedures (tab)                    |
| * 0.5.1-10       | 0                | * NP.TOC.1-2     | October 6, 2020                    |
| * 0.5.1-10       | October 6, 2020  | NP.11.1          | October 4, 2013                    |
|                  |                  | NP.11.2          | October 4, 2013                    |
| Bulletin I       | Record (tab)     | NP.11.3          | October 4, 2013                    |
| * 0.6.1-2        | October 6, 2020  | NP.11.4          | October 9, 2007                    |
| B.4.1            | October 4, 2013  | NP.11.5          | April 6, 2017                      |
| B.4.2            | October 4, 2013  | NP.11.6          | April 6, 2017                      |
| B.5.1            | October 4, 2013  | * NP.21.1        | October 6, 2020                    |
| B.5.2            | October 4, 2013  | * NP.21.2        | October 6, 2020                    |
| B.5.3            | October 4, 2013  | * NP.21.3        | October 6, 2020                    |
| B.5.4            | October 4, 2013  | * NP.21.4        | October 6, 2020                    |
| B.13.1           | October 4, 2013  | * NP.21.5        | October 6, 2020                    |
| B.13.2           | October 4, 2013  | * NP.21.6        | October 6, 2020                    |
|                  |                  | 1                |                                    |

\* = Revised, Added, or Deleted

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 6, 2020 D6-27370-200A-TBC 0.5.1

# Pretace -V1V2 List of Effective Page NOT USE FOR FLIGHT

#### 737 Flight Crew Operations Manual

|                        | -                   |         |                   |
|------------------------|---------------------|---------|-------------------|
| * NP.21.7              | October 6, 2020     | SP.1.1  | October 3, 2003   |
| * NP.21.8              | October 6, 2020     | SP.1.2  | October 3, 2003   |
| * NP.21.9              | October 6, 2020     | SP.1.3  | April 3, 2015     |
| * NP.21.10             | October 6, 2020     | SP.1.4  | April 3, 2015     |
| * NP.21.11             | October 6, 2020     | SP.1.5  | November 13, 2015 |
| * NP.21.12             | October 6, 2020     | SP.1.6  | November 13, 2015 |
| * NP.21.13             | October 6, 2020     | SP.1.7  | October 8, 2004   |
| * NP.21.14             | October 6, 2020     | SP.1.8  | April 3, 2015     |
| * NP.21.15             | October 6, 2020     | SP.1.9  | April 3, 2015     |
| * NP.21.16             | October 6, 2020     | SP.1.10 | April 9, 2009     |
| * NP.21.17             | October 6, 2020     | SP.2.1  | April 3, 2015     |
| * NP.21.18             | October 6, 2020     | SP.2.2  | April 3, 2015     |
| * NP.21.19             | October 6, 2020     | SP.2.3  | November 13, 2015 |
| * NP.21.20             | October 6, 2020     | SP.2.4  | November 13, 2015 |
| * NP.21.21             | October 6, 2020     | SP.2.5  | November 13, 2015 |
| * NP.21.22             | October 6, 2020     | SP.2.6  | April 5, 2019     |
| * NP.21.23             | October 6, 2020     | SP.2.7  | November 13, 2015 |
| * NP.21.24             | October 6, 2020     | SP.2.8  | November 13, 2015 |
| * NP.21.25             | October 6, 2020     | SP.2.9  | November 13, 2015 |
| * NP.21.26             | October 6, 2020     | SP.2.10 | November 13, 2015 |
| * NP.21.27             | October 6, 2020     | SP.3.1  | April 3, 2015     |
| * NP.21.28             | October 6, 2020     | SP.3.2  | October 7, 2005   |
| * NP.21.29             | October 6, 2020     | SP.4.1  | November 13, 2015 |
| * NP.21.30             | October 6, 2020     | SP.4.2  | November 13, 2015 |
| * NP.21.31             | October 6, 2020     | SP.4.3  | November 13, 2015 |
| * NP.21.32             | October 6, 2020     | SP.4.4  | November 13, 2015 |
| * NP.21.33             | October 6, 2020     | SP.4.5  | November 13, 2015 |
| * NP.21.34             | October 6, 2020     | SP.4.6  | April 3, 2015     |
| NP.21.35               | April 15, 2020      | SP.4.7  | April 3, 2015     |
| NP.21.36               | April 15, 2020      | SP.4.8  | April 3, 2015     |
| NP.21.37               | April 15, 2020      | SP.4.9  | November 13, 2015 |
| * NP.21.38             | October 6, 2020     | SP.4.10 | November 13, 2015 |
| NP.21.39               | April 15, 2020      | SP.4.11 | November 13, 2015 |
| NP.21.40               | April 15, 2020      | SP.4.12 | November 13, 2015 |
| NP.21.41               | April 15, 2020      | SP.5.1  | April 5, 2013     |
| NP.21.42               | April 15, 2020      | SP.5.2  | April 7, 2000     |
| NP.21.43               | April 15, 2020      | SP.6.1  | April 3, 2015     |
| NP.21.44               | April 15, 2020      | SP.6.2  | April 3, 2015     |
| NP.21.45               | April 15, 2020      | SP.6.3  | April 3, 2015     |
| NP.21.46               | April 15, 2020      | SP.6.4  | April 3, 2015     |
| NP.21.47               | April 15, 2020      | SP.6.5  | April 1, 2016     |
| NP.21.48               | April 15, 2020      | SP.6.6  | April 3, 2015     |
| Constant of the second |                     | SP.7.1  | April 3, 2015     |
|                        | ry Procedures (tab) | SP.7.2  | April 3, 2015     |
| SP.TOC.1-6             | April 5, 2019       | SP.7.3  | April 3, 2015     |
| SP.05.1                | October 9, 2008     | SP.7.4  | October 21, 2016  |
| SP.05.2                | April 7, 2000       | SP.7.5  | October 21, 2016  |
|                        |                     |         |                   |
| •                      |                     |         |                   |

\* = Revised, Added, or Deleted

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

**DO NOT USE FOR FLIGHT** V2 List of Effective Pages

#### 737 Flight Crew Operations Manual

|          | To Finght Crew Operations Francas |               |                    |  |
|----------|-----------------------------------|---------------|--------------------|--|
| SP.7.6   | October 9, 2007                   | SP.15.1       | October 8, 2010    |  |
| SP.7.7   | October 9, 2007                   | SP.15.2       | October 8, 2010    |  |
| SP.7.8   | October 9, 2007                   | SP.16.1       | October 9, 2009    |  |
| SP.7.9   | October 9, 2007                   | SP.16.2       | April 3, 2015      |  |
| SP.7.10  | April 3, 2015                     | SP.16.3       | April 3, 2015      |  |
| SP.7.11  | April 3, 2015                     | SP.16.4       | April 3, 2015      |  |
| SP.7.12  | April 3, 2015                     | SP.16.5       | April 3, 2015      |  |
| SP.7.13  | April 3, 2015                     | SP.16.6       | April 3, 2015      |  |
| SP.7.14  | April 3, 2015                     | SP.16.7       | April 3, 2015      |  |
| SP.7.15  | April 3, 2015                     | SP.16.8       | April 3, 2015      |  |
| SP.7.16  | April 3, 2015                     | SP.16.9       | April 3, 2015      |  |
| SP.7.17  | April 3, 2015                     | SP.16.10      | April 3, 2015      |  |
| SP.7.18  | April 3, 2015                     | SP.16.11      | October 5, 2017    |  |
| SP.7.19  | April 3, 2015                     | SP.16.12      | October 5, 2017    |  |
| SP.7.20  | April 3, 2015                     | SP.16.13      | April 1, 2016      |  |
| SP.7.21  | April 3, 2015                     | SP.16.14      | April 1, 2016      |  |
| SP.7.22  | April 3, 2015                     | SP.16.15      | April 1, 2016      |  |
| SP.7.23  | April 3, 2015                     | SP.16.16      | April 1, 2016      |  |
| SP.7.24  | April 3, 2015                     | SP.16.17      | April 1, 2016      |  |
| SP.7.25  | April 3, 2015                     | SP.16.18      | October 21, 2016   |  |
| SP.7.26  | April 3, 2015                     | SP.16.19      | October 21, 2016   |  |
| SP.7.27  | April 3, 2015                     | SP.16.20      | October 21, 2016   |  |
| SP.7.28  | April 3, 2015                     | SP.16.21      | October 21, 2016   |  |
| SP.9.1   | October 9, 2007                   | SP.16.22      | October 21, 2016   |  |
| SP.9.2   | April 3, 2007                     | SP.16.23      | October 21, 2016   |  |
| SP.10.1  | October 5, 2001                   | SP.16.24      | October 21, 2016   |  |
| SP.10.2  | April 3, 2015                     | SP.16.25      | October 21, 2016   |  |
| SP.11.1  | April 9, 2010                     | SP.16.26      | October 21, 2016   |  |
| SP.11.2  | April 3, 2015                     | SP.16.27      | October 21, 2016   |  |
| SP.11.3  | April 3, 2015                     | SP.16.28      | April 3, 2015      |  |
| SP.11.4  | April 3, 2015                     | SP.16.29      | April 3, 2015      |  |
| SP.11.5  | April 3, 2015                     | SP.16.30      | April 3, 2015      |  |
| SP.11.6  | April 3, 2015                     | SP.16.31      | October 15, 2018   |  |
| SP.11.7  | April 3, 2015                     | SP.16.32      | April 3, 2015      |  |
| SP.11.8  | April 3, 2015                     | Performar     | ice Inflight (tab) |  |
| SP.11.9  | April 3, 2015                     |               |                    |  |
| SP.11.10 | April 3, 2015                     | PI.TOC.1-2    | October 9, 2008    |  |
| SP.11.11 | April 3, 2015                     | 737-200ADV    | JT8D-15A LB FAA    |  |
| SP.11.12 | April 3, 2015                     | PI.TOC.10.1-2 | April 6, 2017      |  |
| SP.11.13 | April 3, 2015                     | PI.10.1       | October 9, 2008    |  |
| SP.11.14 | April 3, 2015                     | PI.10.2       | April 3, 2015      |  |
| SP.12.1  | April 7, 2000                     | PI.10.3       | April 3, 2015      |  |
| SP.12.2  | April 8, 2011                     | PI.10.4       | April 3, 2015      |  |
| SP.12.3  | October 3, 2014                   | PI.10.5       | April 3, 2015      |  |
| SP.12.4  | October 3, 2014                   | PI.10.6       | April 3, 2015      |  |
| SP.12.5  | October 3, 2014                   | PI.10.7       | April 3, 2015      |  |
| SP.12.6  | October 3, 2014                   | PI.10.8       | April 3, 2015      |  |
| 1        |                                   |               |                    |  |

\* = Revised, Added, or Deleted

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 6, 2020 D6-27370-200A-TBC 0.5.3

# Preface -V1V2 List of Effective Page NOT USE FOR FLIGHT

#### 737 Flight Crew Operations Manual

| PI.10.9  | April 3, 2015    | PI.15.12                                                  | April 5, 2013   |  |
|----------|------------------|-----------------------------------------------------------|-----------------|--|
| PI.10.10 | April 3, 2015    |                                                           |                 |  |
| PI.10.11 | April 3, 2015    | 737-200ADV JT8D-17A LB FAA<br>PI.TOC.20.1-2 April 6, 2017 |                 |  |
| PI.10.12 | April 3, 2015    | PI.20.1                                                   | October 9, 2008 |  |
| PI.10.13 | April 3, 2015    | PI.20.2                                                   | April 3, 2015   |  |
| PI.10.14 | April 3, 2015    | PI.20.3                                                   | April 3, 2015   |  |
| PI.10.15 | April 3, 2015    | PI.20.4                                                   | April 3, 2015   |  |
| PI.10.16 | April 3, 2015    | PI.20.5                                                   | April 3, 2015   |  |
| PI.11.1  | April 5, 2013    | PI.20.6                                                   | April 3, 2015   |  |
| PI.11.2  | April 3, 2015    | PI.20.7                                                   | April 3, 2015   |  |
| PI.11.3  | April 3, 2015    | PI.20.8                                                   | April 3, 2015   |  |
| PI.11.4  | April 3, 2015    | PI.20.9                                                   | April 3, 2015   |  |
| PI.11.5  | April 3, 2015    | PI.20.10                                                  | April 3, 2015   |  |
| PI.11.6  | April 3, 2015    | PI.20.11                                                  | April 3, 2015   |  |
| PI.12.1  | April 6, 2017    | PI.20.11<br>PI.20.12                                      | April 3, 2015   |  |
| PI.12.2  | April 6, 2017    | PI.20.12<br>PI.20.13                                      | April 3, 2015   |  |
| PI.12.3  | April 6, 2017    |                                                           | 1 /             |  |
| PI.12.4  | April 6, 2017    | PI.20.14                                                  | April 3, 2015   |  |
| PI.12.5  | April 6, 2017    | PI.21.1                                                   | April 5, 2013   |  |
| PI.12.6  | April 6, 2017    | PI.21.2                                                   | April 3, 2015   |  |
| PI.12.7  | April 6, 2017    | PI.21.3                                                   | April 3, 2015   |  |
| PI.12.8  | April 6, 2017    | PI.21.4                                                   | April 3, 2015   |  |
| PI.12.9  | April 6, 2017    | PI.21.5                                                   | April 3, 2015   |  |
| PI.12.10 | April 6, 2017    | PI.21.6                                                   | April 3, 2015   |  |
| PI.12.11 | April 6, 2017    | PI.22.1                                                   | April 6, 2017   |  |
| PI.12.12 | April 6, 2017    | PI.22.2                                                   | April 6, 2017   |  |
| PI.13.1  | April 5, 2013    | PI.22.3                                                   | April 6, 2017   |  |
| PI.13.2  | April 3, 2015    | PI.22.4                                                   | April 6, 2017   |  |
| PI.13.3  | April 3, 2015    | PI.22.5                                                   | April 6, 2017   |  |
| PI.13.4  | April 3, 2015    | PI.22.6                                                   | April 6, 2017   |  |
| PI.13.5  | April 3, 2015    | PI.22.7                                                   | April 6, 2017   |  |
| PI.13.6  | April 3, 2015    | PI.22.8                                                   | April 6, 2017   |  |
| PI.14.1  | April 3, 2015    | PI.22.9                                                   | April 6, 2017   |  |
| PI.14.2  | April 3, 2015    | PI.22.10                                                  | April 6, 2017   |  |
| PI.14.3  | April 3, 2015    | PI.22.11                                                  | April 6, 2017   |  |
| PI.14.4  | April 3, 2015    | PI.22.12                                                  | April 6, 2017   |  |
| PI.15.1  | April 8, 2011    | PI.23.1                                                   | April 5, 2013   |  |
| PI.15.2  | April 3, 2015    | PI.23.2                                                   | April 3, 2015   |  |
| PI.15.3  | April 3, 2015    | PI.23.3                                                   | April 3, 2015   |  |
| PI.15.4  | October 15, 2018 | PI.23.4                                                   | April 3, 2015   |  |
| PI.15.5  | April 3, 2015    | PI.23.5                                                   | April 3, 2015   |  |
| PI.15.6  | April 3, 2015    | PI.23.6                                                   | April 3, 2015   |  |
| PI.15.7  | April 3, 2015    | PI.24.1                                                   | April 3, 2015   |  |
| PI.15.8  | April 5, 2013    | PI.24.2                                                   | April 3, 2015   |  |
| PI.15.9  | April 5, 2013    | PI.24.3                                                   | April 3, 2015   |  |
| PI.15.10 | April 5, 2013    | PI.24.4                                                   | April 3, 2015   |  |
| PI.15.11 | April 5, 2013    | PI.25.1                                                   | April 8, 2011   |  |
|          | -                |                                                           |                 |  |
|          |                  |                                                           |                 |  |

\* = Revised, Added, or Deleted

**DO NOT USE FOR FLIGHT** V2 List of Effective Pages Preface -

| 737 | Flight | Crew | Opera | ations | Manual |
|-----|--------|------|-------|--------|--------|
|     |        |      |       |        |        |

|                               |                                                 | -                          |                                                       |
|-------------------------------|-------------------------------------------------|----------------------------|-------------------------------------------------------|
| PI.25.2                       | April 5, 2013                                   | PI.33.6                    | April 3, 2015                                         |
| PI.25.3                       | April 3, 2015                                   | PI.34.1                    | April 5, 2002                                         |
| PI.25.4                       | April 3, 2015                                   | PI.34.2                    | April 3, 2015                                         |
| PI.25.5                       | April 3, 2015                                   | PI.34.3                    | April 3, 2015                                         |
| PI.25.6                       | April 3, 2015                                   | PI.34.4                    | April 3, 2015                                         |
| PI.25.7                       | April 3, 2015                                   | PI.35.1                    | April 8, 2011                                         |
| PI.25.8                       | April 3, 2015                                   | PI.35.2                    | April 5, 2013                                         |
| PI.25.9                       | April 3, 2015                                   | PI.35.3                    | April 9, 2010                                         |
| PI.25.10                      | April 3, 2015                                   | PI.35.4                    | October 8, 2004                                       |
| 11.23.10                      | April 5, 2015                                   | PI.35.5                    | October 8, 2004                                       |
| 737-200AD                     | V JT8D-9 LB FAA                                 | PI.35.6                    | April 3, 2015                                         |
| PI.TOC.30.1-2                 | April 6, 2017                                   | PI.35.7                    | April 3, 2015                                         |
| PI.30.1                       | October 9, 2008                                 | PI.35.8                    | <b>1</b>                                              |
| PI.30.2                       | April 3, 2015                                   |                            | April 3, 2015                                         |
| PI.30.3                       | April 3, 2015                                   | PI.35.9                    | April 5, 2013                                         |
| PI.30.4                       | April 3, 2015                                   | PI.35.10                   | April 5, 2013                                         |
| PI.30.5                       | April 3, 2015                                   |                            | (blank tab)                                           |
| PI.30.6                       | April 3, 2015                                   |                            |                                                       |
| PI.30.7                       | April 3, 2015                                   |                            |                                                       |
| PI.30.8                       | April 3, 2015                                   |                            | Volume 2                                              |
| PI.30.9                       | April 3, 2015                                   |                            |                                                       |
| PI.30.10                      | April 3, 2015                                   | 1 Airplan                  | e General, Emergency                                  |
| PI.30.11                      | April 3, 2015                                   |                            | t, Doors, Windows (tab)                               |
| PI.30.12                      | April 3, 2015                                   |                            |                                                       |
| PI.31.1                       | April 5, 2013                                   | 1.TOC.1-4                  | October 4, 2013                                       |
| PI.31.2                       | April 3, 2015                                   | 1.10.1                     | April 7, 2000                                         |
| PI.31.3                       | April 3, 2015                                   | 1.10.2                     | October 8, 2004                                       |
| PI.31.4                       | April 3, 2015                                   | 1.20.1                     | April 7, 2000                                         |
|                               | April 3, 2015                                   | 1.20.2                     | April 7, 2000                                         |
| PI.31.5                       |                                                 | 1.20.3                     | April 4, 2003                                         |
| PI.31.6                       | April 3, 2015                                   | 1.20.4                     | April 4, 2003                                         |
| PI.32.1                       | April 6, 2017                                   | 1.20.5                     | April 9, 2009                                         |
| PI.32.2                       | April 6, 2017                                   | 1.20.6                     | April 9, 2009                                         |
| PI.32.3                       | April 6, 2017                                   | 1.20.7                     | April 9, 2009                                         |
| PI.32.4                       | April 6, 2017                                   | 1.20.8                     | April 9, 2009                                         |
| PI.32.5                       | April 6, 2017                                   | 1.20.9                     | April 9, 2009                                         |
| PI.32.6                       | April 6, 2017                                   | 1.20.10                    | October 15, 2018                                      |
| PI.32.7                       | April 6, 2017                                   | 1.20.11                    | April 9, 2009                                         |
| PI.32.8                       | April 6, 2017                                   | 1.20.12                    | April 9, 2009                                         |
| PI.32.9                       | April 6, 2017                                   | 1.20.13                    | April 9, 2009                                         |
| PI.32.10                      | April 6, 2017                                   | 1.20.14                    | April 9, 2009                                         |
| PI.32.11                      | April 6, 2017                                   | 1.30.1                     | April 7, 2000                                         |
| PI.32.12                      | April 6, 2017                                   | 1.30.2                     | October 5, 2001                                       |
|                               | April 5, 2013                                   |                            | April 7, 2000                                         |
| PI.33.1                       | April 5, 2015                                   | 1 30 3                     |                                                       |
| PI.33.1<br>PI.33.2            | April 3, 2015                                   | 1.30.3                     |                                                       |
|                               |                                                 | 1.30.4                     | October 5, 2012                                       |
| PI.33.2                       | April 3, 2015                                   | 1.30.4<br>1.30.5           | October 5, 2012<br>October 5, 2012                    |
| PI.33.2<br>PI.33.3            | April 3, 2015<br>April 3, 2015<br>April 3, 2015 | 1.30.4<br>1.30.5<br>1.30.6 | October 5, 2012<br>October 5, 2012<br>October 9, 2008 |
| PI.33.2<br>PI.33.3<br>PI.33.4 | April 3, 2015<br>April 3, 2015                  | 1.30.4<br>1.30.5           | October 5, 2012<br>October 5, 2012                    |

\* = Revised, Added, or Deleted Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 6, 2020 D6-27370-200A-TBC

# Pretace -V1V2 List of Effective Page NOT USE FOR FLIGHT

#### 737 Flight Crew Operations Manual

| 1.30.8         October 9, 2008         1.40.19         October 5, 2012           1.30.10         October 9, 2008         1.40.20         October 5, 2012           1.30.11         October 9, 2008         1.40.21         October 5, 2012           1.30.12         October 9, 2008         1.40.23         October 5, 2012           1.30.13         October 9, 2008         1.40.24         October 5, 2012           1.30.13         October 9, 2008         1.40.24         October 5, 2012           1.30.14         April 9, 2009         1.40.26         October 5, 2012           1.30.16         April 9, 2009         1.40.27         October 5, 2012           1.30.16         April 9, 2009         1.40.28         October 5, 2012           1.30.19         October 9, 2008         1.40.31         October 5, 2012           1.30.20         October 5, 2012         1.40.30         October 5, 2012           1.30.21         October 5, 2012         1.40.34         October 5, 2012           1.30.24         October 5, 2012         1.40.35         October 5, 2012           1.30.29         October 5, 2012         1.40.36         October 5, 2012           1.30.20         October 9, 2008         2.10.1         October 5, 2012           1.30.2                                                                                 |         | -               |         |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|---------|---------------------------------------|
| 1.30.10         October 9, 2008         1.40.21         October 5, 2012           1.30.11         October 9, 2008         1.40.22         October 5, 2012           1.30.12         October 9, 2008         1.40.23         October 5, 2012           1.30.13         October 9, 2008         1.40.24         October 5, 2012           1.30.14         April 9, 2009         1.40.25         October 5, 2012           1.30.15         April 9, 2009         1.40.27         October 5, 2012           1.30.16         April 9, 2009         1.40.28         October 5, 2012           1.30.17         October 9, 2008         1.40.30         October 5, 2012           1.30.18         October 9, 2008         1.40.31         October 5, 2012           1.30.20         October 5, 2012         1.40.33         October 5, 2012           1.30.21         October 5, 2012         1.40.34         October 5, 2012           1.30.26         October 5, 2012         1.40.35         October 5, 2012           1.30.27         October 5, 2012         1.40.36         October 5, 2012           1.30.28         October 9, 2008         2.10.1         October 5, 2011           1.30.30         October 9, 2008         2.10.3         April 7, 2000           1.30.33<                                                                                 | 1.30.8  | October 9, 2008 | 1.40.19 | October 5, 2012                       |
| 1.30.11         October 9, 2008         1.40.22         October 5, 2012           1.30.12         October 9, 2008         1.40.23         October 5, 2012           1.30.13         October 9, 2008         1.40.25         October 5, 2012           1.30.14         April 9, 2009         1.40.25         October 5, 2012           1.30.15         April 9, 2009         1.40.26         October 5, 2012           1.30.16         April 9, 2009         1.40.27         October 5, 2012           1.30.17         October 9, 2008         1.40.29         October 5, 2012           1.30.19         October 9, 2008         1.40.30         October 5, 2012           1.30.20         October 5, 2012         1.40.31         October 5, 2012           1.30.20         October 5, 2012         1.40.33         October 5, 2012           1.30.20         October 5, 2012         1.40.34         October 5, 2012           1.30.24         October 5, 2012         1.40.35         October 5, 2012           1.30.27         October 5, 2012         1.40.36         October 5, 2012           1.30.20         October 5, 2012         1.40.36         October 5, 2001           1.30.30         October 9, 2008         2.10.1         October 5, 2001           1.30.                                                                                 | 1.30.9  | October 9, 2008 | 1.40.20 | October 5, 2012                       |
| 1.30.12         October 9, 2008         1.40.23         October 5, 2012           1.30.13         October 9, 2008         1.40.24         October 5, 2012           1.30.15         April 9, 2009         1.40.25         October 5, 2012           1.30.16         April 9, 2009         1.40.26         October 5, 2012           1.30.16         April 9, 2009         1.40.27         October 5, 2012           1.30.16         April 9, 2008         1.40.28         October 5, 2012           1.30.17         October 9, 2008         1.40.29         October 5, 2012           1.30.19         October 9, 2008         1.40.31         October 5, 2012           1.30.20         October 5, 2012         1.40.33         October 5, 2012           1.30.20         October 5, 2012         1.40.34         October 5, 2012           1.30.24         October 5, 2012         1.40.35         October 5, 2012           1.30.26         October 5, 2012         1.40.36         October 5, 2012           1.30.27         October 9, 2008         2.10.1         October 5, 2012           1.30.30         October 9, 2008         2.10.1         October 5, 2012           1.30.31         October 9, 2008         2.10.3         April 7, 2000           1.30.33 <td>1.30.10</td> <td>October 9, 2008</td> <td>1.40.21</td> <td>October 5, 2012</td> | 1.30.10 | October 9, 2008 | 1.40.21 | October 5, 2012                       |
| 1.30.13       October 9, 2008       1.40.24       October 5, 2012         1.30.14       April 9, 2009       1.40.25       October 5, 2012         1.30.15       April 9, 2009       1.40.26       October 5, 2012         1.30.16       April 9, 2009       1.40.27       October 5, 2012         1.30.17       October 9, 2008       1.40.29       October 5, 2012         1.30.18       October 9, 2008       1.40.30       October 5, 2012         1.30.20       October 9, 2008       1.40.31       October 5, 2012         1.30.20       October 5, 2012       1.40.33       October 5, 2012         1.30.20       October 5, 2012       1.40.33       October 5, 2012         1.30.20       October 5, 2012       1.40.34       October 5, 2012         1.30.24       October 5, 2012       1.40.35       October 5, 2012         1.30.26       October 5, 2012       1.40.36       October 5, 2012         1.30.27       October 5, 2012       1.40.36       October 5, 2011         1.30.30       October 9, 2008       2.10.1       October 5, 2001         1.30.31       October 9, 2008       2.10.2       October 5, 2011         1.30.33       April 3, 2015       2.10.4       April 7, 2000                                                                                                                                                   | 1.30.11 | October 9, 2008 | 1.40.22 | October 5, 2012                       |
| 1.30.14       April 9, 2009       1.40.25       October 5, 2012         1.30.15       April 9, 2009       1.40.26       October 5, 2012         1.30.16       April 9, 2009       1.40.27       October 5, 2012         1.30.17       October 9, 2008       1.40.29       October 5, 2012         1.30.19       October 9, 2008       1.40.30       October 5, 2012         1.30.20       October 9, 2008       1.40.31       October 5, 2012         1.30.21       October 5, 2012       1.40.33       October 5, 2012         1.30.22       October 5, 2012       1.40.34       October 5, 2012         1.30.24       October 5, 2012       1.40.35       October 5, 2012         1.30.26       October 5, 2012       1.40.36       October 5, 2012         1.30.27       October 5, 2012       1.40.36       October 5, 2012         1.30.28       October 9, 2008       2.10.1       October 5, 2011         1.30.30       October 9, 2008       2.10.2       October 5, 2011         1.30.33       April 3, 2015       2.10.4       April 7, 2000         1.30.34       April 3, 2015       2.10.5       April 7, 2000         1.30.35       April 3, 2015       2.10.6       October 15, 2018         1.4                                                                                                                                              | 1.30.12 | October 9, 2008 | 1.40.23 | October 5, 2012                       |
| 1.30.15       April 9, 2009       1.40.26       October 5, 2012         1.30.16       April 9, 2009       1.40.27       October 5, 2012         1.30.18       October 9, 2008       1.40.29       October 5, 2012         1.30.19       October 9, 2008       1.40.29       October 5, 2012         1.30.20       October 9, 2008       1.40.30       October 5, 2012         1.30.20       October 9, 2008       1.40.31       October 5, 2012         1.30.21       October 5, 2012       1.40.33       October 5, 2012         1.30.22       October 5, 2012       1.40.34       October 5, 2012         1.30.24       October 5, 2012       1.40.35       October 5, 2012         1.30.26       October 5, 2012       1.40.36       October 5, 2012         1.30.26       October 5, 2012       1.40.36       October 5, 2012         1.30.28       October 5, 2012       1.40.36       October 5, 2011         1.30.30       October 9, 2008       2.10.1       October 5, 2011         1.30.33       April 3, 2015       2.10.4       April 7, 2000         1.30.33       April 3, 2015       2.10.6       October 15, 2018         1.30.35       April 3, 2015       2.10.6       October 15, 2018         <                                                                                                                                          | 1.30.13 | October 9, 2008 | 1.40.24 | October 5, 2012                       |
| 1.30.16April 9, 20091.40.27October 5, 20121.30.17October 9, 20081.40.28October 5, 20121.30.18October 9, 20081.40.30October 5, 20121.30.20October 9, 20081.40.31October 5, 20121.30.21October 5, 20121.40.33October 5, 20121.30.22October 5, 20121.40.33October 5, 20121.30.23October 5, 20121.40.34October 5, 20121.30.24October 5, 20121.40.35October 5, 20121.30.25October 5, 20121.40.36October 5, 20121.30.26October 5, 20121.40.36October 5, 20121.30.27October 5, 20121.40.36October 5, 20121.30.29October 9, 20082.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20111.30.33April 3, 20152.10.4April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.36October 9, 20082.10.7October 15, 20181.40.1October 5, 20122.10.1October 15, 20181.40.2October 5, 20122.10.1October 15, 20181.40.3October 5, 20122.10.4April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.40.1October 5, 20122.10.10October 15, 20181.40.2October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.10October 15, 20181                                                                                                                                                                                                                                                                                                                           | 1.30.14 | April 9, 2009   | 1.40.25 | October 5, 2012                       |
| 1.30.17October 9, 20081.40.28October 5, 20121.30.18October 9, 20081.40.29October 5, 20121.30.19October 9, 20081.40.30October 5, 20121.30.20October 9, 20081.40.31October 5, 20121.30.21October 9, 20081.40.32October 5, 20121.30.22October 5, 20121.40.33October 5, 20121.30.23October 5, 20121.40.34October 5, 20121.30.24October 5, 20121.40.36October 5, 20121.30.25October 5, 20121.40.36October 5, 20121.30.26October 5, 20121.40.36October 5, 20121.30.27October 9, 20082.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.3April 7, 20001.30.33April 3, 20152.10.4April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.36October 9, 20082.10.9October 15, 20181.40.1October 5, 20122.10.10October 15, 20181.40.2October 9, 20082.10.2April 7, 20001.40.3October 5, 20122.10.10October 15, 20181.40.4October 5, 20122.10.10October 15, 20181.40.4October 5, 20122.10.10October 15, 20181.40.5October 5, 20122.10.10October 15, 20181.40.4October 5, 20122.30.1April 7, 20001.                                                                                                                                                                                                                                                                                                                           | 1.30.15 | April 9, 2009   | 1.40.26 | October 5, 2012                       |
| 1.30.18October 9, 20081.40.29October 5, 20121.30.19October 9, 20081.40.30October 5, 20121.30.20October 9, 20081.40.31October 5, 20121.30.21October 9, 20081.40.32October 5, 20121.30.22October 5, 20121.40.33October 5, 20121.30.23October 5, 20121.40.34October 5, 20121.30.24October 5, 20121.40.35October 5, 20121.30.25October 5, 20121.40.36October 5, 20121.30.26October 5, 20121.40.36October 5, 20121.30.27October 5, 20122.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.2October 5, 20121.30.33April 3, 20152.10.6October 15, 20181.30.34April 3, 20152.10.6October 15, 20181.30.36October 9, 20082.10.9October 15, 20181.30.36October 5, 20122.10.10October 15, 20181.40.1October 5, 20122.10.10October 15, 20181.40.2October 5, 20122.10.10October 15, 20181.40.3October 5, 20122.10.10October 15, 20181.40.4October 5, 20122.10.10October 15, 20181.40.5October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.30.1April 7, 20001.40.5October 5, 20122.30.1April 6, 2001 <tr<< td=""><td>1.30.16</td><td>April 9, 2009</td><td>1.40.27</td><td>October 5, 2012</td></tr<<>                                                                                                                                                                                                                     | 1.30.16 | April 9, 2009   | 1.40.27 | October 5, 2012                       |
| 1.30.19October 9, 20081.40.30October 5, 20121.30.20October 9, 20081.40.31October 5, 20121.30.21October 9, 20081.40.32October 5, 20121.30.22October 5, 20121.40.33October 5, 20121.30.23October 5, 20121.40.34October 5, 20121.30.24October 5, 20121.40.35October 5, 20121.30.25October 5, 20121.40.36October 5, 20121.30.26October 5, 20121.40.36October 5, 20121.30.28October 5, 20122.TOC.1-2October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.3April 7, 20001.30.33April 3, 20152.10.4April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.36October 8, 20102.10.9October 15, 20181.40.1October 8, 20102.10.9October 15, 20181.40.3October 5, 20122.10.10October 15, 20181.40.4October 5, 20122.10.11October 15, 20181.40.3October 5, 20122.0.10October 15, 20181.40.4October 5, 20122.0.10October 15, 20181.40.4October 5, 20122.0.1October 15, 20181.40.5October 5, 20122.0.1October 15, 20181.40.4October 5, 20122.0.1October 15, 20181.40.4October 5, 20122.30.1April 3, 20071.40                                                                                                                                                                                                                                                                                                                           | 1.30.17 | October 9, 2008 | 1.40.28 | October 5, 2012                       |
| 1.30.20October 9, 20081.40.31October 5, 20121.30.21October 9, 20081.40.32October 5, 20121.30.22October 5, 20121.40.33October 5, 20121.30.23October 5, 20121.40.34October 5, 20121.30.24October 5, 20121.40.35October 5, 20121.30.25October 5, 20121.40.36October 5, 20121.30.26October 5, 20121.40.36October 5, 20121.30.27October 9, 20082.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.2October 5, 20011.30.33April 3, 20152.10.4April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.36October 9, 20082.10.8October 15, 20181.40.3October 5, 20120.10.0October 15, 20181.40.3October 8, 20102.10.1October 15, 20181.40.3October 5, 20122.10.1October 15, 20181.40.3October 5, 20122.10.10October 15, 20181.40.4October 5, 20122.10.10October 15, 20181.40.5October 5, 20122.00.1October 15, 20181.40.4October 5, 20122.01.1October 15, 20181.40.5October 5, 20122.01.1October 4, 20021.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.2April 7, 20001.40.8                                                                                                                                                                                                                                                                                                                                | 1.30.18 | October 9, 2008 | 1.40.29 | October 5, 2012                       |
| 1.30.21October 9, 20081.40.32October 5, 20121.30.22October 5, 20121.40.33October 5, 20121.30.23October 5, 20121.40.34October 5, 20121.30.24October 5, 20121.40.35October 5, 20121.30.25October 5, 20121.40.36October 5, 20121.30.26October 5, 20121.40.36October 5, 20121.30.27October 5, 20121.40.36October 5, 20121.30.28October 9, 20082.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.3April 7, 20001.30.33April 3, 20152.10.4April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.36October 9, 20082.10.8October 15, 20181.40.3October 5, 20121.40.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.3October 5, 20122.10.10October 15, 20181.40.4October 5, 20122.10.10October 15, 20181.40.5October 5, 20122.00.1October 15, 20181.40.4October 5, 20122.00.1October 15, 20181.40.4October 5, 20122.01.1October 15, 20181.40.5October 5, 20122.02.2April 6, 20011.40.6April 7, 20002.20.2April 6, 20011.40.6April 7, 20002.20.3April 7, 20001.40.10<                                                                                                                                                                                                                                                                                                                                | 1.30.19 | October 9, 2008 | 1.40.30 | October 5, 2012                       |
| 1.30.22October 5, 20121.40.33October 5, 20121.30.23October 5, 20121.40.34October 5, 20121.30.24October 5, 20121.40.35October 5, 20121.30.25October 5, 20121.40.36October 5, 20121.30.26October 5, 20121.40.36October 5, 20121.30.27October 5, 20122.40.36October 5, 20121.30.29October 9, 20082.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.3April 7, 20001.30.33April 3, 20152.10.4April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.36October 9, 20082.10.9October 15, 20181.30.36October 8, 20102.10.1October 15, 20181.40.1October 8, 20102.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.11October 15, 20181.40.5October 5, 20122.20.1October 15, 20181.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.2April 5, 20021.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.12April 7,                                                                                                                                                                                                                                                                                                                                     | 1.30.20 | October 9, 2008 | 1.40.31 | October 5, 2012                       |
| 1.30.23October 5, 20121.40.34October 5, 20121.30.24October 5, 20121.40.35October 5, 20121.30.25October 5, 20121.40.36October 5, 20121.30.26October 5, 20121.40.36October 5, 20121.30.27October 5, 20122 Air Systems (tab)1.30.28October 9, 20082.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.3April 7, 20001.30.32April 3, 20152.10.4April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.36October 9, 20082.10.7October 15, 20181.30.36October 8, 20102.10.1October 15, 20181.40.1October 8, 20102.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.11October 15, 20181.40.5October 5, 20122.10.11October 15, 20181.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.2April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.1April 3, 20071.40.11April 7, 20002.30.3April 7, 20001.40.12April 7, 20002.30.3April 7, 20001.40.13April 7, 20002.30.4April 7, 20001.40.16April 7, 20002.                                                                                                                                                                                                                                                                                                                                    | 1.30.21 | October 9, 2008 | 1.40.32 | October 5, 2012                       |
| 1.30.24       October 5, 2012       1.40.35       October 5, 2012         1.30.25       October 5, 2012       1.40.36       October 5, 2012         1.30.26       October 5, 2012       1.40.36       October 5, 2012         1.30.27       October 5, 2012       2 Air Systems (tab)         1.30.28       October 9, 2008       2.10.1       October 5, 2001         1.30.30       October 9, 2008       2.10.2       October 5, 2001         1.30.31       October 9, 2008       2.10.2       October 5, 2001         1.30.33       April 3, 2015       2.10.4       April 7, 2000         1.30.34       April 3, 2015       2.10.6       October 15, 2018         1.40.1       October 8, 2010       2.10.8       October 15, 2018         1.40.1       October 8, 2010       2.10.1       October 15, 2018         1.40.3       October 5, 2012       2.10.10       October 15, 2018         1.40.4       October 5, 2012       2.10.10       October 15, 2018         1.40.5       October 5, 2012       2.10.11       October 15, 2018         1.40.4       October 5, 2012       2.10.12       October 15, 2018         1.40.5       October 5, 2012       2.30.1       April 7, 2000         1.40.6                                                                                                                                                 | 1.30.22 |                 | 1.40.33 | October 5, 2012                       |
| 1.30.25       October 5, 2012       1.40.36       October 5, 2012         1.30.26       October 5, 2012 <b>2</b> Air Systems (tab)         1.30.28       October 9, 2008       2.10.1       October 5, 2001         1.30.30       October 9, 2008       2.10.1       October 5, 2001         1.30.31       October 9, 2008       2.10.2       October 5, 2001         1.30.31       October 9, 2008       2.10.3       April 7, 2000         1.30.32       April 3, 2015       2.10.4       April 7, 2000         1.30.34       April 3, 2015       2.10.6       October 15, 2018         1.30.35       April 3, 2015       2.10.7       October 15, 2018         1.40.1       October 8, 2010       2.10.8       October 15, 2018         1.40.1       October 5, 2012       2.10.1       October 15, 2018         1.40.3       October 5, 2012       2.10.10       October 15, 2018         1.40.4       October 5, 2012       2.10.10       October 15, 2018         1.40.5       October 5, 2012       2.10.10       October 15, 2018         1.40.6       April 7, 2000       2.20.2       April 6, 2001         1.40.6       April 7, 2000       2.20.2       April 6, 2001         1.40.6       April 7                                                                                                                                               | 1.30.23 | October 5, 2012 | 1.40.34 | October 5, 2012                       |
| 1.30.26October 5, 2012 $2$ Air Systems (tab) $1.30.27$ October 5, 2012 $2.TOC.1-2$ October 15, 2018 $1.30.29$ October 9, 2008 $2.10.1$ October 5, 2001 $1.30.30$ October 9, 2008 $2.10.2$ October 5, 2001 $1.30.31$ October 9, 2008 $2.10.2$ October 5, 2001 $1.30.32$ April 3, 2015 $2.10.4$ April 7, 2000 $1.30.33$ April 3, 2015 $2.10.6$ October 15, 2018 $1.30.34$ April 3, 2015 $2.10.6$ October 15, 2018 $1.30.35$ April 3, 2015 $2.10.6$ October 15, 2018 $1.30.36$ October 9, 2008 $2.10.8$ October 15, 2018 $1.40.1$ October 8, 2010 $2.10.9$ October 15, 2018 $1.40.2$ October 8, 2010 $2.10.10$ October 15, 2018 $1.40.3$ October 5, 2012 $2.10.11$ October 15, 2018 $1.40.4$ October 5, 2012 $2.10.11$ October 15, 2018 $1.40.5$ October 5, 2012 $2.10.12$ October 15, 2018 $1.40.6$ April 7, 2000 $2.20.2$ April 6, 2001 $1.40.7$ April 7, 2000 $2.20.4$ April 5, 2002 $1.40.6$ April 7, 2000 $2.30.3$ April 3, 2007 $1.40.9$ October 5, 2012 $2.30.1$ April 3, 2007 $1.40.10$ October 5, 2012 $2.30.2$ April 7, 2000 $1.40.11$ April 7, 2000 $2.30.3$ April 7, 2000 $1.40.13$ April 7, 2000 $2.30.5$ April 7, 2000 $1.40.14$ October 5, 2012                                                                                                                                                                                                  | 1.30.24 | October 5, 2012 | 1.40.35 |                                       |
| 1.30.27October 5, 2012 $2$ Air Systems (tab) $1.30.28$ October 5, 2012 $2.TOC.1-2$ October 15, 2018 $1.30.29$ October 9, 2008 $2.10.1$ October 5, 2001 $1.30.30$ October 9, 2008 $2.10.2$ October 5, 2001 $1.30.31$ October 9, 2008 $2.10.3$ April 7, 2000 $1.30.32$ April 3, 2015 $2.10.4$ April 7, 2000 $1.30.33$ April 3, 2015 $2.10.6$ October 15, 2018 $1.30.34$ April 3, 2015 $2.10.6$ October 15, 2018 $1.30.35$ April 3, 2015 $2.10.7$ October 15, 2018 $1.30.36$ October 9, 2008 $2.10.8$ October 15, 2018 $1.40.1$ October 8, 2010 $2.10.9$ October 15, 2018 $1.40.2$ October 5, 2012 $2.10.11$ October 15, 2018 $1.40.4$ October 5, 2012 $2.10.11$ October 15, 2018 $1.40.4$ October 5, 2012 $2.20.1$ October 4, 2002 $1.40.6$ April 7, 2000 $2.20.2$ April 6, 2001 $1.40.7$ April 7, 2000 $2.20.4$ April 7, 2000 $1.40.8$ April 7, 2000 $2.20.4$ April 7, 2000 $1.40.9$ October 5, 2012 $2.30.1$ April 3, 2007 $1.40.10$ October 5, 2012 $2.30.2$ April 7, 2000 $1.40.11$ April 7, 2000 $2.30.5$ April 7, 2000 $1.40.12$ April 7, 2000 $2.30.5$ April 7, 2000 $1.40.14$ October 5, 2012 $2.30.6$ April 7, 2000 $1.40.15$ October 5, 2012 $2.30.6$                                                                                                                                                                                                | 1.30.25 | October 5, 2012 | 1.40.36 | October 5, 2012                       |
| 1.30.27October 5, 20122.TOC.1-2October 15, 20181.30.28October 9, 20082.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.3April 7, 20001.30.32April 3, 20152.10.4April 7, 20001.30.33April 3, 20152.10.6October 15, 20181.30.34April 3, 20152.10.6October 15, 20181.30.36October 9, 20082.10.7October 15, 20181.30.36October 8, 20102.10.9October 15, 20181.40.1October 8, 20102.10.10October 15, 20181.40.2October 8, 20102.10.11October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.20.1October 4, 20021.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.30.1April 3, 20071.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6April 7, 20001.40.16April 7, 2000<                                                                                                                                                                                                                                                                                                                                        | 1.30.26 | October 5, 2012 |         |                                       |
| 1.30.29October 9, 20022.10.1October 5, 20011.30.30October 9, 20082.10.2October 5, 20011.30.31October 9, 20082.10.3April 7, 20001.30.32April 3, 20152.10.4April 7, 20001.30.33April 3, 20152.10.5April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.35April 3, 20152.10.7October 15, 20181.30.36October 8, 20102.10.9October 15, 20181.40.1October 5, 20122.10.10October 15, 20181.40.2October 5, 20122.10.11October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.10.12October 15, 20181.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.2April 6, 20011.40.8April 7, 20002.20.3April 7, 20001.40.9October 5, 20122.30.1April 5, 20021.40.9October 5, 20122.30.1April 7, 20001.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.12April 7, 20002.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6 <td>1.30.27</td> <td>October 5, 2012</td> <td></td> <td>• • •</td>                                                                                                                                                                                                                                                                            | 1.30.27 | October 5, 2012 |         | • • •                                 |
| 1.30.12October 9, 20082.10.2October 5, 20011.30.30October 9, 20082.10.3April 7, 20001.30.31October 9, 20082.10.3April 7, 20001.30.32April 3, 20152.10.4April 7, 20001.30.33April 3, 20152.10.5April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.35April 3, 20152.10.7October 15, 20181.30.36October 9, 20082.10.8October 15, 20181.40.1October 8, 20102.10.9October 15, 20181.40.2October 5, 20122.10.11October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.10.12October 15, 20181.40.6April 7, 20002.20.1October 15, 20181.40.7April 7, 20002.20.2April 6, 20011.40.6April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.30.1April 3, 20071.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.16April 7, 20002.40.2                                                                                                                                                                                                                                                                                                                                                 | 1.30.28 | October 5, 2012 |         | · · ·                                 |
| 1.30.31October 9, 20082.10.3April 7, 20001.30.32April 3, 20152.10.4April 7, 20001.30.33April 3, 20152.10.5April 7, 20001.30.34April 3, 20152.10.6October 15, 20181.30.35April 3, 20152.10.7October 15, 20181.30.36October 9, 20082.10.8October 15, 20181.40.1October 8, 20102.10.9October 15, 20181.40.2October 5, 20122.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.20.1October 4, 20021.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.13April 7, 20002.30.3April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 7, 20002.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.30.29 | October 9, 2008 |         | · · · · · ·                           |
| 1.30.31April 3, 20152.10.4April 7, 20001.30.32April 3, 20152.10.5April 7, 20001.30.33April 3, 20152.10.6October 15, 20181.30.34April 3, 20152.10.7October 15, 20181.30.35April 3, 20152.10.7October 15, 20181.40.1October 9, 20082.10.9October 15, 20181.40.2October 8, 20102.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.10.12October 15, 20181.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 6, 20011.40.8April 7, 20002.20.4April 7, 20001.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.12April 7, 20002.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.30.30 | October 9, 2008 |         | · · ·                                 |
| 1.30.32April 3, 20152.10.5April 7, 20001.30.33April 3, 20152.10.6October 15, 20181.30.34April 3, 20152.10.7October 15, 20181.30.35April 3, 20152.10.7October 15, 20181.40.1October 9, 20082.10.9October 15, 20181.40.2October 8, 20102.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.11October 15, 20181.40.5October 5, 20122.10.12October 15, 20181.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 6, 20011.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 7, 20002.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.30.31 | October 9, 2008 |         | _                                     |
| 1.30.34April 3, 20152.10.6October 15, 20181.30.35April 3, 20152.10.7October 15, 20181.30.36October 9, 20082.10.8October 15, 20181.40.1October 8, 20102.10.9October 15, 20181.40.2October 5, 20122.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.10.12October 15, 20181.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 6, 20011.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6April 7, 20001.40.17April 7, 20002.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30.32 | April 3, 2015   |         | 1 /                                   |
| 1.30.35April 3, 20152.10.7October 15, 20181.30.36October 9, 20082.10.8October 15, 20181.40.1October 8, 20102.10.9October 15, 20181.40.2October 8, 20102.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.11October 15, 20181.40.5October 5, 20122.10.12October 15, 20181.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 6, 20011.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.16April 7, 20002.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30.33 | April 3, 2015   |         | 1                                     |
| 1.30.36October 9, 20082.10.8October 15, 20181.40.1October 8, 20102.10.9October 15, 20181.40.2October 8, 20102.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.11October 15, 20181.40.5October 5, 20122.10.12October 15, 20181.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 6, 20011.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.12April 7, 20002.30.5April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.30.6April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 7, 20002.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.30.34 | April 3, 2015   |         |                                       |
| 1.40.1October 3, 20102.10.9October 15, 20181.40.1October 8, 20102.10.10October 15, 20181.40.2October 5, 20122.10.10October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.20.1October 4, 20021.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.12April 7, 20002.30.5April 7, 20001.40.13April 7, 20002.30.6April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30.35 |                 |         | ,                                     |
| 1.10.1October 8, 20102.10.10October 15, 20181.40.2October 8, 20102.10.11October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.20.1October 4, 20021.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.3April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.12April 7, 20002.30.5April 7, 20001.40.13April 7, 20002.30.6April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30.36 | October 9, 2008 |         | ,                                     |
| 1.40.2October 5, 20122.10.11October 15, 20181.40.3October 5, 20122.10.11October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.20.1October 4, 20021.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.12April 7, 20002.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.40.1  | October 8, 2010 |         |                                       |
| 1.40.4October 5, 20122.10.12October 15, 20181.40.4October 5, 20122.10.12October 15, 20181.40.5October 5, 20122.20.1October 4, 20021.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 3, 20071.40.12April 7, 20002.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.40.2  | October 8, 2010 |         | · · · · · · · · · · · · · · · · · · · |
| 1.40.5October 5, 20122.20.1October 4, 20021.40.6April 7, 20002.20.2April 6, 20011.40.7April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 7, 20001.40.12April 7, 20002.30.3April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40.3  | October 5, 2012 |         | -                                     |
| 1.40.5April 7, 20002.20.2April 6, 20011.40.6April 7, 20002.20.3April 6, 20011.40.7April 7, 20002.20.3April 7, 20001.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 3, 20071.40.12April 7, 20002.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 1, 20051.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.40.4  | October 5, 2012 |         |                                       |
| 1.40.7April 7, 20002.20.3April 7, 20001.40.7April 7, 20002.20.4April 7, 20001.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 3, 20071.40.12April 7, 20002.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 1, 20051.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.40.5  | October 5, 2012 |         |                                       |
| 1.10.71.40.8April 7, 20002.20.4April 5, 20021.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 3, 20071.40.12April 7, 20002.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40.6  | April 7, 2000   |         | -                                     |
| 1.40.9October 5, 20122.30.1April 3, 20071.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 3, 20071.40.12April 2, 20042.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 7, 20001.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.40.7  |                 |         | 1                                     |
| 1.40.10October 5, 20122.30.2April 7, 20001.40.11April 7, 20002.30.3April 3, 20071.40.12April 2, 20042.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 1, 20051.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |         |                                       |
| 1.40.11April 7, 20002.30.3April 3, 20071.40.12April 2, 20042.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 1, 20051.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.40.9  | October 5, 2012 |         |                                       |
| 1.40.12April 2, 20042.30.4April 7, 20001.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 1, 20051.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.40.10 | October 5, 2012 |         |                                       |
| 1.40.13April 7, 20002.30.5April 7, 20001.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 1, 20051.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 1               |         |                                       |
| 1.40.14October 5, 20122.30.6April 7, 20001.40.15October 5, 20122.40.1April 1, 20051.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | -               |         |                                       |
| 1.40.17October 5, 20122.40.1April 1, 20051.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                 |         | - ·                                   |
| 1.40.16April 7, 20002.40.2April 7, 20001.40.17April 9, 20092.40.3April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |         |                                       |
| 1.40.17 April 9, 2009 2.40.3 April 7, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                 |         |                                       |
| inpin ), 200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                 |         |                                       |
| 1.40.18         April 9, 2009         2.40.4         October 5, 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                 |         | · ·                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.40.18 | April 9, 2009   | 2.40.4  | October 5, 2001                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                 |         |                                       |

\* = Revised, Added, or Deleted

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. D6-27370-200A-TBC October 6, 2020

**DO NOT USE FOR FLIGHT** V2 List of Effective Pages

| 737 Flight Crew | <b>Operations Manual</b> |
|-----------------|--------------------------|
|-----------------|--------------------------|

|                   |                                    | 1                  |                                    |
|-------------------|------------------------------------|--------------------|------------------------------------|
| 2.40.5            | October 5, 2001                    | 5.10.1             | April 7, 2000                      |
| 2.40.6            | October 4, 2002                    | 5.10.2             | April 7, 2000                      |
| 2.40.7            | October 5, 2001                    | 5.10.3             | April 7, 2000                      |
| 2.40.8            | October 6, 2000                    | 5.10.4             | April 7, 2000                      |
|                   |                                    | 5.10.5             | April 7, 2000                      |
| 3 Ant             | i-Ice, Rain (tab)                  | 5.10.6             | April 7, 2000                      |
| * 3.TOC.1-2       | October 6, 2020                    | 5.10.7             | October 5, 2012                    |
| 3.10.1            | April 7, 2000                      | 5.10.8             | October 5, 2012                    |
| 3.10.2            | October 6, 2000                    | 5.10.9             | October 5, 2012                    |
| 3.10.3            | April 8, 2011                      | 5.10.10            | October 5, 2012                    |
| 3.10.4            | October 4, 2002                    | 5.10.11            | October 5, 2012                    |
| 3.10.5            | October 4, 2002                    | 5.10.12            | October 5, 2012                    |
| 3.10.6            | October 5, 2012                    | 5.20.1             | October 3, 2003                    |
| 3.20.1            | October 5, 2012                    | 5.20.2             | October 3, 2003                    |
| 3.20.2            | October 5, 2012                    | 5.20.3             | October 5, 2012                    |
| 3.20.3            | April 7, 2000                      | 5.20.4             | October 5, 2012                    |
| 3.20.4            | October 21, 2016                   | 5.20.5             | October 5, 2012                    |
| 3.20.5            | October 21, 2016                   | 5.20.6             | October 5, 2012                    |
| 3.20.6            | October 21, 2016                   |                    |                                    |
| 3.20.7            | October 21, 2016                   | 6 Ele              | ectrical (tab)                     |
| 3.20.8            | October 21, 2016                   | 6.TOC.1-2          | October 4, 2013                    |
| * 3.20.9          | Deleted                            | 6.10.1             | April 7, 2000                      |
| A Auto            | matic Flight (tab)                 | 6.10.2             | April 7, 2000                      |
|                   |                                    | 6.10.3             | April 7, 2000                      |
| 4.TOC.1-2         | April 3, 2015                      | 6.10.4             | April 8, 2011                      |
| 4.10.1            | April 7, 2000                      | 6.10.5             | April 8, 2011                      |
| 4.10.2            | April 7, 2000                      | 6.10.6             | October 8, 2004                    |
| 4.10.3<br>4.10.4  | October 5, 2012                    | 6.10.7             | October 8, 2004                    |
| 4.10.4            | October 5, 2012                    | 6.10.8             | April 7, 2000                      |
|                   | April 3, 2015                      | 6.20.1             | April 7, 2000                      |
| 4.10.6<br>4.10.7  | April 3, 2015                      | 6.20.2             | October 5, 2012                    |
| 4.10.7            | April 3, 2015                      | 6.20.3             | October 5, 2012                    |
|                   | April 3, 2015                      | 6.20.4             | October 5, 2012                    |
| 4.10.9<br>4.10.10 | April 3, 2015<br>October 6, 2000   | 6.20.5             | April 7, 2000                      |
| 4.10.10           | April 7, 2000                      | 6.20.6             | October 9, 2007                    |
| 4.20.1            | October 5, 2012                    | 6.20.7             | April 7, 2000                      |
| 4.20.2            | October 9, 2012<br>October 9, 2007 | 6.20.8             | October 4, 2002                    |
| 4.20.3            | October 5, 2007<br>October 5, 2012 | 6.20.9             | October 5, 2012                    |
| 4.20.4            | November 13, 2012                  | 6.20.10            | October 5, 2012                    |
| 4.20.5            | November 13, 2015                  | 6.20.11            | October 6, 2000                    |
| 4.20.0            | April 7, 2000                      | 6.20.12            | October 6, 2000                    |
| 4.20.7            | April 7, 2000                      | 6.20.13            | October 9, 2008                    |
| 4.20.8            | April 7, 2000                      | 6.20.14            | October 9, 2008                    |
| 4.20.9            | October 6, 2000                    | 6.20.15            | October 9, 2008                    |
|                   | 000000 0, 2000                     | 6.20.16            | October 9, 2008                    |
|                   |                                    | 6 20 17            | Ostalian 5, 2012                   |
|                   | munications (tab)                  | 6.20.17<br>6.20.18 | October 5, 2012<br>October 5, 2012 |

\* = Revised, Added, or Deleted Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 6, 2020 D6-27370-200A-TBC

Preface -V1V2 List of Effective Page NOT USE FOR FLIGHT

#### 737 Flight Crew Operations Manual

| 7 Engi               | nos ADI (tab)    | 8.10.4    | October 5, 2001  |
|----------------------|------------------|-----------|------------------|
| 7 Engines, APU (tab) |                  | 8.10.5    | April 3, 2007    |
| 7.TOC.1-2            | October 15, 2019 | 8.10.6    | April 2, 2004    |
| 7.10.1               | April 7, 2000    | 8.10.7    | April 6, 2001    |
| 7.10.2               | April 3, 2015    | 8.10.8    | April 6, 2001    |
| 7.10.3               | April 3, 2015    | 8.10.9    | October 6, 2000  |
| 7.10.4               | April 3, 2015    | 8.10.10   | October 6, 2000  |
| 7.10.5               | April 4, 2003    | 8.20.1    | October 5, 2017  |
| 7.10.6               | April 4, 2003    | 8.20.2    | October 8, 2010  |
| 7.10.7               | April 4, 2003    | 8.20.3    | October 5, 2012  |
| 7.10.8               | April 4, 2003    | 8.20.4    | October 9, 2008  |
| 7.10.9               | April 4, 2003    | 8.20.5    | October 5, 2017  |
| 7.10.10              | April 4, 2003    | 8.20.6    | April 6, 2018    |
| 7.10.11              | April 4, 2003    | 8.20.7    | October 5, 2012  |
| 7.10.12              | April 4, 2003    | 8.20.8    | October 9, 2008  |
| 7.10.13              | April 4, 2003    | 8.20.9    | April 6, 2001    |
| 7.10.14              | April 4, 2003    | 8.20.10   | October 6, 2000  |
| 7.10.15              | April 4, 2003    | 8.20.11   | October 5, 2012  |
| 7.10.16              | October 5, 2012  | 8.20.12   | October 5, 2012  |
| 7.10.17              | October 5, 2012  | 8.20.13   | October 5, 2012  |
| 7.10.18              | October 5, 2012  | 8.20.14   | October 5, 2012  |
| 7.10.19              | October 5, 2012  |           | -                |
| 7.10.20              | April 6, 2018    | 9 Fligh   | t Controls (tab) |
| 7.20.1               | October 3, 2003  | 9.TOC.1-2 | October 4, 2013  |
| 7.20.2               | October 3, 2003  | 9.10.1    | October 3, 2003  |
| 7.20.3               | October 15, 2019 | 9.10.2    | April 7, 2000    |
| 7.20.4               | October 15, 2019 | 9.10.3    | April 3, 2007    |
| 7.20.5               | October 3, 2003  | 9.10.4    | October 9, 2007  |
| 7.20.6               | April 2, 2004    | 9.10.5    | October 9, 2007  |
| 7.20.7               | April 2, 2004    | 9.10.6    | October 3, 2003  |
| 7.20.8               | April 2, 2004    | 9.10.7    | October 3, 2003  |
| 7.20.9               | October 5, 2012  | 9.10.8    | October 3, 2003  |
| 7.20.10              | October 5, 2012  | 9.10.9    | October 3, 2003  |
| 7.20.11              | October 5, 2012  | 9.10.10   | October 3, 2003  |
| 7.20.12              | October 5, 2012  | 9.10.11   | October 5, 2012  |
| 7.20.13              | October 8, 2004  | 9.10.12   | October 5, 2012  |
| 7.20.14              | April 2, 2004    | 9.10.13   | October 5, 2012  |
| 7.30.1               | April 7, 2000    | 9.10.14   | October 3, 2003  |
| 7.30.2               | October 5, 2012  | 9.20.1    | October 4, 2002  |
| 7.30.3               | April 7, 2000    | 9.20.2    | April 7, 2000    |
| 7.30.4               | April 7, 2000    | 9.20.3    | April 7, 2000    |
|                      | -                | 9.20.4    | April 7, 2000    |
| 8 Fire l             | Protection (tab) | 9.20.5    | October 5, 2012  |
| 8.TOC.1-2            | April 6, 2018    | 9.20.6    | October 5, 2012  |
| 8.10.1               | October 5, 2012  | 9.20.7    | April 7, 2000    |
| 8.10.2               | October 5, 2012  | 9.20.8    | April 7, 2000    |
| 8.10.3               | October 5, 2012  | 9.20.9    | October 5, 2012  |
|                      |                  |           | ,                |
|                      |                  |           |                  |

\* = Revised, Added, or Deleted

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

**DO NOT USE FOR FLIGHT** V2 List of Effective Pages

737 Flight Crew Operations Manual

|                      | -                                |               |                                        |
|----------------------|----------------------------------|---------------|----------------------------------------|
| 9.20.10              | April 2, 2004                    | 10.20.8       | October 5, 2012                        |
| 9.20.11              | April 3, 2007                    | 10.20.9       | April 6, 2012                          |
| 9.20.12              | October 5, 2012                  | 10.20.10      | October 5, 2012                        |
| 9.20.13              | October 5, 2012                  | 10.20.11      | October 5, 2012                        |
| 9.20.14              | October 5, 2012                  | 10.20.12      | April 6, 2012                          |
| 9.20.15              | October 3, 2003                  | 11 FP-14 M    | ······································ |
| 9.20.16              | October 5, 2012                  |               | ment, Navigation (tab)                 |
| 9.20.17              | October 5, 2012                  | 11.TOC.1-2    | October 4, 2013                        |
| 9.20.18              | October 3, 2003                  | 11.10.1       | April 7, 2000                          |
| 9.20.19              | October 3, 2003                  | 11.10.2       | April 7, 2000                          |
| 9.20.20              | October 3, 2003                  | 11.10.3       | April 7, 2000                          |
| 10 Flight Inst       | ruments, Displays (tab)          | 11.10.4       | April 9, 2009                          |
| -                    |                                  | 11.10.5       | April 6, 2012                          |
| 10.TOC.1-2           | April 3, 2015                    | 11.10.6       | October 5, 2012                        |
| 10.10.1              | April 7, 2000                    | 11.10.7       | April 6, 2012                          |
| 10.10.2              | April 7, 2000                    | 11.10.8       | April 9, 2009                          |
| 10.10.3              | April 7, 2000                    | 11.20.1       | April 7, 2000                          |
| 10.10.4              | April 7, 2000                    | 11.20.2       | October 6, 2000                        |
| 10.10.5              | April 7, 2000                    | 11.20.3       | April 3, 2007                          |
| 10.10.6              | April 7, 2000                    | 11.20.4       | October 6, 2000                        |
| 10.10.7              | April 7, 2000                    | 12 Fuel (tab) |                                        |
| 10.10.8              | April 7, 2000                    | 12.TOC.1-2    | October 4, 2013                        |
| 10.10.9              | October 5, 2012                  | 12.100.1-2    | October 9, 2008                        |
| 10.10.10             | October 5, 2012                  | 12.10.1       | April 7, 2008                          |
| 10.10.11             | October 5, 2012                  | 12.10.2       | April 7, 2000                          |
| 10.10.12             | October 5, 2012                  | 12.10.3       | April 7, 2000                          |
| 10.10.13             | April 7, 2000                    | 12.10.4       | October 8, 2004                        |
| 10.10.14             | April 7, 2000                    | 12.10.5       | April 7, 2004                          |
| 10.10.15             | October 5, 2012                  | 12.10.7       | October 8, 2004                        |
| 10.10.16             | October 5, 2012                  | 12.10.8       | April 7, 2000                          |
| 10.10.17             | October 15, 2018                 | 12.10.9       | October 4, 2013                        |
| 10.10.18             | April 6, 2012                    | 12.10.10      | October 4, 2013                        |
| 10.10.19             | April 6, 2012                    | 12.20.1       | October 9, 2009                        |
| 10.10.20             | October 5, 2012                  | 12.20.1       | October 5, 2009                        |
| 10.10.21             | October 5, 2012                  | 12.20.2       | October 5, 2012                        |
| 10.10.22<br>10.10.23 | April 6, 2012                    | 12.20.3       | October 5, 2012                        |
|                      | October 5, 2012                  | 12.20.5       | April 7, 2000                          |
| 10.10.24             | April 6, 2012<br>October 4, 2013 | 12.20.6       | April 7, 2000                          |
| 10.10.25<br>10.10.26 | April 6, 2012                    |               | -                                      |
| 10.10.26             | April 6, 2012<br>April 7, 2000   | 13 Hyd        | raulics (tab)                          |
| 10.20.1              | October 5, 2012                  | 13.TOC.1-2    | October 4, 2013                        |
| 10.20.2              | April 7, 2000                    | 13.10.1       | October 9, 2008                        |
| 10.20.3              | October 5, 2012                  | 13.10.2       | April 4, 2003                          |
| 10.20.4              | April 3, 2012                    | 13.10.3       | October 3, 2003                        |
| 10.20.5              | April 3, 2015                    | 13.10.4       | October 9, 2008                        |
| 10.20.0              | April 3, 2015                    | 13.10.5       | April 3, 2007                          |
| 10.20.7              | Арти 5, 2015                     | 13.10.6       | October 9, 2008                        |
|                      |                                  | I             | ·                                      |

\* = Revised, Added, or Deleted

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 6, 2020 D6-27370-200A-TBC 0.5.9

#### Preface -V1V2 List of Effective Page NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

| 13.20.1    | April 7, 2000     | 15.20.10 | October 5, 2012 |
|------------|-------------------|----------|-----------------|
| 13.20.2    | October 5, 2012   | 15.20.11 | October 5, 2012 |
| 13.20.3    | October 5, 2012   | 15.20.12 | October 5, 2012 |
| 13.20.4    | April 2, 2004     |          |                 |
| 13.20.5    | April 2, 2004     | (b       | lank tab)       |
| 13.20.6    | October 3, 2003   |          |                 |
| 13.20.7    | October 3, 2003   |          |                 |
| 13.20.8    | October 3, 2003   |          |                 |
| 14 Lan     | ding Gear (tab)   |          |                 |
| 14.TOC.1-2 | October 4, 2013   |          |                 |
| 14.10.1    | October 3, 2003   |          |                 |
| 14.10.2    | October 5, 2003   |          |                 |
| 14.10.3    | October 5, 2012   |          |                 |
| 14.10.4    | April 2, 2004     |          |                 |
| 14.10.5    | October 5, 2001   |          |                 |
| 14.10.6    | April 5, 2001     |          |                 |
| 14.10.7    | April 5, 2002     |          |                 |
| 14.10.8    | April 5, 2002     |          |                 |
| 14.10.9    | October 4, 2002   |          |                 |
| 14.10.10   | April 5, 2002     |          |                 |
| 14.20.1    | April 9, 2002     |          |                 |
| 14.20.2    | April 3, 2009     |          |                 |
| 14.20.3    | April 3, 2015     |          |                 |
| 14.20.4    | April 3, 2015     |          |                 |
| 14.20.5    | October 5, 2012   |          |                 |
| 14.20.6    | October 5, 2012   |          |                 |
| 14.20.7    | October 4, 2013   |          |                 |
| 14.20.8    | October 4, 2013   |          |                 |
| 15 Warn    | ing Systems (tab) |          |                 |
| 15.TOC.1-2 | October 4, 2013   |          |                 |
| 15.10.1    | April 7, 2000     |          |                 |
| 15.10.2    | April 7, 2000     |          |                 |
| 15.10.3    | April 2, 2004     |          |                 |
| 15.10.4    | April 5, 2013     |          |                 |
| 15.10.5    | October 15, 2018  |          |                 |
| 15.10.6    | October 15, 2018  |          |                 |
| 15.20.1    | October 6, 2006   |          |                 |
| 15.20.2    | April 4, 2014     |          |                 |
| 15.20.3    | October 5, 2001   |          |                 |
| 15.20.4    | October 5, 2012   |          |                 |
| 15.20.5    | October 4, 2013   |          |                 |
| 15.20.6    | October 4, 2013   |          |                 |
| 15.20.7    | October 5, 2012   |          |                 |
| 15.20.8    | November 13, 2015 |          |                 |
| 15.20.9    | October 5, 2012   |          |                 |
|            |                   |          |                 |
|            |                   |          |                 |

\* = Revised, Added, or Deleted

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

# Preface Bulletin Record

Chapter 0 Section 6

# General

The Boeing Company issues Flight Crew Operations Manual Bulletins to provide important information to flight crews prior to the next formal revision of the Flight Crew Operations Manual. The transmitted information may be of interest to only specific Operators or may apply to all Operators of this model airplane. Each bulletin will vary.

Bulletins are dated and numbered sequentially for each operator. Each new bulletin is recorded in this record when received and filed as instructed. A bulletin may not apply to all airplane models. When appropriate, the next formal FCOM revision will include an updated bulletin record page to reflect current bulletin status.

Temporary information is normally incorporated into the manual at the next formal revision. When the condition remains temporary after a bulletin incorporation, the temporary paragraphs are identified by a heading referencing the originating bulletin. When the temporary condition no longer exists, the bulletin is cancelled and the original manual content is restored.

Bulletin status is defined as follows:

- In Effect (IE) the bulletin contains pertinent information not otherwise covered in the Flight Crew Operations Manual. The bulletin remains active and should be retained in the manual
- Incorporated (INC) the bulletin operating information has been incorporated into the Flight Crew Operations Manual. However, the bulletin remains active and should be retained in the manual
- Cancelled (CANC) the bulletin is no longer active and should be removed from the Flight Crew Operations Manual. All bulletins previously cancelled are no longer listed in the Bulletin Record.

The person filing a new or revised bulletin should amend the Bulletin Record as instructed in the Administrative Information section of the bulletin. When a bulletin includes replacement pages for the Flight Crew Operations Manual or QRH, the included pages should be filed as instructed in the Flight Crew Operations Manual Information section of the bulletin.

# **DO NOT USE FOR FLIGHT**

#### 737 Flight Crew Operations Manual

| Number    | Subject                                                                                    | Date             | Status |
|-----------|--------------------------------------------------------------------------------------------|------------------|--------|
| TBC-4     | Emergency Deployment of Escape<br>Slides                                                   | October 13, 1995 | IE     |
| TBC-5     | Auxiliary Power Unit (APU)<br>Starting                                                     | October 13, 1995 | IE     |
| TBC-13    | Maneuvering Speeds for<br>737-100/200/300/400/500                                          | December 3, 1999 | IE     |
| TBC-19 R1 | Trailing Edge Flaps - Outboard<br>Flap Carriage Spindle Fractures                          | February 1, 2005 | IE     |
| TBC-21    | Main Landing Gear (MLG)<br>Actuator Beam Fracture and/or<br>MLG Actuator Beam Arm Fracture | March 22, 2005   | IE     |
| TBC-26 R1 | Cabin Altitude Warning Indications<br>and Procedures Briefing                              | June 1, 2009     | IE     |
| TBC-27    | Inflight Elevator Tab Vibration                                                            | June 2, 2009     | IE     |
|           |                                                                                            |                  |        |
|           |                                                                                            |                  |        |
|           |                                                                                            |                  |        |
|           |                                                                                            |                  |        |
|           |                                                                                            |                  |        |
|           |                                                                                            |                  |        |
|           |                                                                                            |                  |        |

# BOEING

# **Flight Crew Operations Manual Bulletin**

for

The Boeing Company

## The Boeing Company Seattle, Washington 98124-2207



Number: TBC-4

IssueDate: October 13, 1995

Subject: Emergency Deployment of Escape Slides

**Reason:** This bulletin provides information contained in Red Bulletin 737- 200 85-4R1, dated June 1, 1992, which advised flight crews of possible jamming of cabin doors when deploying emergency escape slides.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

#### THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

### **Background Information**

It was reported that during a 737 emergency evacuation the right hand forward service door was opened with considerable force and speed. The escape slide compartment cover opened prematurely and the escape slide partially came out of the compartment onto the airplane floor. This initially prevented further opening of the door. The compartment cover was then pushed back toward the closed position, which permitted opening of the door. As the door was opened the escape slide was pushed out. The escape slide was then deployed and inflated normally.

Checks were accomplished on comparable but not identical configurations and revealed that in some instances the use of considerable force and speed during the initial door opening sequence could duplicate the reported condition. Doors and escape slides operated properly when excessive force and speed were not exerted.

System modifications were evaluated and Service Bulletin 737-25A1182 was issued to correct this condition. Until such modifications are incorporated, flight crew personnel are advise to open all doors smoothly during an emergency evacuation, avoiding excessive force or speed during the initial door opening sequence.

### **Administrative Information**

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-4 "In Effect" (IE).

This Operations Manual Bulletin will be cancelled after Boeing is notified that all affected airplanes in the operator's fleet have been modified by Service Bulletin 737-25A1182. If the operator does not plan to modify all the airplanes and would like to have the contents of this Bulletin incorporated in the Operations Manual, please advise Boeing accordingly.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the 737 Manager, Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page.

## BOEING

## **Flight Crew Operations Manual Bulletin**

for

The Boeing Company

## The Boeing Company Seattle, Washington 98124-2207



Number: TBC-5

IssueDate: October 13, 1995

Subject: Auxiliary Power Unit (APU) Starting

**Reason:** This bulletin provides information contained in Red Bulletin 737- 200 90-2R2, dated September 30, 1991, which advised flight crews of the requirement for a qualified ground observer to monitor subsequent starts following unsuccessful Auxiliary Power Unit (APU) ground start.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

#### THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

### **Background Information**

On January 22, 1990 an operator of a Boeing Model 737 series airplane experienced significant fire damage to the empennage. The damaged area was reported to be the elevator, trim tab and tail cone. This damage was due to Auxiliary Power Unit (APU) torching following an unsuccessful first start attempt. A previous incident occurred on March 17, 1989. Empennage damage similar to that of the most recent incident was reported.

A torching APU start occurs when leftover fuel from a previous unsuccessful start attempt does not drain from the APU properly and ignites during a subsequent start attempt. When a torching start occurs, the accumulated fuel in the APU tailpipe is consumed and the APU operation is otherwise normal. If unburned fuel mist is blown back onto the empennage surfaces during the initial unsuccessful start attempt, it is possible that a fire on the external surfaces of the empennage could occur if torching occurred during the next start attempt.

#### Flight Crew Operations Manual Bulletin No. TBC-5, Dated October 13, 1995 (continued)

The only means to detect the torching start and/or flames on the empennage surfaces is by an external observer. By the time the observer communicates to the crew that a torching start has occurred, the excess fuel will most likely be consumed and the torching ceased. Unless the observer sees the evidence that a fire exists on the empennage surface, no other flight crew action is required except for a normal APU shutdown to allow the required inspections of the airplane surfaces.

If the observer sees fire on the airplane surfaces, the flight crew should advise the tower and request fire equipment. In this instance, the APU can be shut down by normal procedures since the APU fire extinguishing system would not be effective to combat either the APU torching or the external surface fire.

Inflight starting of the APU is not impaired because the fuel vapors are carried away from the airplane. Torching of any leftover fuel in the APU exhaust area will not damage the airplane.

The Federal Aviation Administration (FAA) issued an Airworthiness Directive (AD) effective March 12, 1990 requiring that after an unsuccessful ground start the APU be placarded to prohibit ground operation or that any subsequent APU ground start attempts be monitored by a "qualified ground observer".

The Boeing Company designed a modified system to improve draining of leftover fuel after an unsuccessful APU start. These modifications are described under Administrative Information below.

#### **Operating Instructions**

For airplanes with unmodified APU drain systems, the following procedures apply:

After any unsuccessful APU ground start, either placard the APU "NO GROUND STARTING" or accomplish the following during the subsequent ground start attempt(s):

- 1. Following any unsuccessful APU start attempt, the subsequent APU ground start attempt(s) must be monitored by a qualified ground observer to assure that the airplane is not damaged due to torching.
- 2. The placard may be removed and APU ground starting resumed without an observer following appropriate maintenance action to determine and resolve the cause of the unsuccessful ground start, or successful ground or inflight starting and operation is accomplished.
- **Note:** Inflight starting and operating of the APU is not impacted by this action.

#### **Administrative Information**

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-5 "In Effect" (IE).

This Operations Manual Bulletin will be cancelled after Boeing is notified that all affected airplanes in the operator's fleet have been modified by one of the following methods:

1. Installation of a Garrett GTCP 85-129 APU with PRR 33890-86 incorporated (installs a modified drain system on airplanes at production line number 20161 and on).

2. Incorporation of Service Bulletin 737-49-1073 (installs the modified drain system on airplanes delivered prior to incorporation of PRR 33890-86).

3. Installation of the Sundstrand APS 2000 alternative APU (includes the modified drain system).

4. Installation of the Garrett GTCP 36-280 alternative APU (includes the modified drain system).

The FAA has approved the above four options as acceptable means of compliance to the above Airworthiness Directive. If the operator does not plan to modify all of the airplanes and would like to have the content of this Bulletin incorporated in the Operations Manual, please advise Boeing accordingly.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the 737 Manager, Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page. Flight Crew Operations Manual Bulletin No. TBC-5, Dated October 13, 1995 (continued)

Intentionally Blank

#### BOEING

#### **Flight Crew Operations Manual Bulletin**

for

The Boeing Company

#### The Boeing Company Seattle, Washington 98124-2207



Number: TBC-13

IssueDate: December 3, 1999

Subject: Maneuvering Speeds for 737-100/200/300/400/500

Reason: To inform flight crews of recommended Block Speeds

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

#### THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

#### **Background Information**

In March 1999, the FAA released a Flight Standards Information Bulletin for Air Transportation (FSAT) number 99-2, titled "Maneuvering Speeds and Recovery Procedures for Boeing 737 Airplanes." The FSAT recommended that "For the interim period and prior to completion of fleet retrofit" (of a redesigned rudder power control unit (PCU) and the installation of both a digital yaw damper system and a rudder pressure reducer (RPR)), "that all Block Speeds for flap settings of UP, 1, 5, and 10...be increased by at least 10 knots and that these increased speeds be used in lieu of the published Block Speeds."

Boeing issued an Operations Manual Bulletin (OMB). dated May 28, 1999 that provided revised Block Speeds to be used in compliance with the FSAT pending installation of the RPR. Boeing also advised that analysis of crossover speeds with the RPR installed was in work, and upon completion of analysis updated Block Speeds would be provided. Boeing has completed this analysis. The purpose of this bulletin is to provide updated Block (maneuvering) Speeds for 737 airplanes with the RPR installed. This bulletin does not apply to the 737-600/700/800.

#### Flight Crew Operations Manual Bulletin No. TBC-13, Dated December 3, 1999 (continued)

The maneuvering speeds recommended by Boeing are referred to as Block Speeds. Block Speeds are provided for a specific flap setting and a range of weights. The lateral-directional static balance speed has been referred to as "crossover" speed. This is the airspeed that requires full lateral (roll) control from the ailerons and spoilers to counteract roll due to yaw caused by a full rudder input. At speeds slower than the crossover speed, with full rudder input, the roll induced by the rudder starts to exceed the lateral control authority.

The Rudder Pressure Reducer (RPR) lowers hydraulic pressure to the rudder PCU during non-critical phases of flight, thereby limiting the amount of rudder deflection. Reduced rudder deflection lowers the speed at which crossover may occur. The crossover speed is not a fixed speed but varies as a function of g load and CG. Reducing g load lowers the crossover speed. As described in the Uncommanded Yaw and Roll non-normal checklist, if uncommanded yaw or roll is experienced, maintain control of the airplane with all available flight controls. If roll is uncontrollable, immediately reduce pitch attitude (angle of attack) and increase speed. Unloading the airplane by decreasing back pressure on the control column improves roll control effectiveness.

Analysis of the effect of the RPR determined that Block Speed changes are not required for the 737-100/200 (see Table 1). Block Speed changes are only required for 737-300/400/500 flaps 5 and flaps 10 (see Table 2). For all other flap positions, the crossover speed is below the Block Speed, and a maneuvering airspeed adjustment is not required. Until the RPR is installed and is operable, the Block Speeds provided in Table 3 should be followed for all 737's.

Increasing Block Speeds during takeoff is not required due to the relatively short operating time at speeds below the crossover speed. In heavyweight return to land situations where the revised Block Speed is equal to the flap placard speed for the next flap position, Boeing recommends slowing below the Block Speed as necessary to protect the flap placard speed prior to flap extension. Airspeeds specified by non-normal procedures should be followed instead of Table 2 or Table 3 Block Speeds. If dispatch is required with the RPR inoperative, Boeing recommends using Table 3 speeds during approach maneuvering.

Speed tape equipped airplanes can use the "F" speeds for flap retraction. For approach operations using VNAV, speeds calculated by the FMC are based on gross weight and therefore may be below the Table 2 or Table 3 speeds. Pilots should use Speed Intervention mode (if installed) to follow the revised Block Speeds while remaining in VNAV. For airplanes without Speed Intervention, some other pitch mode is required for Block Speed compliance. FMC Update 10.3 will incorporate VNAV maneuvering speeds compatible with the crossover speeds with RPR operating. Simulator software is available to incorporate revised aerodynamic data that more accurately model lateral-directional control static balance conditions. These updates are complete, and revised data are available for each 737 model by contacting Boeing Special Services Contract Manager at telephone 206-766-2418 or fax 425-237-1706.

Boeing, the FAA, and the NTSB conducted additional engineering simulator testing of the hypothetical rudder reversal and rate jams with the RPR installed. The NTSB was concerned that flight crews might believe a rudder jam or restriction was resolved and the non-normal procedure was complete if the rudder was centered by continuous rudder pedal pressure. After simulating this scenario it was agreed that it would be obvious to a flight crew that the procedure is not complete if the rudder centered but required significant rudder pedal force. As a result, the Jammed or Restricted Rudder non-normal procedure is not changed by installation of the RPR.

An airline industry team consisting of airplane manufacturers, regulators, and various airline operators developed an Airplane Upset Recovery Training Aid dated October, 1998. This document was sent to all airlines and provides an excellent source of information about recovery from an upset event regardless of the cause. We believe training in accordance with the Airplane Upset Recovery Training Aid would be more beneficial than training specifically for a full rudder deflection anomaly.

#### **Operating Instructions**

Tables 1 and 3 provide 737-100/200 Block Speeds to be used when the RPR is operating (Table 1) or when the RPR is not installed or not operating (Table 3). Tables 2 and 3 provide Block Speeds for the 737-300/400/500 to be used when the RPR is operating (Table 2) or when the RPR is not installed or not operating (Table 3).

Note: Note: Operators with mixed fleets can use 737-300/400/500 tables for their 737- 100/200's

Table 1

737-100/200 (With RPR installed (Service Bulletin 737-27A1206))

| FLAP<br>POSITION | UP TO<br>117,000 LBS<br>(53,070 KGS) |
|------------------|--------------------------------------|
| FLAPS UP         | 210                                  |
| FLAPS 1          | 190                                  |
| FLAPS 5          | 170                                  |
| FLAPS 10         | 160                                  |

| FLAP<br>POSITION | UP TO<br>117,000 LBS<br>(53,070 KGS) |
|------------------|--------------------------------------|
| FLAPS 15         | 150                                  |
| FLAPS 25         | 140                                  |

Table 2

737-300/400/500 (With RPR installed (Service Bulletin 737-27A1206))

| FLAP<br>POSITION | UP TO<br>117,000 LBS<br>(53,070 KGS) | ABOVE<br>117,000 LBS<br>(53,070 KGS)<br>UP TO<br>138,500 LBS<br>(62,823 KGS) | ABOVE<br>138,500 LBS<br>(62,823 KGS) |
|------------------|--------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| FLAPS UP         | 210                                  | 220                                                                          | 230                                  |
| FLAPS 1          | 190                                  | 200                                                                          | 210                                  |
| FLAPS 5          | 180                                  | 190                                                                          | 200                                  |
| FLAPS 10         | 170                                  | 180                                                                          | 190                                  |
| FLAPS 15         | 150                                  | 160                                                                          | 170                                  |
| FLAPS 25         | 140                                  | 150                                                                          | 160                                  |

#### Table 3

737-100/200/300/400/500 (With RPR deactivated or not installed)

| FLAP<br>POSITION | UP TO<br>117,000 LBS<br>(53,070 KGS) | ABOVE<br>117,000 LBS<br>(53,070 KGS)<br>UP TO<br>138,500 LBS<br>(62,823 KGS) | ABOVE<br>138,500 LBS<br>(62,823 KGS) |
|------------------|--------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| FLAPS UP         | 220                                  | 230                                                                          | 240                                  |
| FLAPS 1          | 200                                  | 210                                                                          | 220                                  |
| FLAPS 5          | 190                                  | 200                                                                          | 210                                  |
| FLAPS 10         | 170                                  | 180                                                                          | 190                                  |
| FLAPS 15         | 150                                  | 160                                                                          | 170                                  |
| FLAPS 25         | 140                                  | 150                                                                          | 160                                  |

#### **Administrative Information**

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-13 "In Effect" (IE).

This bulletin will be cancelled after Boeing is notified that all affected airplanes in your fleet have been modified by SB 737-27A1206.

The Block Speeds provided by this Operations Manual Bulletin will be incorporated in a future revision to the Operations Manual.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the 737 Manager, Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page. Flight Crew Operations Manual Bulletin No. TBC-13, Dated December 3, 1999 (continued)

Intentionally Blank

#### BOEING

#### **Flight Crew Operations Manual Bulletin**

for

The Boeing Company

#### The Boeing Company Seattle, Washington 98124-2207



Number: TBC-19 R1 IssueDate: February 1, 2005

Subject: Trailing Edge Flaps - Outboard Flap Carriage Spindle Fractures

**Reason:** To inform flight crews of outboard trailing edge flap carriage spindle fractures that could cause mid-flap displacement with associated inflight roll-off. In addition, to inform flight crews to report any unexpected roll-off condition to maintenance.

The purpose of this reissue is to amend the operating instruction.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

#### THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

#### **Background Information**

Boeing has received reports of outboard mid-flap carriage spindle fractures from operators of 737-100 through -500 airplanes. Two carriage assemblies move on independent flap tracks and connect each outboard trailing edge mid-flap to the wing. Fractures have been found in varying locations along the length of the carriage spindle, which connects the carriage assembly to the mid-flap. A fracture can result in the displacement of the associated flap from the carriage assembly. This displacement can cause a change in the flap angle of attack resulting in airplane roll-off as the flaps extend. An airplane roll-off condition that requires one unit or more of rudder trim and/or 2.5 units or more of aileron trim to maintain wings level flight when the flaps are extended can be an indication of a spindle fracture. The flight deck flap indications are normal.

A fractured spindle will not cause roll changes when the trailing edge flaps are fully retracted. Roll changes should be minimal at flap positions 1, 2, 5, and 10. Depending upon the location of the fracture, roll changes are expected to be more pronounced as the flaps extend to 15 or greater. If one carriage spindle fractures at the critical location, the pilot can compensate for it with aileron and/or rudder inputs. However, if both the inboard and outboard spindles on an outboard flap fracture in the critical location, a large potentially uncontrollable rolling moment could occur.

#### **Operating Instructions**

During flap operation at flaps 15 or greater with normal flap indications, if an unexpected roll-off occurs, stop flap extension. If the roll-off requires one unit or more of rudder trim and/or 2.5 units or more of aileron trim to maintain wings level flight, retract flaps to flaps 1. Land using flaps 1 and Vref 40 + 30 knots. Report the roll-off condition to maintenance.

#### Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-19 R1 "In Effect" (IE).

This condition is under investigation. This FCOM bulletin remains in effect until further notice.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the 737 Manager, Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page.

### BOEING

#### **Flight Crew Operations Manual Bulletin**

for

The Boeing Company

#### The Boeing Company Seattle, Washington 98124-2207



Number: TBC-21 IssueDate: March 22, 2005

- Subject: Main Landing Gear (MLG) Actuator Beam Fracture and/or MLG Actuator Beam Arm Fracture
- **Reason:** This bulletin informs flight crews of a potential uncommanded control wheel roll input and/or control wheel jam or large increase in control wheel forces during landing gear retraction due to a MLG actuator beam and/or MLG actuator beam arm fracture.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

#### THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

#### **Background Information**

There have been five (5) reported cases of MLG actuator beam fractures and nine (9) reported cases of MLG actuator beam arm fractures. After takeoff and during landing gear retraction, a fracture allows the MLG actuator to extend beyond its normal position and contact the spoiler and/or aileron cables. Contact with these cables can cause an uncommanded control wheel roll input with subsequent airplane roll, and/or a control wheel jam or a large increase in control wheel forces.

#### Flight Crew Operations Manual Bulletin No. TBC-21, Dated March 22, 2005 (continued)

One operator reported an occurrence in which, after takeoff and during landing gear retraction, the airplane experienced an uncommanded control wheel roll input. An almost full opposite sustained control wheel input, using considerable force by both pilots, was required to correct the airplane roll. The crew was advised that the flight spoilers on one wing were fully raised. They also observed the illumination of a MLG red indicator light. They lowered the landing gear and noted that the roll problem diminished. Only a small amount of aileron was required to maintain straight and level flight. The flight was terminated and a normal landing was performed. Ground inspection of the MLG found fractured MLG actuator beam components along with damaged spoiler and aileron cables. Several hydraulic tubes were also crushed.

Corrective action for the MLG actuator beam fracture and MLG actuator beam arm fracture is being developed and will be provided to operators as soon as it is complete.

#### **Operating Instructions**

If, during or immediately after landing gear retraction, an uncommanded roll and/or control wheel jam or large increase in control wheel forces is experienced, extend the landing gear. Plan to land at the nearest suitable airport.

#### Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-21 "In Effect" (IE).

This condition is under investigation. This FCOM bulletin remains in effect until further notice.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the 737 Manager, Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page.



### **Flight Crew Operations Manual Bulletin**

for

The Boeing Company

#### The Boeing Company Seattle, Washington 98124-2207



Number:TBC-26 R1IssueDate:June 1, 2009

Subject: Cabin Altitude Warning Indications and Procedures Briefing

**Reason:** This revision is to inform flight crews that the FAA has agreed to an Alternative Method of Compliance (AMOC) to the takeoff briefing mandated by AD 2008-23-07. The requirement to don oxygen masks only applies when the intermittent warning horn sounds and the airplane flight altitude is above 10,000 feet MSL.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

#### THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

#### **Background Information**

The B737 cabin altitude warning system consists of an intermittent warning horn that sounds when cabin altitude exceeds 10,000 feet. Both the cabin altitude warning and takeoff configuration warning use the same intermittent horn.

Following a fatal accident in August 2005, the FAA initiated planned Airworthiness Directive (AD) action to provide additional cabin altitude warning information for B737 flight crews.

To support this planned AD, Boeing has designed a change to the warning system to provide separate "CABIN ALTITUDE" and "TAKEOFF CONFIG" warning lights to accompany the existing dual-purpose intermittent warning horn. This design change is now available on production airplanes. Service bulletin information to support the planned AD will become available in mid-2009.

#### Flight Crew Operations Manual Bulletin No. TBC-26 R1, Dated June 1, 2009 (continued)

To help mitigate any possible confusion associated with the B737 cabin altitude warning system, the FAA issued AD 2006-13-13 which required changes to the AFM procedures in Section 2 for responding to the intermittent cabin altitude/ configuration warning horn. These AFM changes and associated Flight Crew Operations Manual (FCOM) Quick Reference Handbook (QRH) non-normal checklist changes were intended to make it easier for flight crews to determine whether the intermittent horn was sounding for cabin altitude or for takeoff configuration.

The FAA believed, however, that additional interim action was necessary until such time as the new warning lights could be fully implemented in the B737 fleet.

In mid-2008, the FAA determined that the most practical interim solution was to issue AD 2008-23-07. This AD requires flight crews to brief cabin altitude warning indications and procedures as part of the takeoff briefing before engine start on the first flight of the day or following a flight crew member change. This briefing is required in any B737 in which the CABIN ALTITUDE and TAKEOFF CONFIG lights are not installed, or are installed but not activated.

Following further discussions, the FAA has agreed that a need exists for crews to recognize the difference between an intermittent warning horn sounding in flight below 10,000 feet MSL, as opposed to sounding at or above 10,000 feet MSL. In flight below 10,000 feet MSL, the intermittent warning horn is associated with an inflight failure of the Air-Ground Sensor switch. At or above 10,000 feet MSL, sounding of the intermittent warning horn requires the crew to immediately don oxygen masks and set regulators to 100%.

The FAA has therefore approved an Alternative Method of Compliance (AMOC) to the Emergency Procedures mandated by AD 2006-13-13 and to the Takeoff Briefing mandated by AD 2008-23-07. The AMOC was approved by FAA Approval Letter 130S-09-134a dated April 28, 2009.

#### AD 2006-13-13

The current WARNING HORN – CABIN ALTITUDE OR CONFIGURATION Emergency Procedure in the AFM will be revised as follows:

1. The title will be changed to WARNING HORN OR WARNING LIGHT – CABIN ALTITUDE OR TAKEOFF CONFIGURATION.

2. The condition statement and the procedure will include reference to the CABIN ALTITUDE and TAKEOFF CONFIG lights.

3. The requirement to don oxygen masks, establish crew communications and do the CABIN ALTITUDE or Rapid Depressurization checklist will only apply if the intermittent warning horn sounds or a CABIN ALTITUDE light illuminates in flight at an airplane flight altitude above 10,000 feet MSL.

4. Reference to the steady horn in the condition statement will be deleted. The corresponding step in the procedure will be deleted.

A new AFM Emergency Procedure, LANDING CONFIGURATION, will be created to direct crews to assure correct landing configuration if the steady horn sounds in flight.

The current WARNING HORN – CABIN ALTITUDE OR CONFIGURATION QRH non-normal checklist will be revised in a future revision of the FCOM QRH to include the changes defined in the AMOC. In addition, a new checklist, titled LANDING CONFIGURATION will be added. The QRH checklists may not be an exact replica of the AFM procedures, but will be written for consistency with the Boeing format.

#### AD 2008-23-07

The Cabin Altitude Warning Takeoff Briefing in Section 3 of the AFM will be revised to clarify that immediate donning of oxygen masks and accomplishment of the subsequent memory item steps from the WARNING HORN OR WARNING LIGHT – CABIN ALTITUDE OR TAKEOFF CONFIGURATION non-normal checklist are only required if the intermittent warning horn sounds in flight at an aircraft flight altitude above 10,000 feet MSL.

The Takeoff briefing in the Before Start Procedure in the Normal Procedures section of the FCOM will be updated in a future revision to reflect this change.

#### **Operating Instructions**

To further reduce the risk of flight crew incapacitation due to hypoxia following loss of cabin pressurization, cabin altitude warning indications and memory item procedures must be briefed on airplanes in which the CABIN ALTITUDE and TAKEOFF CONFIG lights are not installed, or are installed but not activated. This briefing will be included as an additional item on the Takeoff briefing before engine start for the first flight of the day or following any change of either flight crew member.

The briefing must include the following:

• Whenever the intermittent warning horn sounds in flight at an airplane flight altitude above 10,000 feet MSL:

- 1. Immediately, don oxygen masks and set regulators to 100%.
- 2. Establish crew communications.
- 3. Do the CABIN ALTITUDE WARNING or Rapid Depressurization nonnormal checklist.

• Both pilots must verify on the overhead Cabin Altitude Panel that the cabin altitude is stabilized at or below 10,000 feet before removing oxygen masks.

Operators may want to seek an Alternative Method of Compliance (AMOC) to develop a new crew briefing or to utilize current approved briefings to meet the compliance of this AD.

#### **Administrative Information**

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-26 R1 "In Effect" (IE).

This FCOM bulletin will remain in effect until Boeing is informed that all affected airplanes in your fleet have the CABIN ALTITUDE and TAKEOFF CONFIG lights installed and activated.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the 737 Manager, Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page.

### BOEING

#### **Flight Crew Operations Manual Bulletin**

for

The Boeing Company

#### The Boeing Company Seattle, Washington 98124-2207



Number: TBC-27

IssueDate: June 2, 2009

Subject: Inflight Elevator Tab Vibration

**Reason:** This bulletin informs 737-100/-200/-300/-400/-500 flight crews of the potential for elevator tab vibration that may lead to significant structural damage.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

#### THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

#### **Background Information**

Boeing has received multiple reports of in-service vibration on 737-100/200/300/400/500 airplanes caused by worn or failed elevator tab assemblies. In one event, the flight crew experienced the partial loss of a right hand elevator and tab. The loss was discovered following several flight sectors in which aft cabin vibration was noted by the flight crew.

Flight crews should be aware that there are many causes of airframe vibration, including free-play in movable surfaces, system or engine malfunctions, and environmental factors. These most recent reports of in-flight vibration have been identified as resulting from worn or improperly installed hardware in the elevator tab system. In some cases, airframe vibration was reported on multiple flights over an extended period of time before identification and corrective actions were accomplished.

#### Flight Crew Operations Manual Bulletin No. TBC-27, Dated June 2, 2009 (continued)

Elevator tab vibration can occur during any phase of flight and is characterized as a clearly noticeable moderate to severe vertical motion in the flight deck and aft cabin. This vibration is characterized as a low frequency vertical vibration in which motion of items attached to airplane structure, such as sun visors, may be noticeable. In some cases, pilots have reported feeling vibration in the controlcolumn and rudder pedals as this vertical motion is transmitted through the structure and cables to the controls. If the cause of the vibration is suspected to be due to empennage control surfaces, the discrepancy should be corrected prior to further revenue flight.

Boeing recommends that operators aggressively investigate, identify, and correct the cause of the vibration prior to returning the airplane to revenue service. If exposed to recurrent or chronic vibration, control surfaces can experience significant structural damage.

Additional maintenance guidance is provided in the latest version of Boeing Service Bulletin 737-55A1070.

# **Operating Instructions**

If vibration is suspected due to the elevator tab, reduce airspeed smoothly until the vibration stops, using the thrust levers and pitch attitude. Do not use speed brakes or change airplane configuration to reduce airspeed. Do not reduce airspeed below the minimum speed for the existing flap setting and gross weight. Consider landing at the nearest suitable airport.

Stay at or below the reduced airspeed at which the vibration stopped for the rest of the flight. Limit bank angle to 15° until below 20,000 feet.

Do not deploy the speedbrakes for the remainder of the flight.

Flaps and landing gear can be extended normally during the approach and landing. The speedbrake can be armed for landing.

The vibration occurrence should be reported to maintenance for resolution before further flight. The logbook entry should emphasize that the vibration is suspected to be in the area of the elevator tab and tab control system.

### Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-27 "In Effect" (IE).

This FCOM bulletin will be revised to include Service Bulletin information when available.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the 737 Manager, Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page.

737 Flight Crew Operations Manual

| Limitations                                        | Chapter L   |
|----------------------------------------------------|-------------|
| Table of Contents                                  | Section TOC |
| Limitations and Operational Information            | L.10        |
| General                                            | L.10.1      |
| Airplane General, Emergency Equipment, Doors, Wind | lowsL.10.2  |
| AFM Limitations                                    | L.10.2      |
| AFM Operational Information                        |             |
| Non-AFM Operational Information                    |             |
| Altitude Display Limits for RVSM Operations        | L.10.2      |
| Weight Limitations                                 |             |
| AFM Limitations                                    |             |
| 737–200 Airplanes                                  |             |
| All Airplanes                                      |             |
| Air Systems                                        |             |
| AFM Limitations                                    | L.10.3      |
| Anti–Ice, Rain                                     |             |
| AFM Limitations                                    |             |
| Non-AFM Operational Information                    |             |
| Autopilot                                          |             |
| AFM Limitations                                    |             |
| Non-AFM Operational Information                    | L.10.4      |
| Electrical Power                                   |             |
| AFM Limitations                                    |             |
| Non-AFM Operational Information                    |             |
| Performance Data Computer System (PDCS)            |             |
| AFM Limitations                                    |             |
| Engines                                            |             |
| AFM Limitations                                    |             |
| Engine Limit Display Markings                      |             |
| General Engine Limitations.                        |             |
| Non-AFM Operational Information                    | L.10.8      |

#### Limitations -Table of Contents

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

| APUL.10.9                              |
|----------------------------------------|
| AFM LimitationsL.10.9                  |
| Non-AFM Operational InformationL.10.9  |
| Flight ControlsL.10.9                  |
| AFM LimitationsL.10.9                  |
| Non-AFM Operational InformationL.10.10 |
| Flight Management, NavigationL.10.10   |
| Non-AFM Operational InformationL.10.10 |
| FuelL.10.10                            |
| AFM LimitationsL.10.10                 |
| Fuel BalanceL.10.10                    |
| Fuel loadingL.10.11                    |
| Landing GearL.10.11                    |
| AFM LimitationsL.10.11                 |
| Non-AFM Operational InformationL.10.11 |

737 Flight Crew Operations Manual

# Limitations

Limitations and Operational Information

Chapter L Section 10

# General

This chapter contains:

- Airplane Flight Manual (AFM) limitations
- AFM operational information
- Non-AFM operational information.

Limitations and operational information are included if they are:

- operationally significant
- required by FAA Airworthiness Directive
- required by another regulatory requirement.

Limitations and operational information are not included if they are:

- incorporated into FCOM normal, supplementary, or non-normal procedures, with a few exceptions
- shown on a placard, display, or other marking.

Limitations and operational information listed in this chapter that must be memorized (memory items) are marked with a (#) symbol. They meet the following criterion - flight crew access by reference can not assure timely compliance, e. g., Maximum Takeoff and Landing Tailwind Component. They need only be memorized to the extent that compliance is assured. Knowing the exact wording of the limitation is not required.

Assuming that the remaining items are available to the flight crew by reference, they do not need to be memorized.

### Airplane General, Emergency Equipment, Doors, Windows

# AFM Limitations

| Runway slope                                        | +/-2%                                       |
|-----------------------------------------------------|---------------------------------------------|
| # Maximum Takeoff and Landing Tailwind<br>Component | 15 knots                                    |
| Maximum speeds                                      | Observe Vmo pointer and gear/ flap placards |
|                                                     |                                             |
| Mach trim inoperative                               | Max speed .74M                              |
| Maximum Operating Altitude                          | 37,000 feet pressure altitude               |
| Maximum Takeoff and Landing Altitude                | 8,300 feet pressure altitude                |

Verify that an operational check of the flight deck door access system (as installed) has been accomplished according to approved procedures once each flight day.

On revenue flights, the escape slide retention bar (girt bar) must be installed during taxi, takeoff and landing.

# **AFM Operational Information**

# Severe turbulent air penetration speed is 280 KIAS/.70M, whichever is lower.

# **Non-AFM Operational Information**

# Do not operate HF radios during refueling operations.

#### Altitude Display Limits for RVSM Operations

Note: The following items apply to airplanes equipped for RVSM operations.

Standby altimeters do not meet altimeter accuracy requirements of RVSM airspace.

The maximum allowable inflight difference between Captain and First Officer altitude displays for RVSM operations is 200 feet.

The maximum allowable on-the-ground altitude display differences for RVSM operations are:

737 Flight Crew Operations Manual

| Field Elevation | Max Difference<br>Between<br>Captain & F/O | Max Difference<br>Between<br>Captain or F/O &<br>Field Elevation |
|-----------------|--------------------------------------------|------------------------------------------------------------------|
| Sea Level       | 40 feet                                    | 75 feet                                                          |
| 5,000 feet      | 45 feet                                    | 75 feet                                                          |
| 10,000 feet     | 50 feet                                    | 75 feet                                                          |

#### Weight Limitations

**Note:** The maximum weight limitations can be further limited as referenced in the WEIGHT LIMITATIONS section of the CERTIFICATE LIMITATIONS chapter of the AFM.

#### **AFM Limitations**

#### 737–200 Airplanes

| Maximum Taxi Weight      | 117,500 lbs     |
|--------------------------|-----------------|
| Maximum Takeoff Weight   | 117,000 lbs (1) |
| Maximum Inflight Weight  |                 |
| Flaps 0                  | 116,500 lbs     |
| Flaps 30/40              | 106,000 lbs     |
| Maximum Landing Weight   | 105,000 lbs (2) |
| Maximum Zero Fuel Weight | 95,000 lbs      |

#### All Airplanes

| C. G. Limits | Use approved weight and |
|--------------|-------------------------|
|              | balance system          |

(1) May be further restricted by takeoff, enroute, and landing performance.

(2) May be further restricted by field length or climb limit.

### Air Systems

### **AFM Limitations**

The maximum cabin differential pressure (relief valves) is 8.65 psi.

#### Anti–Ice, Rain

### **AFM Limitations**

# Engine TAI must be on when icing conditions exist or are anticipated, except during climb and cruise below  $-40^{\circ}$ C SAT.

Minimum N1 RPM for operating in icing conditions except for landing: 40% when TAT between 0° and 10°C; 55% when TAT below 0°C; 70% in moderate to severe icing conditions when TAT below  $-6.5^{\circ}$ C, except as required for landing.

Window heat inop: max speed 250 KIAS below 10,000 ft.

Gravel Protect switch: ANTI-ICE position when using engine inlet anti-ice.

### **Non-AFM Operational Information**

Pitot heat must be on for takeoff.

### Autopilot

### **AFM Limitations**

# Do not use the autopilot for takeoff or landing.

Do not use autopilot roll channel above 30,000 feet with yaw damper inoperative.

Do not use ALT HOLD mode when Captain's alternate static source is selected.

### **Non-AFM Operational Information**

Do not use autopilot pitch channel above .81M with hydraulic system A or B depressurized.

#### **Electrical Power**

### **AFM Limitations**

Maximum engine driven generator load: 111 amps.

# **Non-AFM Operational Information**

Maximum generator drive oil temperature: 157° C.

# Performance Data Computer System (PDCS)

# AFM Limitations

Do not use the PDCS information unless the engine configuration displayed on the PDCS is the same as the engine configuration of the airplane.

Fuel management and range calculation values presented by the PDCS have not been evaluated by the FAA.

Verify that the representative takeoff EPR limits displayed on the CDU and EPR indicators agree with the limits in the Airplane Flight Manual.

#### Engines

#### **AFM Limitations**

#### **Engine Limit Display Markings**

Maximum and minimum limits are red.

Caution limits are amber.

#### **General Engine Limitations**

#### JT8D-9

| Maximum N1 RPM                                | 100.1%                          |
|-----------------------------------------------|---------------------------------|
| Maximum N2 RPM                                | 100%                            |
| # Maximum Acceleration EGT (2 minutes)        | 580° C                          |
| Maximum Takeoff EGT (5 minutes)               | 580° C                          |
| # Maximum Continuous EGT                      | 540° C                          |
| # Maximum Start EGT                           |                                 |
| Ambient Temperature above 15°C<br>(momentary) | 420° C                          |
| Ambient Temperature below 15°C                | 350° C                          |
| Maximum Oil Temperature (continuous)          | 120° C                          |
| (15 minutes)                                  | $121^{\circ} C - 157^{\circ} C$ |

#### Limitations -Limitations -Limitations and Operational DO NOT USE FOR FLIGHT Information

#### 737 Flight Crew Operations Manual

#### JT8D-9A

| Maximum N1 RPM                                | 100.1%          |
|-----------------------------------------------|-----------------|
| Maximum N2 RPM                                | 100%            |
| # Maximum Acceleration EGT (2 minutes)        | 590° C          |
| Maximum Takeoff EGT (5 minutes)               | 590° C          |
| # Maximum Continuous EGT                      | 545° C          |
| # Maximum Start EGT                           |                 |
| Ambient Temperature above 15°C<br>(momentary) | 420° C          |
| Ambient Temperature below 15°C                | 350° C          |
| Maximum Oil Temperature (continuous)          | 120° C          |
| (15 minutes)                                  | 121° C – 157° C |

#### JT8D-15

| Maximum N1 RPM                         | 102.4%                        |
|----------------------------------------|-------------------------------|
| Maximum N2 RPM                         | 100%                          |
| # Maximum Acceleration EGT (2 minutes) | 630° C                        |
| Maximum Takeoff EGT (5 minutes)        | 620° C                        |
| # Maximum Continuous EGT               | 580° C                        |
| # Maximum Start EGT                    |                               |
| Ground (momentary)                     | 550° C                        |
| Flight                                 | 620° C                        |
| Maximum Oil Temperature (continuous)   | 130° C                        |
| (15 minutes)                           | $131^\circ$ C $- 165^\circ$ C |

# **DO NOT USE FOR FLIGHT** Limitations and Operational

#### **JT8D–15A**

| Maximum N1 RPM                         | 102.4%          |
|----------------------------------------|-----------------|
| Maximum N2 RPM                         | 100%            |
| # Maximum Acceleration EGT (2 minutes) | 630° C          |
| Maximum Takeoff EGT (5 minutes)        | 620° C          |
| # Maximum Continuous EGT               | 580° C          |
| # Maximum Start EGT                    |                 |
| Ground (momentary)                     | 575° C          |
| Flight                                 | 620° C          |
| Maximum Oil Temperature (continuous)   | 130° C          |
| (15 minutes)                           | 131° C – 165° C |

#### JT8D-17

| Maximum N1 RPM                         | 102.4%          |
|----------------------------------------|-----------------|
| Maximum N2 RPM                         | 100%            |
| # Maximum Acceleration EGT (2 minutes) | 660° C          |
| Maximum Takeoff EGT (5 minutes)        | 650° C          |
| # Maximum Continuous EGT               | 610° C          |
| # Maximum Start EGT                    |                 |
| Ground (momentary)                     | 550° C          |
| Flight                                 | 650° C          |
| Maximum Oil Temperature (continuous)   | 130° C          |
| (15 minutes)                           | 131° C – 165° C |

#### **JT8D–17A**

| Maximum N1 RPM                         | 102.4%                        |
|----------------------------------------|-------------------------------|
| Maximum N2 RPM                         | 100%                          |
| # Maximum Acceleration EGT (2 minutes) | 660° C                        |
| Maximum Takeoff EGT (5 minutes)        | 650° C                        |
| # Maximum Continuous EGT               | 610° C                        |
| # Maximum Start EGT                    |                               |
| Ground (momentary)                     | 575° C                        |
| Flight                                 | 650° C                        |
| Maximum Oil Temperature (continuous)   | 130° C                        |
| (15 minutes)                           | $131^\circ$ C $- 165^\circ$ C |

#### **Oil Pressure**

| Maximum Oil Pressure | 55 psi |
|----------------------|--------|
| Minimum Oil Pressure | 40 psi |

#### **Engine Ignition**

Engine ignition must be on during takeoff and landing.

#### **Reverse Thrust**

# Intentional selection of reverse thrust in flight is prohibited.

#### **Gravel Takeoff**

Vortex dissipaters must be on for gravel operation

Maximum taxi EPR on gravel: 1.4

When using reverse thrust on gravel, use approximately idle reverse, not to exceed 1.8 EPR. Stow reversers by approximately 60 knots.

### **Non-AFM Operational Information**

Pneumatic pressure (prior to starter engagement): minimum 30 psig at sea level, decreasing 1/2 psig per 1,000 ft. above sea level.

Ignition Duty Cycle -

- LOW IGN
  - continuous
  - FLT –
  - 2 minutes on, 3 minutes off
  - 2 minutes on, 23 minutes off

# APU

# AFM Limitations

Maximum start EGT is 760° C.

Maximum continuous EGT is 710° C.

# With APU bleed + electrical load, maximum altitude is 10,000 ft.

# With APU bleed, maximum altitude is 17,000 ft.

# With APU electrical load, maximum altitude is 35,000 ft.

APU can operate up to 37,000 ft.

APU bleed valve must be closed when:

- ground air connected and isolation valve open
- engine no. 1 bleed valve open
- isolation valve and engine no. 2 bleed valve open.

APU bleed valve may be open during engine start, but avoid engine power above idle.

# **Non-AFM Operational Information**

If there are multiple aborted start attempts, five minutes cooling is required between the second and third start attempt. A wait of one hour is required after the third start attempt.

# Flight Controls

# **AFM Limitations**

# The maximum altitude with flaps extended is 20,000 ft.

In flight, do not extend the SPEED BRAKE lever beyond the FLIGHT DETENT.

# Avoid rapid and large alternating control inputs, especially in combination with large changes in pitch, roll, or yaw (e.g. large side slip angles) as they may result in structural failure at any speed, including below VA.

#### **Non-AFM Operational Information**

# Do not deploy the speedbrakes in flight at radio altitudes less than 1000 feet.

Alternate flap duty cycle:

- When extending or retracting flaps with the ALTERNATE FLAPS position switch, allow 15 seconds after releasing the ALTERNATE FLAPS position switch before moving the switch again to avoid damage to the alternate flap motor clutch.
- After a completed extend/retract cycle, i.e., 0 to 15 and back to 0, allow 5 minutes cooling before attempting another extension.

### Flight Management, Navigation

### **Non-AFM Operational Information**

# Avoid weather radar operation in a hangar, or within 50 feet (15.25 meters) of fueling operations or a fuel spill.

# Avoid weather radar operation within 160 feet (48.8 meters) of personnel.

# Warm up weather radar in STBY position only.

# Fuel

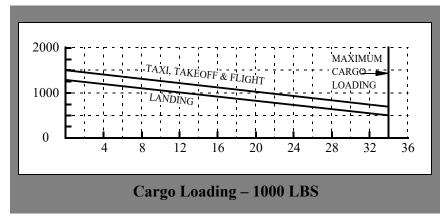
# AFM Limitations

Do not reset a tripped fuel pump circuit breaker.

Maximum fuel temperature is 49° C.

Minimum fuel temperature is fuel freeze point  $+3^{\circ}$  C or  $-45^{\circ}$  C, whichever is higher.

For those airplanes with the center tank fuel pump auto shutoff system installed, intentional dry running of a center tank fuel pump (low pressure light illuminated) is prohibited.


#### Fuel Balance

#### Symmetrical Load – All Passenger or All Cargo with 125" Pallets

Lateral imbalance between main tanks 1 and 2 must not exceed 1,500 lbs for taxi, takeoff, flight and 1,300 lbs for landing.

#### Unsymmetrical Load – Mixed Passenger and Cargo, or All Cargo with 108" Pallets

The maximum allowable fuel imbalance is as shown on the chart below.



#### Fuel loading

On the ground, main tanks 1 and 2 must be full if center tank contains more than 1000 lbs.

# Landing Gear

# **AFM Limitations**

Do not apply brakes until after touchdown.

# **Non-AFM Operational Information**

For airplanes without nose wheel lockout pin – Depressurize hydraulic system A for towing. Autobrake: RTO or OFF for takeoff. Intentionally Blank

737 Flight Crew Operations Manual

| Normal Procedures                                      | Chapter NP      |
|--------------------------------------------------------|-----------------|
| Table of Contents                                      | Section TOC     |
| Introduction                                           | NP.11           |
| General                                                | NP.11.1         |
| Normal Procedures Philosophy and Assumptions           | NP.11.1         |
| Configuration Check                                    | NP.11.1         |
| Crew Duties                                            | NP.11.2         |
| Scan Flow and Areas of Responsibility                  | NP.11.3         |
| Preflight and Postflight Scan Flow                     | NP.11.4         |
| Areas of Responsibility - Captain as Pilot Flying or   | Taxiing NP.11.5 |
| Areas of Responsibility - First Officer as Pilot Flyin | 6               |
| or Taxiing                                             | NP.11.6         |
| Amplified Procedures                                   | NP.21           |
| Preliminary Preflight Procedure – Captain or First O   | Officer NP.21.1 |
| Exterior Inspection                                    | NP.21.2         |
| Preflight Procedure – First Officer                    | NP.21.8         |
| Preflight Procedure – Captain                          | NP.21.19        |
| Before Start Procedure                                 | NP.21.23        |
| Pushback or Towing Procedure                           | NP.21.27        |
| Engine Start Procedure                                 | NP.21.27        |
| Before Taxi Procedure                                  | NP.21.29        |
| Before Takeoff Procedure                               | NP.21.30        |
| Takeoff Procedure                                      | NP.21.31        |
| Takeoff Flap Retraction Speed Schedule                 | NP.21.33        |
| Climb and Cruise Procedure                             | NP.21.33        |
| Descent Procedure                                      | NP.21.36        |
| Approach Procedure                                     | NP.21.39        |
| Flap Extension Schedule                                | NP.21.39        |
| Landing Procedure                                      | NP.21.40        |
| Go–Around and Missed Approach Procedure                | NP.21.41        |

737 Flight Crew Operations Manual

| Landing Roll Procedure NP.2  | 1.42 |
|------------------------------|------|
| After Landing Procedure NP.2 | 1.43 |
| Shutdown Procedure           | 1.44 |
| Secure Procedure NP.2        | 1.47 |

737 Flight Crew Operations Manual

# **Normal Procedures**

### Introduction

Chapter NP Section 11

### General

This chapter gives:

- an introduction to the normal procedures philosophy and assumptions
- step by step normal procedures

### Normal Procedures Philosophy and Assumptions

Normal procedures verify for each phase of flight that:

- the airplane condition is satisfactory
- the flight deck configuration is correct

Normal procedures are done on each flight. Refer to the Supplementary Procedures (SP) chapter for procedures that are done as needed, for example the adverse weather procedures.

Normal procedures are written for a trained flight crew and assume:

- all systems operate normally
- the full use of all automated features. This does not preclude the possibility of manual flight for pilot proficiency where allowed.

Normal procedures also assume coordination with the ground crew before:

- · hydraulic system pressurization, or
- flight control surface movement, or
- · airplane movement

Normal procedures do not include steps for flight deck lighting and crew comfort items.

Normal procedures are done by memory and scan flow. The panel illustration in this section shows the scan flow. The scan flow sequence may be changed as needed.

# **Configuration Check**

It is the crew member's responsibility to verify correct system response. Before engine start, use system lights to verify each system's condition or configuration. After engine start, the master caution system alerts the crew to warnings or cautions away from the normal field of view. If there is an incorrect configuration or response:

- verify that the system controls are set correctly
- check the respective circuit breaker as needed. Maintenance must first determine that it is safe to reset a tripped circuit breaker on the ground
- test the respective system light as needed

Before engine start, use individual system lights to verify the system status. If an individual system light indicates an improper condition:

- check the Dispatch Deviations Guide (DDG) or the operator equivalent to decide if the condition has a dispatch effect
- decide if maintenance is needed

If, during or after engine start, a red warning or amber caution light illuminates:

- do the respective non-normal checklist (NNC)
- on the ground, check the DDG or the operator equivalent

If, during recall, an amber caution illuminates and then extinguishes after a master caution reset:

- check the DDG or the operator equivalent
- the respective non-normal checklist is not needed

### **Crew Duties**

Preflight and postflight crew duties are divided between the captain and first officer. Phase of flight duties are divided between the Pilot Flying (PF) and the Pilot Monitoring (PM.)

Each crewmember is responsible for moving the controls and switches in their area of responsibility:

- The phase of flight areas of responsibility for both normal and non-normal procedures are shown in the Area of Responsibility illustrations in this section. Typical panel locations are shown.
- The preflight and postflight areas of responsibility are defined by the "Preflight Procedure Captain" and "Preflight Procedure First Officer".

The captain may direct actions outside of the crewmember's area of responsibility.

The general PF phase of flight responsibilities are:

- taxiing
- flight path and airspeed control
- airplane configuration
- navigation

The general PM phase of flight responsibilities are:

- checklist reading
- communications

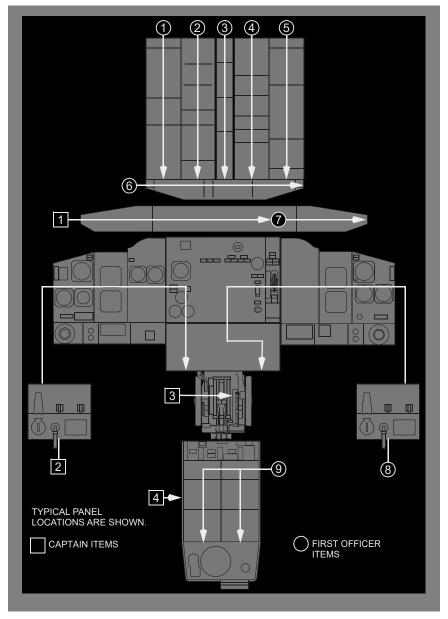
- tasks asked for by the PF
- monitoring taxiing, flight path, airspeed, airplane configuration, and navigation

PF and PM duties may change during a flight. For example, the captain could be the PF during taxi but be the PM during takeoff through landing.

Normal procedures show who does a step by crew position (C, F/O, PF, or PM):

- in the procedure title, or
- in the far right column, or
- in the column heading of a table

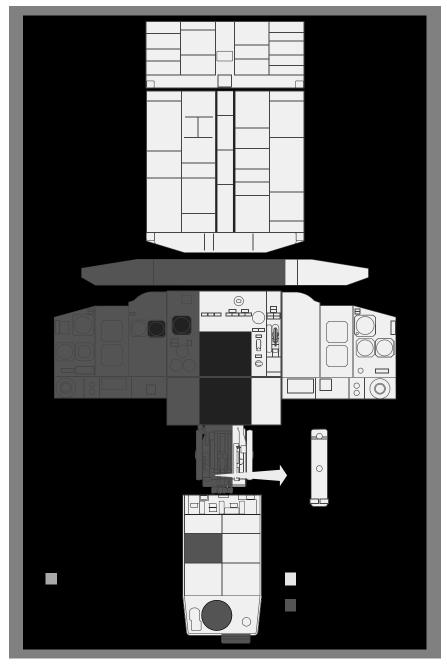
The mode control panel is the PF's responsibility. When flying manually, the PF directs the PM to make the changes on the mode control panel.


The captain is the final authority for all tasks directed and done.

### Scan Flow and Areas of Responsibility

The scan flow and areas of responsibility diagrams shown below are representative and may not match the configuration of your airplane.

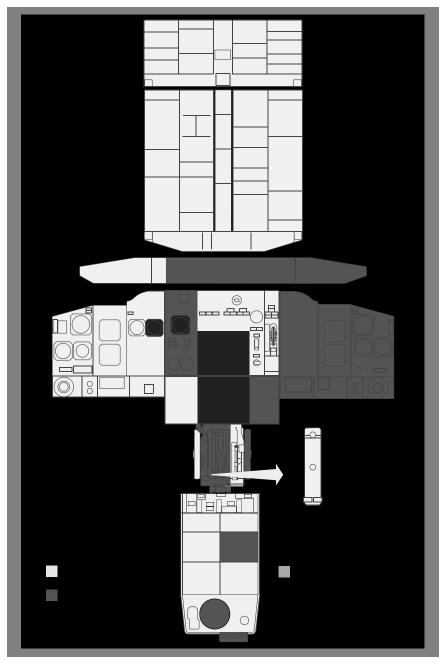
The scan flow diagram provides general guidance on the order of each flight crew member should follow when doing the preflight procedures. Specific guidance on the items to be checked are detailed in the amplified Normal Procedures, Preflight Procedure - Captain and Preflight Procedure - First Officer. **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual


### Preflight and Postflight Scan Flow



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. NP.11.4 D6-27370-200A-TBC October 9, 2007

#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual


#### Areas of Responsibility - Captain as Pilot Flying or Taxiing



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 6, 2017 D6-27370-200A-TBC NP.11.5



### Areas of Responsibility - First Officer as Pilot Flying or Taxiing



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. NP.11.6 D6-27370-200A-TBC April 6, 2017

737 Flight Crew Operations Manual

Normal Procedures Amplified Procedures Chapter NP Section 21

### Preliminary Preflight Procedure – Captain or First Officer

The Preliminary Preflight Procedure assumes that the Electrical Power Up supplementary procedure is complete.

| Passenger oxygen shutoff valve (cargo airplanes) Set                                                                   |
|------------------------------------------------------------------------------------------------------------------------|
| All cargo configurationCLOSED                                                                                          |
| Passenger configurationOPEN                                                                                            |
| Verify that the following are sufficient for flight:                                                                   |
| <ul><li>oxygen pressure</li><li>hydraulic quantity</li></ul>                                                           |
| • engine oil quantity                                                                                                  |
| Do the remaining actions after a crew change or maintenance action.                                                    |
| Maintenance documents Check                                                                                            |
| <b>Note:</b> The following oxygen pressure drop test only needs to be performed at one crewmember or observer station. |
| FLIGHT DECK ACCESS SYSTEM switch Guard closed                                                                          |
| Emergency equipmentCheck                                                                                               |
| Fire extinguisherChecked and stowed                                                                                    |
| Crash axeStowed                                                                                                        |
| Escape ropesStowed                                                                                                     |
| Other needed equipmentChecked and stowed                                                                               |
| THRUST REVERSER OVERRIDE switchesGuards closed                                                                         |
| SERVICE INTERPHONE switch OFF                                                                                          |
| OXYGEN panel Set                                                                                                       |
| <b>Note:</b> PASSENGER OXYGEN switch activation causes deployment of the passenger oxygen masks.                       |
| PASSENGER OXYGEN switchGuard closed                                                                                    |
| Verify that the PASS OXY ON light is extinguished.                                                                     |

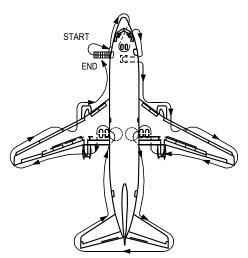


737 Flight Crew Operations Manual

| PASSENGER OXYGEN pressure indicator Check                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verify that the pressure meets dispatch requirements.                                                                                                              |
| Alternate gear safe lights (as installed)Verify illuminated                                                                                                        |
| FLIGHT RECORDERSet                                                                                                                                                 |
| FLIGHT RECORDER switchGuard closed.<br>Verify that the OFF light is illuminated.                                                                                   |
| Trip and Date EncoderSet                                                                                                                                           |
| Electronic master switchesON                                                                                                                                       |
| MACH AIRSPEED WARNING<br>TEST switchesPush, one at a time<br>Verify that the clacker sounds.                                                                       |
| STALL WARNING switch Hold in TEST<br>Verify that the OFF light extinguishes.<br>Verify that the TEST indicator spins.<br>Verify that both control columns vibrate. |
| Circuit breakers (P6 panel)Check                                                                                                                                   |
| Crew oxygen valve Open                                                                                                                                             |
| Manual gear extension access doorClosed                                                                                                                            |
| Passenger oxygen manual actuation and reset access door Closed                                                                                                     |
| Rain repellentCheck<br>Verify that the float is above the line.<br>Verify that the shutoff valve handle is in the vertical position.                               |
| Circuit breakers (P18 panel)Check                                                                                                                                  |
| Parking brakeAs needed                                                                                                                                             |
| Set the parking brake if the brake wear indicators are to be checked during the exterior inspection.                                                               |

### **Exterior Inspection**

Before each flight the captain, first officer, or maintenance crew must verify that the airplane is satisfactory for flight.


Items at each location may be checked in any sequence.

Use the detailed inspection route below to check that:

- the surfaces and structures are clear, not damaged, not missing parts and there are no fluid leaks
- the tires are not too worn, not damaged, and there is no tread separation
- the gear struts are not fully compressed
- the engine inlets and tailpipes are clear, the access panels are secured, the fan cowls are latched, the exterior, including the bottom of the nacelles, is not damaged, and the reversers are stowed
- the doors and access panels that are not in use are latched
- the probes, vents, and static ports are clear and not damaged
- the skin area adjacent to the pitot probes and static ports is not wrinkled
- the antennas are not damaged
- the light lenses are clean and not damaged

For cold weather operations see the Supplementary Procedures.

#### Inspection Route



#### Left Forward Fuselage

| Probes, sensors, ports, vents, and drains (as applicable) Check | k |
|-----------------------------------------------------------------|---|
| Doors and access panels (not in use)Latche                      | d |

737 Flight Crew Operations Manual

| Main deck cargo door (as installed)                   | Check             |
|-------------------------------------------------------|-------------------|
| Verify that the external locking handle is flush.     |                   |
| Verify that the latch hooks are engaged.              |                   |
| Nose                                                  |                   |
| Radome                                                | Check             |
| Conductor straps                                      | Secure            |
| Forward E and E door                                  | Secure            |
| Nose Wheel Well                                       |                   |
| Tires and wheels                                      | Check             |
| Gravel deflector (as installed)                       | Check             |
| Exterior light                                        | Check             |
| Gear strut and doors                                  | Check             |
| View port                                             | . Clear and clean |
| Nose wheel steering assembly                          | Check             |
| Nose gear steering lockout pin                        | As needed         |
| Gear pin                                              | As needed         |
| Nose wheel spin brake (snubbers)                      | In place          |
| Right Forward Fuselage                                |                   |
| Prohas sansors parts yents and drains (as applicable) | Chaolz            |

| Probes, sensors, ports, vents, and drains (as applicable)Check |
|----------------------------------------------------------------|
| Oxygen pressure relief green disc In place                     |
| Doors and access panels (not in use) Latched                   |

### Right Wing Root, Pack, and Lower Fuselage

| Ram air deflector door                                    | Extended |
|-----------------------------------------------------------|----------|
| Pack and pneumatic access doors                           | Secure   |
| Probes, sensors, ports, vents, and drains (as applicable) | Check    |
| Exterior lights                                           | Check    |

737 Flight Crew Operations Manual

Leading edge flaps ...... Check

#### Number 2 Engine

| Exterior surfaces (including the bottom of the nacelles) Check for damage |
|---------------------------------------------------------------------------|
| Access panels and fan cowl latchesLatched                                 |
| Probes, sensors, ports, vents, and drains (as applicable) Check           |
| Fan blades, probes, and spinner Check                                     |
| Thrust reversersStowed                                                    |
| Exhaust area and tailcone Check                                           |

### **Right Wing and Leading Edge**

| Access panels      | Latched          |
|--------------------|------------------|
| Leading edge slats | Check            |
| Fuel drip sticks   | Flush and secure |
| Wing Surfaces      | Check            |
| Fuel tank vent     | Check            |

### **Right Wing Tip and Trailing Edge**

| Position lights Che                 | eck |
|-------------------------------------|-----|
| Static discharge wicks Che          | eck |
| Aileron and trailing edge flaps Che | eck |
| Exterior lights Che                 | eck |

#### **Right Main Gear**

| Tires, brakes and wheels Check                                                               |
|----------------------------------------------------------------------------------------------|
| Verify that the wheel chocks are in place as needed.                                         |
| If the parking brake is set, the brake wear indicator pins must extend<br>out of the guides. |
| Gear strut, actuators, and doors Check                                                       |
| Hydraulic linesSecure                                                                        |

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| Elevator feel probes               | Check |
|------------------------------------|-------|
| Horizontal stabilizer and elevator | Check |
| Static discharge wicks             | Check |
| APU exhaust outlet                 | Check |
|                                    |       |

Verify that there is no indication of scorch marks on the outlet.

### Left Aft Fuselage

| Left Main Wheel Well                                      |        |
|-----------------------------------------------------------|--------|
| Probes, sensors, ports, vents, and drains (as applicable) | Check  |
| Doors and access panels (not in use) La                   | atched |

| View port  | Clear and clean |
|------------|-----------------|
| Wheel well | Check           |

| Engine fire bottle pressure Check                                                            |
|----------------------------------------------------------------------------------------------|
| Left Main Gear                                                                               |
| Tires, brakes and wheels Check                                                               |
| Verify that the wheel chocks are in place as needed.                                         |
| If the parking brake is set, the brake wear indicator pins must extend<br>out of the guides. |
| Gear strut, actuators and doors Check                                                        |
| Hydraulic linesSecure                                                                        |
| Gear pinAs needed                                                                            |
| Left Wing Tip and Trailing Edge                                                              |
| Aileron and trailing edge flaps Check                                                        |
| Static discharge wicks Check                                                                 |
| Position lights Check                                                                        |
| Exterior lights Check                                                                        |
| Left Wing and Leading Edge                                                                   |
| Fuel tank vent Check                                                                         |
| Wing Surfaces Check                                                                          |
| Fuel drip sticksFlush and secure                                                             |
| Leading edge slats Check                                                                     |
| Access panelsLatched                                                                         |
| Number 1 Engine                                                                              |
| Exhaust area and tailcone Check                                                              |
| Thrust reversersStowed                                                                       |
| Fan blades, probes, and spinner Check                                                        |
| Probes, sensors, ports, vents, and drains (as applicable) Check                              |
| Access panels and fan cowl latchesLatched                                                    |
|                                                                                              |

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| Exterior surfaces                      |                  |
|----------------------------------------|------------------|
| (including the bottom of the nacelles) | Check for damage |

### Left Wing Root, Pack, and Lower Fuselage

| Leading edge flapsCheck                                        |
|----------------------------------------------------------------|
| Probes, sensors, ports, vents, and drains (as applicable)Check |
| Exterior lightsCheck                                           |
| Pack and pneumatic access doors Secure                         |
| Ram air deflector door Extended                                |

### Preflight Procedure – First Officer

The first officer normally does this procedure. The captain may do this procedure if needed.

| Flight control panelCheck                                             |
|-----------------------------------------------------------------------|
| FLIGHT CONTROL switches Guards closed                                 |
| Verify that the flight control LOW PRESSURE lights are illuminated.   |
| Flight SPOILER switches Guards closed                                 |
| YAW DAMPER switchON                                                   |
| Verify that the YAW DAMPER light is extinguished.                     |
| Verify that the standby hydraulic LOW QUANTITY light is extinguished. |
| Verify that the standby hydraulic LOW PRESSURE light is extinguished. |
| Verify that the STBY RUD ON light (as installed) is extinguished.     |
| ALTERNATE FLAPS master switchGuard closed                             |
| ALTERNATE FLAPS position switchOFF                                    |
| Verify that the FEEL DIFF PRESS light is extinguished.                |
| Verify that the MACH TRIM FAIL light is extinguished.                 |
| Instrument and NAV transfer switchesNORMAL                            |

| Fuel panelSet                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verify that the FUEL VALVE CLOSED lights are illuminated dim.                                                                                                          |
| Verify that the FILTER ICING lights are extinguished.                                                                                                                  |
| Fuel HEAT switches OFF                                                                                                                                                 |
| Verify that the VALVE OPEN lights are extinguished.                                                                                                                    |
| CROSSFEED selectorCLOSED                                                                                                                                               |
| Verify that the VALVE OPEN light is extinguished.                                                                                                                      |
| FUEL PUMP switches OFF                                                                                                                                                 |
| Verify that the center tank fuel pump LOW PRESSURE lights are extinguished.                                                                                            |
| Verify that the auxiliary tank fuel pump LOW PRESSURE lights (as installed) are extinguished.                                                                          |
| Verify that the main tank fuel pump LOW PRESSURE lights are illuminated.                                                                                               |
| Electrical panelSet                                                                                                                                                    |
| BATTERY switch Guard closed                                                                                                                                            |
| GALLEY power switchON                                                                                                                                                  |
| STANDBY POWER switch Guard closed<br>Verify that the STANDBY PWR OFF light is extinguished.                                                                            |
| Generator drive DISCONNECT switchesGuards closed<br>Verify that the LOW OIL PRESSURE lights are illuminated.<br>Verify that the HIGH OIL TEMP lights are extinguished. |
| DRIVE TEMPERATURE switchAs needed                                                                                                                                      |
| BUS TRANSFER switch Guard closed                                                                                                                                       |
| Verify that the TRANSFER BUS OFF lights are extinguished.                                                                                                              |
| Verify that the BUS OFF lights are extinguished.                                                                                                                       |
| Verify that the GEN OFF BUS lights are illuminated.                                                                                                                    |
| Overheat and fire protection panel<br>(Passenger airplanes) Check                                                                                                      |
| Do this check if the flight crew did not do the Electrical Power Up supplementary procedure. This check is needed once each flight day.                                |
|                                                                                                                                                                        |



Verify that the engine No. 1, APU, and engine No. 2 fire switches are in.

Alert ground personnel before the following test is accomplished:

OVERHEAT DETECTOR switches ......NORMAL

- **Note:** The fire warning light flashes and the horn sounds on the APU ground control panel when this test is done with the APU running. This can be mistaken by the ground crew as an APU fire.
- TEST switch...... Hold to OVHT/INOP

Verify that the MASTER CAUTION lights are illuminated.

Verify that the OVHT/DET annunciator is illuminated.

Verify that the ENG 1 OVERHEAT and ENG 2 OVERHEAT lights are illuminated.

Verify that the APU DET INOP light is illuminated.

Do not run the APU if the APU DET INOP light does not illuminate.

TEST switch...... Hold to FIRE

Verify that the fire warning bell sounds.

Verify that the master FIRE WARN lights are illuminated.

Verify that the engine No. 1, APU, and engine No. 2 fire switches are illuminated.

Verify that the WHEEL WELL fire warning light is illuminated.

Master FIRE WARNING light ..... Push

Verify that the master FIRE WARN lights are extinguished.

Verify that the fire warning bell cancels.

Verify that the engine No. 1, APU, and engine No. 2 fire switches stay illuminated.

Verify that the WHEEL WELL fire warning light stays illuminated.

Overheat and fire protection panel

(Cargo airplanes) ..... Check

Do this check if the flight crew did not do the Electrical Power Up supplementary procedure. This check is needed once each flight day.

#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Verify that the engine No. 1, APU, and engine No. 2 fire switches are in.

Alert ground personnel before the following test is accomplished:

OVERHEAT DETECTOR switches ...... NORMAL

TEST switch ...... Hold to OVHT/INOP/A SMOKE

Verify that the fire warning bell sounds.

Verify that the master FIRE WARN lights are illuminated.

Verify that the MASTER CAUTION lights are illuminated.

Verify that the OVHT/DET annunciator is illuminated.

Verify that the ENG 1 OVERHEAT and ENG 2 OVERHEAT lights are illuminated.

Verify that the FWD and AFT CARGO SMOKE lights are illuminated.

Verify that the APU DET INOP light is illuminated.

Do not run the APU if the APU DET INOP light does not illuminate.

**Note:** The fire warning light flashes and the horn sounds on the APU ground control panel when this test is done with the APU running. This can be mistaken by the ground crew as an APU fire.

Master FIRE WARN light .....Push

Verify that the master FIRE WARN lights are extinguished.

Verify that the fire warning bell cancels.

Verify that the MASTER CAUTION lights stay illuminated.

Verify that the OVHT/DET annunciator stays illuminated.

Verify that the ENG 1 OVERHEAT and ENG 2 OVERHEAT lights stay illuminated.

Verify that the FWD and AFT CARGO SMOKE lights stay illuminated.

Verify that the APU DET INOP light stays illuminated.

TEST switch ...... Hold to FIRE/B SMOKE

Verify that the fire warning bell sounds.

Verify that the master FIRE WARN lights are illuminated.

\_\_\_\_



| Verify that the engine No. 1, APU, and engine No. 2 fire switches are illuminated.                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verify that the WHEEL WELL fire warning light is illuminated.                                                                                                                                                              |
| Verify that the FWD and AFT CARGO SMOKE lights are illuminated.                                                                                                                                                            |
| Master FIRE WARNING light Push                                                                                                                                                                                             |
| Verify that the master FIRE WARN lights are extinguished.                                                                                                                                                                  |
| Verify that the fire warning bell cancels.                                                                                                                                                                                 |
| Verify that the engine No. 1, APU, and engine No. 2 fire switches stay illuminated.                                                                                                                                        |
| Verify that the WHEEL WELL fire warning light stays illuminated.                                                                                                                                                           |
| Verify that the FWD and AFT CARGO SMOKE lights stay illuminated.                                                                                                                                                           |
| EXTINGUISHER TEST switch Check                                                                                                                                                                                             |
| TEST Switch Push and hold                                                                                                                                                                                                  |
| Verify that the three green extinguisher test lights are illuminated.                                                                                                                                                      |
| TEST Switch Release                                                                                                                                                                                                        |
| Verify that the three green extinguisher test lights are extinguished.                                                                                                                                                     |
| APU switch (as needed) START                                                                                                                                                                                               |
| <b>Note:</b> If extended APU operation is needed on the ground and the airplane buses are powered by AC electrical power, position an AC powered fuel pump ON. This extends the service life of the APU fuel control unit. |
| <b>Note:</b> If fuel is loaded in the center tank, position the left center tank fuel pump switch ON to prevent a fuel imbalance before takeoff.                                                                           |
| CAUTION: Position the center tank fuel pump switches ON<br>only if the fuel quantity in the center tank exceeds<br>1000 lbs.                                                                                               |

# CAUTION: Do not operate the center tank fuel pumps with the flight deck unattended.

| When the APU GEN OFF BUS light is illuminated:                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APU GENERATOR bus switches ON                                                                                                                                                       |
| Verify that the BUS OFF lights are extinguished.                                                                                                                                    |
| Verify that the TRANSFER BUS OFF lights are extinguished.                                                                                                                           |
| Verify that the LOW OIL QUANTITY light is extinguished.                                                                                                                             |
| Verify that the APU LOW OIL PRESSURE light is extinguished.                                                                                                                         |
| Verify that the APU HIGH OIL TEMP light is extinguished.                                                                                                                            |
| Verify that the APU OVERSPEED light is extinguished.                                                                                                                                |
| <b>Note:</b> Run the APU for one full minute before using it as a bleed air source.                                                                                                 |
| EQUIPMENT COOLING switch NORMAL                                                                                                                                                     |
| Verify that the OFF light is extinguished.                                                                                                                                          |
| EMERGENCY EXIT LIGHTS switchGuard closed                                                                                                                                            |
| Verify that the NOT ARMED light is extinguished.                                                                                                                                    |
|                                                                                                                                                                                     |
| Passenger signs                                                                                                                                                                     |
| NO SMOKING switch                                                                                                                                                                   |
|                                                                                                                                                                                     |
| NO SMOKING switch AUTO or ON                                                                                                                                                        |
| NO SMOKING switch AUTO or ON<br>FASTEN BELTS switch AUTO or ON                                                                                                                      |
| NO SMOKING switch AUTO or ON<br>FASTEN BELTS switch AUTO or ON<br>Windshield WIPER selector OFF<br>If the windshield wipers are not stowed, place the selector to PARK              |
| NO SMOKING switch AUTO or ON<br>FASTEN BELTS switch AUTO or ON<br>Windshield WIPER selector OFF<br>If the windshield wipers are not stowed, place the selector to PARK<br>then OFF. |
| NO SMOKING switch                                                                                                                                                                   |
| NO SMOKING switch                                                                                                                                                                   |

| PITOT STATIC HEAT switches<br>(airplanes without automatic pitot static heat)OFF<br>Verify that all PROBE HEATER lights are illuminated.                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WING ANTI–ICE switchOFF                                                                                                                                                                                                                                                                                                                                                     |
| Verify that the VALVE OPEN lights are extinguished.                                                                                                                                                                                                                                                                                                                         |
| ENGINE ANTI-ICE switchesOFF                                                                                                                                                                                                                                                                                                                                                 |
| Verify that the VALVE OPEN lights are extinguished.                                                                                                                                                                                                                                                                                                                         |
| Hydraulic panel                                                                                                                                                                                                                                                                                                                                                             |
| GROUND INTERCONNECT switch CLOSE                                                                                                                                                                                                                                                                                                                                            |
| ENGINE HYDRAULIC PUMPS switchesON                                                                                                                                                                                                                                                                                                                                           |
| Verify that the LOW PRESSURE lights are illuminated.                                                                                                                                                                                                                                                                                                                        |
| ELECTRIC HYDRAULIC PUMPS switchesOFF                                                                                                                                                                                                                                                                                                                                        |
| Verify that the OVERHEAT lights are extinguished.                                                                                                                                                                                                                                                                                                                           |
| Verify that the LOW PRESSURE lights are illuminated.                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                             |
| Cabin altitude panelSet                                                                                                                                                                                                                                                                                                                                                     |
| Cabin altitude panelSet<br>SMOKE CLEARANCE switchGuard closed                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                             |
| SMOKE CLEARANCE switchGuard closed                                                                                                                                                                                                                                                                                                                                          |
| SMOKE CLEARANCE switchGuard closed Air conditioning panelSet                                                                                                                                                                                                                                                                                                                |
| SMOKE CLEARANCE switchGuard closed<br>Air conditioning panelSet<br>AIR TEMPERATURE source selectorAs needed                                                                                                                                                                                                                                                                 |
| SMOKE CLEARANCE switchGuard closed<br>Air conditioning panelSet<br>AIR TEMPERATURE source selectorAs needed<br>Verify that the DUCT OVERHEAT lights are extinguished.                                                                                                                                                                                                       |
| SMOKE CLEARANCE switchGuard closed<br>Air conditioning panelSet<br>AIR TEMPERATURE source selectorAs needed<br>Verify that the DUCT OVERHEAT lights are extinguished.<br>Temperature selectorsAs needed                                                                                                                                                                     |
| SMOKE CLEARANCE switchGuard closed<br>Air conditioning panelSet<br>AIR TEMPERATURE source selectorAs needed<br>Verify that the DUCT OVERHEAT lights are extinguished.<br>Temperature selectorsAs needed<br>Verify that the RAM DOOR FULL OPEN lights are illuminated.                                                                                                       |
| SMOKE CLEARANCE switch                                                                                                                                                                                                                                                                                                                                                      |
| SMOKE CLEARANCE switchGuard closed         Air conditioning panelSet         AIR TEMPERATURE source selectorAs needed         Verify that the DUCT OVERHEAT lights are extinguished.         Temperature selectorsAs needed         Verify that the RAM DOOR FULL OPEN lights are illuminated.         GASPER FAN switchAs needed         Air conditioning PACK switchesSet |
| SMOKE CLEARANCE switch                                                                                                                                                                                                                                                                                                                                                      |
| SMOKE CLEARANCE switch                                                                                                                                                                                                                                                                                                                                                      |

| APU BLEED air switchON                                             |
|--------------------------------------------------------------------|
| Verify that the DUAL BLEED light is illuminated.                   |
| Verify that the PACK TRIP OFF lights are extinguished.             |
| Verify that the WING-BODY OVERHEAT lights are extinguished.        |
| Verify that the BLEED TRIP OFF lights are extinguished.            |
| Cabin pressurization panelSet                                      |
| Verify that the AUTO FAIL light is extinguished.                   |
| Verify that the OFF SCHED DESCENT light is extinguished.           |
| FLIGHT ALTITUDE indicator Cruise altitude                          |
| LANDING ALTITUDE indicator Destination field elevation             |
| CABIN RATE selector Index                                          |
| CABIN ALTITUDE indicator200 feet below destination field elevation |
| FLIGHT/GROUND switchGRD                                            |
| Pressurization mode selector AUTO                                  |
| Verify that the STANDBY light is extinguished.                     |
| Verify that the MANUAL light is extinguished.                      |
| Lighting panelSet                                                  |
| LANDING light switches RETRACT and OFF                             |
| RUNWAY TURNOFF light switches OFF                                  |
| TAXI light switch OFF                                              |
| ENGINE START switches OFF                                          |
| GRAVEL PROTECT switch (as installed) OFF                           |
| Lighting panelSet                                                  |
| POSITION light switchAs needed                                     |
| ANTI-COLLISION light switch OFF                                    |
| WING illumination switchAs needed                                  |
| WHEEL WELL light switchAs needed                                   |
|                                                                    |

| Flight director panel                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode selectorOFF                                                                                                                                                                    |
| ALTITUDE HOLD switchOFF                                                                                                                                                             |
| PITCH COMMAND control Full clockwise                                                                                                                                                |
| Oxygen Test and se<br>Check mask, hose and fittings for grease or damage.<br>Hold the mask away from face.                                                                          |
| Supply leverON                                                                                                                                                                      |
| Oxygen diluter lever100%                                                                                                                                                            |
| Emergency leverON<br>Verify that the flow indicator shows flow.                                                                                                                     |
| Supply and Emergency leversOFF<br>Adjust the mask to the face and inhale. Verify that the mask pulls<br>to face.                                                                    |
| Oxygen diluter leverNORMAL<br>Inhale and verify unrestricted flow. Verify that the flow indicator<br>shows no flow.                                                                 |
| Supply leverON                                                                                                                                                                      |
| Oxygen diluter lever100%<br>Inhale and verify that the flow indicator shows flow.                                                                                                   |
| Emergency leverON<br>Verify that there is a slight pressure in the mask.                                                                                                            |
| Emergency leverOFF<br>Stow oxygen mask.                                                                                                                                             |
| Crew and passenger oxygen pressureCheck<br>Verify that the pressure is sufficient for dispatch.                                                                                     |
| <b>Note:</b> The oxygen test and set is not needed if the oxygen pressure drop test was done at this station during the Preliminary Preflight Procedure - Captain or First Officer. |

737 Flight Crew Operations Manual

-

| STATIC SOURCE SELECTOR switch NORMAL                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marker beacon lights Test                                                                                                                                           |
| ClockWind and set                                                                                                                                                   |
| Autopilot disengage light Push to test<br>Verify that the AUTOPILOT disengage light is illuminated.                                                                 |
| Flight instruments Check<br>Set the altimeter.<br>Verify that the flight instrument indications are correct.<br>Verify that only these flags are shown:             |
| <ul><li>TCAS (as installed)</li><li>expected RMI flags</li></ul>                                                                                                    |
| Hydraulic system B LOW QUANTITY light Verify extinguished                                                                                                           |
| SYSTEM A HYDRAULIC QUANTITY indicator Above RF                                                                                                                      |
| GROUND PROXIMITY panel Check                                                                                                                                        |
| FLAP/GEAR INHIBIT switch Guard closed Verify that the INOP light is extinguished.                                                                                   |
| Landing gear panelSet                                                                                                                                               |
| LANDING GEAR leverDN<br>Verify that the green landing gear indicator lights are illuminated.<br>Verify that the red landing gear indicator lights are extinguished. |
| TAKEOFF CONFIG light (as installed) Verify extinguished                                                                                                             |
| CABIN ALTITUDE light (as installed) Verify extinguished                                                                                                             |
| ANTISKID switches                                                                                                                                                   |
| AUTO BRAKE select switch OFF<br>Verify that the AUTO BRAKE DISARM light is extinguished.                                                                            |
| EPR reference selectors (on PDCS equipped airplanes)Push                                                                                                            |

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| Engine instruments Check                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------|
| Verify that the REVERSER UNLOCKED lights are extinguished.                                                                   |
| Verify that the START VALVE OPEN lights are extinguished.                                                                    |
| Verify that the LOW OIL PRESSURE lights are illuminated.                                                                     |
| Verify that the OIL FILTER BYPASS lights are extinguished.                                                                   |
| Verify that the primary and secondary engine indications show existing conditions.                                           |
| ENGINE OIL QUANTITY TEST switch Push                                                                                         |
| Verify that the oil quantity indicators move toward zero and return to<br>the original position when the switch is released. |
| CARGO FIRE panel (as installed) Check                                                                                        |
| This check is needed once per flight day.                                                                                    |
| DETECTOR SELECT switchesNORM                                                                                                 |
| TEST switchPush                                                                                                              |
| Verify that the fire warning bell sounds.                                                                                    |
| Verify that the master FIRE WARN lights are illuminated.                                                                     |
| Master FIRE WARN lightPush                                                                                                   |
| Verify that the master FIRE WARN lights are extinguished.                                                                    |
| Verify that the fire warning bell cancels.                                                                                   |
| Verify that the FWD and AFT cargo fire warning lights stay illuminated.                                                      |
| Verify that the DETECTOR FAULT light stays extinguished.                                                                     |
| Verify that the green EXTINGUISHER test lights stay illuminated.                                                             |
| Verify that the DISCH light stays illuminated.                                                                               |
| VHF communications radios                                                                                                    |
| VHF NAVIGATION radios                                                                                                        |
| Audio selector panel                                                                                                         |
| ADF radios                                                                                                                   |
| WARNING: Do not key the HF radio while the airplane is being fueled. Injury to personnel or fire can occur.                  |

737 Flight Crew Operations Manual

| HF radios                                                                                                                                                                                                                                                                                                                             | Set |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| WEATHER RADAR panel                                                                                                                                                                                                                                                                                                                   | Set |
| Transponder panel                                                                                                                                                                                                                                                                                                                     | Set |
| STABILIZER BRAKE RELEASE knobVerify release                                                                                                                                                                                                                                                                                           | sed |
| WARNING: Do not put objects between the seat and the aisle stand. Injury can occur when the seat is adjusted.                                                                                                                                                                                                                         |     |
| SeatAdj                                                                                                                                                                                                                                                                                                                               | ust |
| Use the handhold above the forward window for assistance when<br>pulling the seat forward. Do not use the glareshield as damage car<br>occur.                                                                                                                                                                                         | l   |
| Adjust the seat for optimum eye reference.                                                                                                                                                                                                                                                                                            |     |
| When ever the seat is adjusted, verify a positive horizontal (fore as aft) seat lock by pushing against the seat.                                                                                                                                                                                                                     | nd  |
| Rudder pedalsAdj                                                                                                                                                                                                                                                                                                                      | ust |
| Adjust the rudder pedals to allow full rudder pedal and brake peda movement.                                                                                                                                                                                                                                                          | ıl  |
| CAUTION: Turn the rudder pedal adjust crank no faster than<br>approximately one turn per second to avoid damage.<br>Do not apply force to the pedals during adjustment.                                                                                                                                                               |     |
| Seat belt and shoulder harnessAdj                                                                                                                                                                                                                                                                                                     | ust |
| Do the PREFLIGHT checklist on the captain's command.                                                                                                                                                                                                                                                                                  |     |
| Preflight Procedure – Captain                                                                                                                                                                                                                                                                                                         | _   |
| The captain normally does this procedure. The first officer may do this procedure if needed.                                                                                                                                                                                                                                          |     |
| Lights T                                                                                                                                                                                                                                                                                                                              | est |
| Master LIGHTS TEST and DIM switchTEST                                                                                                                                                                                                                                                                                                 |     |
| The fire warning lights are not checked during this test. Use<br>individual test switches or push to test features to check lights<br>which do not illuminate during the light test. Use scan flow to<br>verify that all other lights are flashing or illuminated. Verify the<br>all system annunciator panel lights are illuminated. | at  |
| Master LIGHTS TEST and DIM switchAs needed                                                                                                                                                                                                                                                                                            |     |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 6, 2020 D6-27370-200A-TBC

| Flight director panel                                                              |
|------------------------------------------------------------------------------------|
| Mode selectorOFF                                                                   |
| ALTITUDE HOLD switchOFF                                                            |
| PITCH COMMAND control Full clockwise                                               |
| Autopilot panel                                                                    |
| Autopilot mode selectorMAN                                                         |
| Autopilot system select switch As needed                                           |
| Autopilot heading switchCentered position                                          |
| Autopilot AILERON engage switch DISENGAGED                                         |
| Autopilot ELEVATOR engage switchDISENGAGED                                         |
| Autopilot pitch mode selectorOFF                                                   |
| Oxygen Test and set                                                                |
| Check mask, hose and fittings for grease or damage.                                |
| Hold the mask away from face.                                                      |
| Supply leverON                                                                     |
| Oxygen diluter lever100%                                                           |
| Emergency leverON                                                                  |
| Verify that the flow indicator shows flow.                                         |
| Supply and Emergency leversOFF                                                     |
| Adjust the mask to the face and inhale. Verify that the mask pulls to face.        |
| Oxygen diluter leverNORMAL                                                         |
| Inhale and verify unrestricted flow. Verify that the flow indicator shows no flow. |
| Supply leverON                                                                     |
| Oxygen diluter lever100%                                                           |
| Inhale and verify that the flow indicator shows flow.                              |

737 Flight Crew Operations Manual

-

| Emergency leverON                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verify that there is a slight pressure in the mask.                                                                                                                                       |
| Emergency leverOFF                                                                                                                                                                        |
| Stow oxygen mask.                                                                                                                                                                         |
| Crew and passenger oxygen pressure Check                                                                                                                                                  |
| Verify that the pressure is sufficient for dispatch.                                                                                                                                      |
| <b>Note:</b> The oxygen test and set is not needed if the oxygen pressure<br>drop test was done at this station during the Preliminary<br>Preflight Procedure - Captain or First Officer. |
| STATIC SOURCE SELECTOR switch NORMAL                                                                                                                                                      |
| MARKER beacon sensitivity switchAs needed                                                                                                                                                 |
| Marker beacon lights Test                                                                                                                                                                 |
| Clock                                                                                                                                                                                     |
| Autopilot disengage light Push to test                                                                                                                                                    |
| Verify that the AUTOPILOT disengage light is illuminated.                                                                                                                                 |
| Flight instruments Check                                                                                                                                                                  |
| Set the altimeter.                                                                                                                                                                        |
| Verify that the flight instrument indications are correct.                                                                                                                                |
| Verify that only these flags are shown:                                                                                                                                                   |
| <ul><li>TCAS (as installed)</li><li>expected RMI flags</li></ul>                                                                                                                          |
| Standby instruments Check                                                                                                                                                                 |
| Gyro caging controlPull, then release                                                                                                                                                     |
| Pitch trim controlAs needed                                                                                                                                                               |
| Set the altimeter                                                                                                                                                                         |
| Verify that the flight instrument indications are correct                                                                                                                                 |
| Verify that no flags are shown.                                                                                                                                                           |
| STAB OUT OF TRIM light Verify extinguished                                                                                                                                                |
|                                                                                                                                                                                           |

| 5 <b>i</b>                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| SPEED BRAKE lever                                                                                                                             |
| Verify that the SPEED BRAKE ARMED light is extinguished.                                                                                      |
| Verify that the SPEED BRAKE DO NOT ARM light is extinguished.                                                                                 |
| Reverse thrust levers Down                                                                                                                    |
| Forward thrust leversClosed                                                                                                                   |
| FLAP lever                                                                                                                                    |
| Set the flap lever to agree with the flap position.                                                                                           |
| Parking brakeSet                                                                                                                              |
| Verify that the parking brake warning light is illuminated                                                                                    |
| <b>Note:</b> Do not assume that the parking brake can prevent airplane movement. Accumulator pressure can be insufficient.                    |
| Engine start leversCUTOFF                                                                                                                     |
| STABILIZER TRIM cutout switchesNORMAL                                                                                                         |
| VHF communications radios                                                                                                                     |
| VHF NAVIGATION radios Set for departure                                                                                                       |
| Audio selector panel                                                                                                                          |
| WARNING: Do not put objects between the seat and the aisle stand. Injury can occur when the seat is adjusted.                                 |
| Seat Adjust                                                                                                                                   |
| Use the handhold above the forward window for assistance when<br>pulling the seat forward. Do not use the glareshield as damage can<br>occur. |
| Adjust the seat for optimum eye reference.                                                                                                    |
| When ever the seat is adjusted, verify a positive horizontal (fore and aft) seat lock by pushing against the seat.                            |
| Rudder pedals Adjust                                                                                                                          |
| Adjust the rudder pedals to allow full rudder pedal and brake pedal movement.                                                                 |

#### CAUTION: Turn the rudder pedal adjust crank no faster than approximately one turn per second to avoid damage. Do not apply force to the pedals during adjustment.

Seat belt and shoulder harness ...... Adjust Call "PREFLIGHT CHECKLIST."

#### **Before Start Procedure**

Start the Before Start Procedure after papers are on board.

| Flight deck doorClosed and locked<br>Verify that the CAB DOOR UNLOCKED light (as<br>installed) is extinguished.                                                                                         | F/O    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Verify that the LOCK FAIL light (as installed) is extinguished                                                                                                                                          | ed.    |
| Do the Performance Data Computer System (as installed) Prefli<br>Supplementary Procedure.                                                                                                               |        |
| PDCS CDU flight mode selector (as installed) As needed                                                                                                                                                  | C, F/O |
| Takeoff dataComplete                                                                                                                                                                                    | C, F/O |
| Verify the takeoff data to include:<br>• EPR<br>• N1<br>• V1, VR, and V2<br>• flap setting<br>• zero fuel weight<br>• temperature<br>• altimeter setting<br>• gross weight<br>• stabilizer trim setting |        |
| Fuel quantity indicatorsCheck<br>Verify that the fuel on the dispatch papers and fuel quantity                                                                                                          | C, F/O |
| indicators agree.                                                                                                                                                                                       |        |
| Verify that the fuel is sufficient for flight.                                                                                                                                                          |        |
| <b>Note:</b> Do not push the QUANTITY TEST switch when the airplane is being refueled. This will cause incorrect indications at the external fueling panel.                                             |        |
| Total fuel and VREF indicatorSet                                                                                                                                                                        | С      |

| 757 Fight Crew Operations Manual                                                                                                                                                                                                                                                                                                                                     |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Zero fuel weight                                                                                                                                                                                                                                                                                                                                                     | Set                        |
| Flap selectorAs n                                                                                                                                                                                                                                                                                                                                                    | eeded                      |
| Verify VREF on the VREF pointer.                                                                                                                                                                                                                                                                                                                                     |                            |
| On airplanes without PDCS,<br>EPR reference selectors                                                                                                                                                                                                                                                                                                                | С                          |
| Verify that the EPR reference bugs and digital readouts are correct.                                                                                                                                                                                                                                                                                                 |                            |
| On airplanes with PDCS,<br>EPR reference selectorsIn                                                                                                                                                                                                                                                                                                                 | С                          |
| Verify that the PDCS reference bugs and digital readouts are correct.                                                                                                                                                                                                                                                                                                |                            |
| IAS bugs Set                                                                                                                                                                                                                                                                                                                                                         | C, F/O                     |
| Set the speed bugs at V1, VR, V2 $+$ 15, and flaps up maneuvering speed.                                                                                                                                                                                                                                                                                             |                            |
| Airspeed cursor controlsSet V2                                                                                                                                                                                                                                                                                                                                       | C, F/O                     |
| HSI HEADING selectors Set                                                                                                                                                                                                                                                                                                                                            | C, F/O                     |
| HSI course selectors Set                                                                                                                                                                                                                                                                                                                                             | C, F/O                     |
| ALTITUDE alert controller Set                                                                                                                                                                                                                                                                                                                                        | С                          |
| Taxi and Takeoff briefingsComplete                                                                                                                                                                                                                                                                                                                                   | C, F/O                     |
| The pilot who will do the takeoff does the taxi and takeoff briefings.                                                                                                                                                                                                                                                                                               |                            |
| As part of the takeoff briefing for the first flight of the day a<br>following a change of either flight crew member, cabin altit<br>warning indications and memory item procedures must be b<br>airplanes in which the CABIN ALTITUDE and TAKEOFF (<br>lights are not installed, or are installed but not activated. The<br>must contain the following information: | ude<br>riefed on<br>CONFIG |
| Whenever the intermittent warning horn sounds in flight airplane flight altitude above 10,000 feet MSL:                                                                                                                                                                                                                                                              | t at an                    |
| 1. Immediately, don oxygen masks and set regulators                                                                                                                                                                                                                                                                                                                  | to 100%.                   |
| 2. Establish crew communications.                                                                                                                                                                                                                                                                                                                                    |                            |
| 3. Do the CABIN ALTITUDE WARNING or Rapid Depressurization non-normal checklist.                                                                                                                                                                                                                                                                                     |                            |
|                                                                                                                                                                                                                                                                                                                                                                      |                            |

Both pilots must verify on the overhead Cabin Altitude Panel that the cabin altitude is stabilized at or below 10,000 feet before removing oxygen masks.

| Exterior doorsVerify closed                                                                                                                                                             | F/O |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Flight deck windowsClosed and locked C,                                                                                                                                                 | F/O |
| Start clearanceObtainC, TObtain a clearance to pressurize the hydraulic systems.Obtain a clearance to start the engines.                                                                | F/O |
| If pushback is needed:                                                                                                                                                                  |     |
| Verify that the nose gear steering lockout pin is installed, or, if th nose gear steering lockout pin is not used, depressurize hydraulic system A during the hydraulic panel set step. |     |
| Fuel panelSet                                                                                                                                                                           | F/O |
| If the center tank fuel quantity exceeds 1,000 pounds (453 kilograms):                                                                                                                  |     |
| LEFT and RIGHT CENTER FUEL PUMPS switches ON                                                                                                                                            |     |
| Verify that the LOW PRESSURE lights illuminate momentarily and then extinguish.                                                                                                         |     |
| If a LOW PRESSURE light stays illuminated turn off the affected CENTER FUEL PUMPS switch.                                                                                               |     |
| If the auxiliary tank (as installed) fuel quantity exceeds 1,000 pounds/453 kilograms:                                                                                                  |     |
| FWD and AFT AUXILIARY FUEL PUMPS switchesON                                                                                                                                             | 1   |
| Verify that the LOW PRESSURE lights illuminate momentari<br>and then extinguish.                                                                                                        | ily |
| If a LOW PRESSURE light stays illuminated turn off the affect AUXILIARY tank FUEL PUMPS switch.                                                                                         | ted |
| AFT and FORWARD FUEL PUMPS switchesON                                                                                                                                                   | 1   |
| Verify that the LOW PRESSURE lights are extinguished.                                                                                                                                   |     |
| Hydraulic panelSet                                                                                                                                                                      | F/O |

If pushback is needed and the nose gear steering lockout pin is not installed:

#### WARNING: Do not pressurize hydraulic system A. Unwanted tow bar movement can occur.

| System A HYDRAULIC PUMP switches                                                                       | .OFF     |
|--------------------------------------------------------------------------------------------------------|----------|
| Verify that the system A pump LOW PRESSURE lights a illuminated.                                       | are      |
| System B electric HYDRAULIC PUMP switches                                                              | ON       |
| Verify that the system B electric pump LOW PRESSURF are extinguished.                                  | E lights |
| Verify that the brake pressure is 2,800 psi minimum.                                                   |          |
| Verify that the system B pressure is 2,800 psi minimum.                                                |          |
| If pushback is not needed, or if pushback is needed and the n steering lockout pin is installed:       | ose gear |
| Electric HYDRAULIC PUMP switches                                                                       | ON       |
| Verify that the electric pump LOW PRESSURE lights are extinguished.                                    | e        |
| Verify that the brake pressure is 2,800 psi minimum.                                                   |          |
| Verify that the system B pressure is 2,800 psi minimum.                                                |          |
| ANTI COLLISION light switchON                                                                          | F/O      |
| GRAVEL PROTECT switch (as installed)As needed                                                          | F/O      |
| If in icing conditions, set the switch to ANTI-ICE/TEST.                                               |          |
| If not in icing conditions, set the switch to ON if the takeoff is f<br>gravel or contaminated runway. | rom a    |
| Trim Set                                                                                               | С        |
| Check each trim for freedom of movement.                                                               |          |
| Stabilizer trim – UNITS                                                                                |          |
| Set the trim for takeoff.                                                                              |          |
| Verify that the trim is in the green band.                                                             |          |
| Aileron trim $-0$ units                                                                                |          |
| Rudder trim – 0 units                                                                                  |          |
| Call "BEFORE START CHECKLIST."                                                                         | С        |

U

737 Flight Crew Operations Manual

| 757 Fight Crew Operations Manual                                                                                                 |          |
|----------------------------------------------------------------------------------------------------------------------------------|----------|
| Do the BEFORE START checklist.                                                                                                   | F/O      |
| Pushback or Towing Procedure                                                                                                     |          |
| The Engine Start procedure may be done during pushback or tow                                                                    | ving.    |
| Establish communications with ground handling personnel.                                                                         | С        |
| CAUTION: Do not hold or turn the nose wheel steering wh<br>during pushback or towing. This can damage th<br>gear or the tow bar. |          |
| CAUTION: Do not use airplane brakes to stop the airplane<br>pushback or towing. This can damage the nose<br>or the tow bar.      | 0        |
| Transponder As needed                                                                                                            | F/O      |
| Select an active transponder setting with Mode S, but not a TCAS mode.                                                           |          |
| Set or release the parking brake as directed by ground handling personnel.                                                       | C or F/O |
| When pushback or towing is complete:                                                                                             |          |
| Verify that the tow bar is disconnected                                                                                          | С        |
| Verify that the nose gear steering lockout pin is removed                                                                        | С        |
| System A HYDRAULIC PUMPS switches ON                                                                                             | F/O      |

#### **Engine Start Procedure**

Starter duty cycle:

- normal start: 30 seconds on, 60 seconds off (3cycles only, then 5 minutes cooling)
- slow start: 60 seconds on, 60 seconds off, (2 cycles only, then 5 minutes cooling)
- motoring (fuel off): 2 minutes on, 5 minutes cooling

Normal engine start considerations:

- do not move an engine start lever to idle early or a hot start can occur
- keep a hand on the engine start lever while monitoring RPM, EGT and fuel flow until stable

737 Flight Crew Operations Manual

• if fuel is shutoff accidentally (by closing the engine start lever) do not reopen the engine start lever in an attempt to restart the engine • failure of the ENGINE START switch to stay in GRD until the starter cutout RPM can cause a hot start. Do not re-engage the ENGINE START switch until the engine has stopped rotating. The starter drive shaft can break if the starter is engaged before the engine stops. Do the ABORTED ENGINE START checklist for one or more of the following abort start conditions: • there is no N1 rotation by 20% N2 • there is no oil pressure increase by 30 seconds • the fuel flow is greater than 1100 pph/500kgph at start • the EGT does not increase by 20 seconds after the engine start lever is moved to IDLE • the N1 or N2 does not increase or increases very slowly after the EGT increases • the EGT quickly nears or exceeds the start limit Air conditioning PACK switches ..... OFF F/O F/O Start pressure ..... PSI The minimum start pressure at sea level is 30 psi. Decrease the minimum start pressure 0.5 psi for each 1,000 feet above sea level. С Start sequence...... Announce Call "START ENGINE" С ENGINE START switch ...... GRD F/O Verify that the N2 RPM increases. C, F/OVerify that the oil pressure increases and call "OIL PRESSURE RISING." F/O When N1 rotation is seen and N2 is at 20%, or (if 20% N2 is not possible), at maximum motoring and a minimum of 15% N2: Engine start lever ...... IDLE С Monitor fuel flow and EGT indications. C. F/OAt 35-40% N2, verify that the ENGINE START switch moves to OFF. If not, move the ENGINE START switch to OFF. F/O Verify that the duct pressure increases when the ENGINE START switch moves to OFF. F/O

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

С

| Verify that the START VALVE OPEN light extinguishes when the ENGINE START switch moves to OFF.                        | F/O    |
|-----------------------------------------------------------------------------------------------------------------------|--------|
| Call "STARTER CUTOUT."                                                                                                | F/O    |
| Monitor N1, N2, EGT, fuel flow and oil pressure for normal indications while the engine accelerates to a stable idle. | C, F/O |
| If the time from the initial EGT increase to stable idle is more the seconds:                                         | nan 30 |
| Make a maintenance logbook entry.                                                                                     |        |
| After the flight is completed, maintenance action is needed.                                                          |        |
| After the engine is stable at idle, start the other engine.                                                           |        |
| Before Taxi Procedure                                                                                                 |        |
| Fuel HEAT switches As needed                                                                                          | F/O    |
| Before takeoff with tank fuel temperature $0^{\circ}$ C or below, set the fuel HEAT switches to ON for one cycle.     |        |
| Fuel heat must be OFF for takeoff.                                                                                    |        |
| GENERATOR 1 and 2 switches ON                                                                                         | F/O    |
| PITOT STATIC HEAT switches ON                                                                                         | F/O    |
| WING ANTI-ICE switch As needed                                                                                        | F/O    |
| ENGINE ANTI-ICE switches As needed                                                                                    | F/O    |
| Flight recorder REPEAT switch Push                                                                                    | F/O    |
| PACK switches ON                                                                                                      | F/O    |
| ISOLATION VALVE switch AUTO                                                                                           | F/O    |
| APU BLEED air switchOFF                                                                                               | F/O    |
| Flight/Ground switch FLT                                                                                              | F/O    |
| On gravel or contaminated runways, the No Engine Bleed Taked<br>Supplementary Procedure is recommended.               | off    |
| APU switchOFF                                                                                                         | F/O    |
| ENGINE START switches LOW IGN                                                                                         | F/O    |

Engine start levers ...... IDLE detent

-

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

| Verify that the ground equipment is clear.                                              | C, F/O    |
|-----------------------------------------------------------------------------------------|-----------|
| Call "FLAPS" as needed for takeoff.                                                     | С         |
| Flap lever Set takeoff flaps                                                            | F/O       |
| Verify that the LE FLAPS EXT green light is illuminated.                                |           |
| Flight controls Check                                                                   | С         |
| Make slow and deliberate inputs, one direction at a time.                               |           |
| Move the control wheel and the control column to full trave directions and verify:      | l in both |
| • freedom of movement                                                                   |           |
| • that the controls return to center                                                    |           |
| Hold the nose wheel steering wheel during the rudder check prevent nose wheel movement. | to        |
| Move the rudder pedals to full travel in both directions and                            | verify:   |
| • freedom of movement                                                                   |           |
| • that the rudder pedals return to center                                               |           |
| TransponderAs needed                                                                    | F/O       |
| Recall Check                                                                            | C, F/O    |
| Verify that all system annunciator panel lights illuminate and then extinguish.         |           |
| Update changes to the taxi briefing, as needed.                                         | C or PF   |
| Call "BEFORE TAXI CHECKLIST."                                                           | С         |
| Do the BEFORE TAXI checklist.                                                           | F/O       |
|                                                                                         |           |

#### **Before Takeoff Procedure**

Engine warm up recommendations (there is no need to delay the takeoff for these recommendations):

When the engines have been shut down more than 2 hours:

- run the engine for 5 minutes
- when taxi time is expected to be less than 5 minutes, start the engines as early as feasible
- use a thrust setting normally used for taxi operations.

| Pilot Flying | Pilot Monitoring                                                               |
|--------------|--------------------------------------------------------------------------------|
|              | Notify the cabin crew to prepare for takeoff. Verify that the cabin is secure. |

| The pilot who will do the takeoff updates changes to the takeoff briefing as needed. |                                  |  |
|--------------------------------------------------------------------------------------|----------------------------------|--|
| Set the weather radar display as needed.                                             |                                  |  |
| Call "BEFORE TAKEOFF<br>CHECKLIST."                                                  | Do the BEFORE TAKEOFF checklist. |  |

### **Takeoff Procedure**

| Pilot Flying                                                                                     | Pilot Monitoring                                                                            |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Before entering the departure runway, verify that the runway and runway entry point are correct. |                                                                                             |  |
|                                                                                                  | When entering the departure runway, use lights as needed.                                   |  |
|                                                                                                  | Set the transponder mode selector to TA/RA (as installed).                                  |  |
| Verify that the brakes are released.                                                             |                                                                                             |  |
| Align the airplane with the runway.                                                              |                                                                                             |  |
| Verify that the airplane heading agrees with the assigned runway heading.                        |                                                                                             |  |
|                                                                                                  | When cleared for takeoff, set the<br>INBOARD LANDING light switches<br>to ON.               |  |
| Advance the thrust levers to<br>approximately 1.4 EPR (levers in<br>vertical position).          |                                                                                             |  |
| Allow the engines to stabilize.                                                                  |                                                                                             |  |
| Advance thrust levers to takeoff EPR.                                                            |                                                                                             |  |
| Verify that the correct takeoff thrust is set.                                                   |                                                                                             |  |
|                                                                                                  | Monitor the engine instruments during<br>the takeoff. Call out any abnormal<br>indications. |  |
|                                                                                                  | Adjust takeoff thrust before 60 knots as needed.                                            |  |
|                                                                                                  | Call "THRUST SET."                                                                          |  |
| After takeoff thrust is set, the captain's hand must be on the thrust levers until V1.           |                                                                                             |  |

#### Normal Procedures -Amplified Procedures



| Monitor airspeed.                                                                                    | Monitor airspeed and call out any                                          |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Maintain light forward pressure on the control column.                                               | abnormal incitations.                                                      |
| Verify 80 KIAS and call "CHECK".                                                                     | Call "80 KNOTS."                                                           |
| Verify V1 speed.                                                                                     | Call "V1".                                                                 |
| At VR, rotate toward 15° pitch attitude.                                                             | At VR, call "ROTATE."                                                      |
|                                                                                                      | Monitor airspeed and vertical speed.                                       |
| Establish a positive rate of climb.                                                                  |                                                                            |
|                                                                                                      | Verify a positive rate of climb on the altimeter and call "POSITIVE RATE." |
| Verify a positive rate of climb on the altimeter and call "GEAR UP."                                 |                                                                            |
|                                                                                                      | Set the landing gear lever to UP.                                          |
| Maintain a minimum of $V2 + 15$ to 25 after the initial climb is established.                        |                                                                            |
| At thrust reduction height, reduce thrust<br>to approximately 90% N1 and call<br>"SET CLIMB THRUST." |                                                                            |
|                                                                                                      | Set climb EPR.                                                             |
| Verify that climb thrust is set.                                                                     |                                                                            |
| At acceleration height, call for flaps up maneuvering speed.                                         |                                                                            |
|                                                                                                      | Set the flaps up maneuvering speed.                                        |
| Verify acceleration.<br>Call "FLAPS" according to the flap<br>retraction schedule.                   |                                                                            |
|                                                                                                      | Set the FLAP lever as directed. Monitor flaps and slats retraction.        |

737 Flight Crew Operations Manual

| After flap retraction is complete and<br>above minimum altitude for autopilot<br>engagement:<br>• engage the autopilot. | <ul> <li>After flap retraction is complete:</li> <li>Set or verify engine bleeds and air conditioning packs are operating</li> <li>Set the engine start switches as needed</li> <li>Set the AUTO BRAKE select switch to OFF.</li> <li>Set the landing gear lever to OFF after landing gear retraction is complete</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Call "AFTER TAKEOFF<br>CHECKLIST."                                                                                      | Do the AFTER TAKEOFF checklist.                                                                                                                                                                                                                                                                                              |

#### CAUTION: Do not allow the shoulder harness straps to retract quickly. Buckles can pull or damage circuit breakers.

### **Takeoff Flap Retraction Speed Schedule**

| Takeoff Flaps                                   | At and Below<br>117,000 LB | Above 117,000 LB | Select Flaps |
|-------------------------------------------------|----------------------------|------------------|--------------|
| 25                                              | V2 + 15                    | V2 + 15          | 15           |
|                                                 | 150                        | 160              | 5            |
|                                                 | 170                        | 180              | 1            |
|                                                 | 190                        | 200              | UP           |
| 15 or 10                                        | V2 + 15                    | V2 + 15          | 5            |
|                                                 | 170                        | 180              | 1            |
|                                                 | 190                        | 200              | UP           |
| 5 or 2                                          | V2 + 15                    | V2 + 15          | 1            |
|                                                 | 190                        | 200              | UP           |
| 1                                               | 190                        | 200              | UP           |
| Limit bank angle to 15° until reaching V2 + 15. |                            |                  |              |

### **Climb and Cruise Procedure**

Complete the After Takeoff Checklist before starting the Climb and Cruise Procedure.

#### 737 Flight Crew Operations Manual

| Pilot Flying                                                                            | Pilot Monitoring                                                                                                                                                                           |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                         | At or above 10,000 feet MSL, set the LANDING light switches to OFF.                                                                                                                        |  |
|                                                                                         | Set the passenger signs as needed.                                                                                                                                                         |  |
| When climbing above transition altitude, set and crosscheck the altimeters to standard. |                                                                                                                                                                                            |  |
|                                                                                         | (Before Auto Shutoff and Master<br>Caution System Service Bulletin<br>changes):                                                                                                            |  |
|                                                                                         | During climb, on airplanes with<br>auxiliary fuel tanks, set both auxiliary<br>tank fuel pump switches to OFF when<br>both auxiliary tank fuel pump LOW<br>PRESSURE lights illuminate.     |  |
|                                                                                         | During climb, set both center tank fuel<br>pump switches to OFF when both<br>center tank fuel pump LOW<br>PRESSURE lights illuminate.                                                      |  |
|                                                                                         | (After Auto Shutoff and Master Caution<br>System Service Bulletin changes):                                                                                                                |  |
|                                                                                         | During climb, on airplanes with<br>auxiliary fuel tanks, set the affected<br>auxiliary tank fuel pump switch to OFF<br>when an auxiliary tank fuel pump LOW<br>PRESSURE light illuminates. |  |
|                                                                                         | Set both auxiliary tank fuel pump<br>switches to OFF when an auxiliary tank<br>fuel pump LOW PRESSURE light<br>illuminates if the auxiliary tank is<br>empty.                              |  |
|                                                                                         | During climb, set the affected center<br>tank fuel pump switch to OFF when a<br>center tank fuel pump LOW<br>PRESSURE light illuminates.                                                   |  |
|                                                                                         | Set both center tank fuel pump switches<br>to OFF when a center tank fuel pump<br>LOW PRESSURE light illuminates if<br>the center tank is empty.                                           |  |

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| (Before Auto Shutoff and Master<br>Caution System Service Bulletin<br>changes):                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When established in a level flight<br>attitude, on airplanes with auxiliary fuel<br>tanks, if the auxiliary tank contains<br>usable fuel and the auxiliary tank fuel<br>pump switches are OFF, set both<br>auxiliary tank fuel pump switches to<br>ON again.  |
| Set both auxiliary tank fuel pump<br>switches to OFF when both auxiliary<br>tank fuel pump LOW PRESSURE<br>lights illuminate.                                                                                                                                 |
| (After Auto Shutoff and Master Caution<br>System Service Bulletin changes):                                                                                                                                                                                   |
| When established in a level flight<br>attitude, on airplanes with auxiliary fuel<br>tanks, if the auxiliary tank contains<br>usable fuel and an auxiliary tank fuel<br>pump switch(es) is OFF, set the<br>auxiliary tank fuel pump switch(es) to<br>ON again. |
| Set the affected auxiliary tank fuel<br>pump switch to OFF when an auxiliary<br>tank fuel pump LOW PRESSURE light<br>illuminates.                                                                                                                             |
| Set both auxiliary tank fuel pump<br>switches to OFF when an auxiliary tank<br>fuel pump LOW PRESSURE light<br>illuminates if the auxiliary tank is<br>empty.                                                                                                 |

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| (Before Auto Shutoff and Master<br>Caution System Service Bulletin<br>changes):                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When established in a level flight<br>attitude, if the center tank contains<br>usable fuel and the center tank fuel<br>pump switches are OFF, set both center<br>tank fuel pump switches to ON again. |
| Set both center tank fuel pump switches<br>to OFF when both center tank fuel<br>pump LOW PRESSURE lights<br>illuminate.                                                                               |
| (After Auto Shutoff and Master Caution<br>System Service Bulletin changes):                                                                                                                           |
| When established in a level flight<br>attitude, if the center tank contains<br>usable fuel and a center tank fuel pump<br>switch(es) is OFF, set the center tank<br>fuel pump switch(es) to ON again. |
| Set the affected center tank fuel pump<br>switch to OFF when a center tank fuel<br>pump LOW PRESSURE light<br>illuminates.                                                                            |
| Set both center tank fuel pump switches<br>to OFF when a center tank fuel pump<br>LOW PRESSURE light illuminates if<br>the center tank is empty.                                                      |
| During an ETOPS flight, additional<br>steps must be done. See the ETOPS<br>supplementary procedure in SP.1.                                                                                           |
| Before the top of descent, modify the route as needed for the arrival and approach.                                                                                                                   |

### **Descent Procedure**

Start the Descent Procedure before the airplane descends below the cruise altitude for arrival at destination.

Complete the Descent Procedure by 10,000 feet MSL.

737 Flight Crew Operations Manual

| Pilot Flying | Pilot Monitoring                                                                                                                                                                                                                     |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | (Before Auto Shutoff and Master<br>Caution System Service Bulletin<br>changes):                                                                                                                                                      |
|              | Set both center tank fuel pump switches<br>to OFF when both center tank fuel<br>pump LOW PRESSURE lights<br>illuminate.                                                                                                              |
|              | (After Auto Shutoff and Master Caution<br>System Service Bulletin changes):                                                                                                                                                          |
|              | Set the affected center tank fuel pump<br>switch to OFF when a center tank fuel<br>pump LOW PRESSURE light<br>illuminates.                                                                                                           |
|              | Set both center tank fuel pump switches<br>to OFF when a center tank fuel pump<br>LOW PRESSURE light illuminates if<br>the center tank is empty.                                                                                     |
|              | (Before Auto Shutoff and Master<br>Caution System Service Bulletin<br>changes):                                                                                                                                                      |
|              | If established in a level flight attitude<br>for an extended period of time with<br>usable fuel in the center tank, and the<br>center tank fuel pump switches OFF,<br>both center tank fuel pump switches<br>may be set to ON again. |
|              | Set both center tank fuel pump switches<br>to OFF when both center tank fuel<br>pump LOW PRESSURE lights<br>illuminate.                                                                                                              |

I

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

|                                                                  | (After Auto Shutoff and Master Caution<br>System Service Bulletin changes):                                                                                                                                                       |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | If established in a level flight attitude<br>for an extended period of time with<br>usable fuel in the center tank, and a<br>center tank fuel pump switch(es) is<br>OFF, set the center tank fuel pump<br>switch(es) to ON again. |
|                                                                  | Set the affected center tank fuel pump<br>switch to OFF when a center tank fuel<br>pump LOW PRESSURE light<br>illuminates.                                                                                                        |
|                                                                  | Set both center tank fuel pump switches<br>to OFF when a center tank fuel pump<br>LOW PRESSURE light illuminates if<br>the center tank is empty.                                                                                  |
|                                                                  | Verify that pressurization is set to landing altitude.                                                                                                                                                                            |
|                                                                  | Set the gravel protect switch (as installed) as needed.                                                                                                                                                                           |
| Review the system annunciator lights.                            | Recall and review the system annunciator lights.                                                                                                                                                                                  |
| Check landing performance                                        |                                                                                                                                                                                                                                   |
| Set the speed bugs at VREF, VREF + 1.                            | 5, and flaps up maneuvering speed.                                                                                                                                                                                                |
| Set radio altimeter minimums as needed for the approach.         |                                                                                                                                                                                                                                   |
|                                                                  | Check and set EPR bugs for the GO-AROUND, corrected for the bleed configuration.                                                                                                                                                  |
| Set or verify the navigation radios and course for the approach. |                                                                                                                                                                                                                                   |
|                                                                  | Set the AUTO BRAKE select switch to the needed brake setting.                                                                                                                                                                     |
| Do the approach briefing.                                        |                                                                                                                                                                                                                                   |
| Call "DESCENT CHECKLIST."                                        | Do the DESCENT checklist.                                                                                                                                                                                                         |
|                                                                  |                                                                                                                                                                                                                                   |

### **Approach Procedure**

The Approach Procedure is normally started at transition level.

Complete the Approach Procedure before:

- the initial approach fix, or
- the start of radar vectors to the final approach course, or
- the start of a visual approach

If a flaps 15 landing is needed because of performance:

### 

F/O

| Pilot Flying                                                               | Pilot Monitoring                                                                 |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
|                                                                            | Set the passenger signs as needed.                                               |  |
|                                                                            | At or above 10,000 feet MSL, set the<br>INBOARD LANDING light switches<br>to ON. |  |
| When descending below the transition level, set and crosscheck altimeters. |                                                                                  |  |
| Update changes to the arrival and approach, as needed.                     |                                                                                  |  |
| Update the approach briefing as needed.                                    |                                                                                  |  |
| Call "APPROACH CHECKLIST."                                                 | Do the APPROACH checklist.                                                       |  |

### **Flap Extension Schedule**

| Current Flap<br>Position | At Speed (knots) | Select Flaps | Command Speed for<br>Selected Flaps    |
|--------------------------|------------------|--------------|----------------------------------------|
| Up                       | 210              | 1            | 190                                    |
| 1                        | 190              | 5            | 170                                    |
| 5                        | 170              | 10*          | 160                                    |
| 10*                      | 160              | 15           | 150/VREF                               |
| 15                       | 150/VREF         | 25           | 140                                    |
| 25                       | 140              | 30 or 40     | (VREF30 or VREF40) +<br>wind additives |

\* As needed.

### Landing Procedure

| Pilot Flying                                                                                                                                                          | Pilot Monitoring                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
|                                                                                                                                                                       | Notify the cabin crew to prepare for landing. Verify that the cabin is secure. |  |
| Initially                                                                                                                                                             |                                                                                |  |
| If on radar vectors:                                                                                                                                                  |                                                                                |  |
| • HDG SEL                                                                                                                                                             |                                                                                |  |
| • Pitch mode (as needed)                                                                                                                                              |                                                                                |  |
| If enroute to a fix:                                                                                                                                                  |                                                                                |  |
| <ul><li> Roll mode (as needed)</li><li> Pitch mode (as needed)</li></ul>                                                                                              |                                                                                |  |
| Call "FLAPS" according to the flap extension schedule.                                                                                                                | Set the flap lever as directed. Monitor flaps and slats extension.             |  |
| <ul> <li>When on localizer intercept heading:</li> <li>verify that the ILS is tuned and identified</li> <li>verify that the LOC and G/S pointers are shown</li> </ul> |                                                                                |  |
| Select AUTO APP.                                                                                                                                                      |                                                                                |  |
|                                                                                                                                                                       |                                                                                |  |
| Use HDG SEL to intercept the final approach course as needed.                                                                                                         |                                                                                |  |
| Verify that the localizer is captured                                                                                                                                 |                                                                                |  |
| Verify the final approach course heading                                                                                                                              | 5                                                                              |  |
|                                                                                                                                                                       | Call "GLIDESLOPE ALIVE."                                                       |  |
| At glideslope alive, call:<br>• "GEAR DOWN"<br>• "FLAPS 15"                                                                                                           |                                                                                |  |
|                                                                                                                                                                       | Set the landing gear lever to DN.                                              |  |
|                                                                                                                                                                       | Verify that the green landing gear indicator lights are illuminated.           |  |
|                                                                                                                                                                       | Set the flap lever to 15.                                                      |  |
|                                                                                                                                                                       | Set the engine start switches to LOW IGN.                                      |  |

#### 737 Flight Crew Operations Manual

| Set the speedbrake lever to ARM.<br>Verify that the SPEED BRAKE<br>ARMED light is illuminated. |                                                                    |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| At glideslope capture, call<br>"FLAPS" as needed for landing.                                  | Set the flap lever as directed.                                    |  |
|                                                                                                | Set the missed approach altitude on the ALTITUDE ALERT controller. |  |
| Call "LANDING CHECKLIST."                                                                      | Do the LANDING checklist.                                          |  |
| At the final approach fix (LOM, MKR, DME), verify the crossing altitude.                       |                                                                    |  |
| Monitor the approach.                                                                          |                                                                    |  |
| Disengage the autopilot before landing.                                                        |                                                                    |  |

### **Go-Around and Missed Approach Procedure**

| Pilot Flying                                                                                                                                                                                                                    | Pilot Monitoring                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <ul> <li>At the same time:</li> <li>push either go-around switch</li> <li>disengage autopilot</li> <li>advance the thrust levers to<br/>go-around EPR</li> <li>Rotate to go-around attitude</li> <li>call "FLAPS 15"</li> </ul> | Monitor EPR indication.<br>Set the FLAP lever to 15 and monitor<br>flap retraction.<br>Adjust thrust as needed.    |
| Verify:<br>• the rotation to go–around attitude<br>• that the thrust increases                                                                                                                                                  |                                                                                                                    |
|                                                                                                                                                                                                                                 | Verify that the thrust is sufficient for the go-around or adjust as needed.                                        |
| Verify a positive rate of climb on the altimeter and call "GEAR UP."                                                                                                                                                            | Verify a positive rate of climb on the<br>altimeter and call "POSITIVE RATE."<br>Set the landing gear lever to UP. |
|                                                                                                                                                                                                                                 | Verify that the missed approach altitude is set.                                                                   |
| Above 400 feet, select appropriate roll<br>mode and verify proper mode<br>annunciation.                                                                                                                                         | Observe mode annunciation.                                                                                         |

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| Call "TUNE RADIOS FOR MISSED<br>APPROACH."            | Tune the navigation radios as directed.                                      |  |
|-------------------------------------------------------|------------------------------------------------------------------------------|--|
|                                                       | Verify that the missed approach altitude is set.                             |  |
| Verify that the missed approach route is              | tracked.                                                                     |  |
| Verify that climb thrust is set.                      |                                                                              |  |
| Verify that the missed approach altitude is captured. |                                                                              |  |
|                                                       | Set the landing gear lever to OFF after landing gear retraction is complete. |  |
|                                                       | Set the engine start switches as needed.                                     |  |
| Call "AFTER TAKEOFF<br>CHECKLIST."                    | Do the AFTER TAKEOFF checklist.                                              |  |

### Landing Roll Procedure

| Pilot Flying                                                                                                                                      | Pilot Monitoring                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Verify that the thrust levers are closed.                                                                                                         | Verify that the SPEED BRAKE lever is |  |
| Verify that the SPEED BRAKE lever is                                                                                                              | UP.                                  |  |
| UP.                                                                                                                                               | Call "SPEED BRAKES UP."              |  |
| Without delay, fly the nose wheel                                                                                                                 | If the SPEED BRAKE lever is not UP,  |  |
| smoothly onto the runway.                                                                                                                         | call "SPEED BRAKES NOT UP."          |  |
| Monitor the rollout progress.                                                                                                                     |                                      |  |
| Verify correct autobrake operation.                                                                                                               |                                      |  |
| WARNING: After the reverse thrust levers are moved, a full stop landing must be made. If an engine stays in reverse, safe flight is not possible. |                                      |  |
| CAUTION: Start to lower the nose before selecting reverse thrust to prevent the reverser doors from touching the runway.                          |                                      |  |

737 Flight Crew Operations Manual

| Without delay, move the reverse thrust<br>levers to the interlocks and hold light<br>pressure until the interlocks release.<br>Then apply reverse thrust as needed.<br>Apply reverse thrust as needed. | Verify the forward thrust levers are<br>closed.<br>When both REVERSER UNLOCKED<br>lights are illuminated, call<br>"REVERSERS NORMAL."<br>If a light(s) is not illuminated, call "NO<br>REVERSER ENGINE NUMBER 1",<br>or "NO REVERSER ENGINE<br>NUMBER 2", or "NO REVERSERS." |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| By 60 KIAS, start movement of the reverse thrust levers to be at the reverse idle detent before taxi speed.                                                                                            | Call "60 KNOTS."                                                                                                                                                                                                                                                             |
| After the engines are at reverse idle,<br>move the reverse thrust levers full<br>down.                                                                                                                 |                                                                                                                                                                                                                                                                              |
| Before taxi speed, disarm the autobrake.<br>Use manual braking as needed.                                                                                                                              |                                                                                                                                                                                                                                                                              |

### **After Landing Procedure**

Start the After Landing Procedure when clear of the active runway.

Engine cooldown recommendations:

- Run the engines for at least 5 minutes
- Use a thrust setting no higher than that is normally used for all engine taxi operations.

| Pilot Flying                                                      | Pilot Monitoring                                                                                 |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| The captain moves or verifies that the SPEED BRAKE lever is DOWN. |                                                                                                  |
|                                                                   | Start the APU, as needed.                                                                        |
|                                                                   | Set the PITOT STATIC HEAT switches<br>to AUTO (airplanes with automatic<br>pitot static heat).   |
|                                                                   | Set the PITOT STATIC HEAT switches<br>to OFF (airplanes without automatic<br>pitot static heat). |
|                                                                   | Set the Flight/Ground switch to GRD.                                                             |
|                                                                   | Set the exterior lights as needed.                                                               |



|                               | Set the ENGINE START switches to OFF.    |
|-------------------------------|------------------------------------------|
|                               | Set the AUTO BRAKE select switch to OFF. |
|                               | Set the flap lever to UP.                |
| Set the weather radar to OFF. |                                          |
|                               | Set the transponder as needed.           |

### **Shutdown Procedure**

Start the Shutdown Procedure after taxi is complete.

| Parking brake                                                                                                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Verify that the parking brake warning light is illuminated.                                                                                                                                                                    |  |  |
| Electrical power Set F/O                                                                                                                                                                                                       |  |  |
| If APU power is needed:                                                                                                                                                                                                        |  |  |
| Verify that the APU GENERATOR OFF BUS light is illuminated.                                                                                                                                                                    |  |  |
| APU GENERATOR bus switchesON                                                                                                                                                                                                   |  |  |
| Verify that the BUS OFF lights are extinguished.                                                                                                                                                                               |  |  |
| If external power is needed:                                                                                                                                                                                                   |  |  |
| Verify that the GND POWER AVAILABLE light is illuminated.                                                                                                                                                                      |  |  |
| GROUND POWER switchON                                                                                                                                                                                                          |  |  |
| Verify that the BUS OFF lights are extinguished.                                                                                                                                                                               |  |  |
| Before engine shutdown, consider engine cooldown recommendations.                                                                                                                                                              |  |  |
| Engine start levers CUTOFF C                                                                                                                                                                                                   |  |  |
| If towing is needed:                                                                                                                                                                                                           |  |  |
| Establish communications with ground handling personnel C                                                                                                                                                                      |  |  |
| WARNING: If the nose gear steering lockout pin is not<br>installed and hydraulic system A is pressurized,<br>any change to electrical or hydraulic power with<br>the tow bar connected can cause unwanted tow<br>bar movement. |  |  |

Verify that the nose gear steering lockout pin is installed, or, if the nose gear steering lockout pin is not used:

System A HYDRAULIC PUMP switches .....OFF

Verify that the system A pump LOW PRESSURE lights are illuminated.

CAUTION: Do not hold or turn the nose wheel steering wheel during pushback or towing. This can damage the nose gear or the tow bar.

CAUTION: Do not use airplane brakes to stop the airplane during pushback or towing. This can damage the nose gear or the tow bar.

Set or release parking brake as directed by ground handling personnel C or F/O

When towing is complete:

| System A HYDRAULIC PUMP switches   | ON  |
|------------------------------------|-----|
| FASTEN BELTS switchOFF             | F/O |
| ANTI COLLISION light switchOFF     | F/O |
| FUEL PUMP switchesOFF              | F/O |
| GALLEY power switch As needed      | F/O |
| WING ANTI-ICE switchOFF            | F/O |
| ENGINE ANTI-ICE switchesOFF        | F/O |
| Hydraulic panelSet                 | F/O |
| ENGINE HYDRAULIC PUMPS switches    | ON  |
| ELECTRIC HYDRAULIC PUMPS switches  | OFF |
| GASPER FAN switch As needed        | F/O |
| Air conditioning PACK switchesSet  | F/O |
| One air conditioning PACK switch   | ON  |
| Other air conditioning PACK switch | OFF |
| ISOLATION VALVE switchAUTO         | F/O |

737 Flight Crew Operations Manual

| 707 Inght Citw Operations Manual                                                                                                                                                                      |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Engine BLEED air switchesON                                                                                                                                                                           | F/O      |
| APU BLEED air switchON                                                                                                                                                                                | F/O      |
| Exterior lights switchesAs needed                                                                                                                                                                     | F/O      |
| GRAVEL PROTECT switch (as installed) OFF                                                                                                                                                              | F/O      |
| Flight director mode selectorOFF                                                                                                                                                                      | C, F/O   |
| Transponder mode selector STBY                                                                                                                                                                        | F/O      |
| After the wheel chocks are in place:                                                                                                                                                                  |          |
| Parking brakeRelease                                                                                                                                                                                  | C or F/O |
| APU switchAs needed                                                                                                                                                                                   | F/O      |
| Run the APU for one full minute with no bleed air load before shutdown.                                                                                                                               |          |
| <b>Note:</b> If extended APU operation is needed on the ground airplane buses are powered by AC electrical power, an AC powered fuel pump ON. This will extend the life of the APU fuel control unit. | position |
| <b>Note:</b> If fuel is loaded in the center tank, position the left tank fuel pump switch ON to prevent a fuel imbalar before takeoff.                                                               |          |
| CAUTION: Center tank fuel pump switches should be<br>positioned ON only if the fuel quantity in t<br>center tank exceeds 1000 lbs.                                                                    | the      |
| CAUTION: Do not operate the center tank fuel pumps flight deck unattended.                                                                                                                            | with the |
| Flight deck doorUnlock                                                                                                                                                                                | F/O      |
| Verify that the CAB DOOR UNLOCKED light (as installed) is illuminated.                                                                                                                                |          |
| Oxygen regulators Set                                                                                                                                                                                 | C, F/O   |
| OXYGEN DILUTER lever                                                                                                                                                                                  | 100%     |
| SUPPLY lever                                                                                                                                                                                          | OFF      |
| Call "SHUTDOWN CHECKLIST."                                                                                                                                                                            | С        |
| Do the SHUTDOWN checklist.                                                                                                                                                                            | F/O      |

737 Flight Crew Operations Manual

### **Secure Procedure**

| EMERGENCY EXIT LIGHTS switchOFF   | F/O |
|-----------------------------------|-----|
| WINDOW HEAT switchesOFF           | F/O |
| Air conditioning PACK switchesOFF | F/O |
| Call "SECURE CHECKLIST."          | С   |
| Do the SECURE checklist.          | F/O |



Intentionally Blank

737 Flight Crew Operations Manual

| Supplementary Procedures                                                                  | Chapter SP          |
|-------------------------------------------------------------------------------------------|---------------------|
| Table of Contents                                                                         | Section TOC         |
| Introduction                                                                              | SP.05               |
| General                                                                                   | SP.05.1             |
| Airplane General, Emer. Equip., Door, Windows                                             | SP.1                |
| Interior Inspection                                                                       | SP.1.1              |
| Flight Deck Door Access System Test                                                       | SP.1.1              |
| Main Cargo Door Operation                                                                 |                     |
| Normal Operation                                                                          |                     |
| Manual Operation                                                                          |                     |
| Forward Airstair Operation                                                                |                     |
| Exterior Control                                                                          |                     |
| Water System Draining                                                                     |                     |
| Oxygen Mask Microphone Test.                                                              |                     |
| ETOPS                                                                                     | SP.1.10             |
| APU Operation                                                                             |                     |
| Fuel Crossfeed Valve Check.                                                               | SP.1.10             |
| Air Systems                                                                               | SP.2                |
| Wing–Body Overheat Test                                                                   | SP.2.1              |
| External Air Cart Use                                                                     | SP.2.1              |
| Ground Conditioned Air Use                                                                | SP.2.2              |
| Using the APU for Heating (on the ground/engines sh                                       | ut down) SP.2.2     |
| Auto Trip and Standby Check                                                               | SP.2.2              |
| Auto Trip and Manual Check                                                                | SP.2.3              |
| Standby Mode Operation                                                                    | SP.2.4              |
| Manual Mode Operation                                                                     | SP.2.5              |
| Pressurization Control Operation – Landing at Alterna                                     | ate Airport. SP.2.6 |
| Automatic Pressurization Control – Landing Airport I<br>6000 Feet but 8300 Feet and Below |                     |
| Unpressurized Takeoff and Landing                                                         | SP.2.7              |
| No Engine Bleed Takeoff and Landing                                                       | SP.2.8              |

Supplementary Procedures - **DO NOT USE FOR FLIGHT** Table of Contents

| 737 Flight Crew | <b>Operations Manual</b> |
|-----------------|--------------------------|
|-----------------|--------------------------|

| High Moisture Producing Cargo    SP.2                 | .9  |
|-------------------------------------------------------|-----|
| Anti–Ice, Rain                                        | į   |
| Anti–Ice Operation                                    | .1  |
| Rain Repellent UseSP.3                                |     |
| Window Heat System Tests                              |     |
| Overheat Test                                         |     |
| Power Test                                            | .2  |
| Automatic Flight                                      | ,   |
| Autopilot PreflightSP.4                               | .1  |
| Engaging:SP.4                                         | .1  |
| Manual Mode Test:                                     |     |
| VOR/LOC Mode TestSP.4                                 |     |
| Auto Approach Mode TestSP.4                           |     |
| Manual G/S Mode Test                                  |     |
| Disengage Test                                        |     |
| Stabilizer Out of Trim Light Test                     |     |
| Flight Control Switches Test                          |     |
| Autopilot OperationSP.4                               |     |
| Non-ILS Approach (VOR/LOC/LOC-BC/NDB/ASR/LDA/SDF)SP.4 | .9  |
| Communications SP.5                                   | j   |
| Cockpit Voice Recorder TestSP.5                       | .1  |
| Electrical                                            |     |
| Electrical Power Up                                   |     |
|                                                       |     |
| Electrical Power Down                                 |     |
| Standby Power TestSP.6                                | .5  |
| Engines, APU SP.7                                     | ,   |
| Battery Start                                         | '.1 |
| Engine Crossbleed StartSP.7                           | .4  |
| Manual Engine StartSP.7                               | .5  |
| Starting at High Airport Elevation                    | .6  |
| Performance Data Computer SystemSP.7                  | .7  |
| PreflightSP.7                                         | .9  |

737 Flight Crew Operations Manual

| Flight Modes:                                      | . SP.7.12 |
|----------------------------------------------------|-----------|
| Performance functions:                             |           |
| Error and alert message displays:                  |           |
| Malfunctions:                                      | . SP.7.27 |
| Flight Controls                                    | SP.9      |
| Mach Trim Test                                     | SP.9.1    |
| Stabilizer Trim Operation with a Forward or Aft CG | SP.9.1    |
| Flight Instruments                                 | .SP.10    |
| Altitude Alert Test                                | . SP.10.1 |
| Altimeter Difference                               | . SP.10.1 |
| QFE Operation                                      | . SP.10.2 |
| Flight Management, Navigation                      | SP 11     |
| Navigation/General                                 |           |
| Flight Director Tests                              |           |
| HSI and VHF NAV Tests                              |           |
| Instrument Comparator Test.                        |           |
| Low Range Radio Altimeter Test.                    |           |
| DME Test                                           |           |
| Transponder Test                                   |           |
| ADF Radio and RMI Test                             |           |
| Instrument Transfer Switching Tests                | . SP.11.4 |
| Compass Switching                                  |           |
| Weather Radar Test - Monochromatic Radar           |           |
| Flight Director Operation                          | . SP.11.6 |
| Fuel                                               | .SP.12    |
| Auxiliary Tank Refueling                           | . SP.12.1 |
| Refueling With Battery Only                        |           |
| Fuel Balancing                                     | . SP.12.2 |
| Fuel Balancing before Engine Start                 | . SP.12.3 |
| Refueling                                          |           |
| Fuel Load Distribution                             | . SP.12.3 |
| Fuel Pressure                                      |           |
| Normal Refueling                                   |           |
| Auxiliary Tank                                     | . SP.12.3 |

#### Supplementary Procedures - **DO NOT USE FOR FLIGHT** Table of Contents

737 Flight Crew Operations Manual

| Refueling With Battery Only                              |          |
|----------------------------------------------------------|----------|
| Refueling With No AC or DC Power Source Available        | SP.12.4  |
| Ground Transfer of Fuel                                  |          |
| Fuel Crossfeed Valve Check                               | SP.12.6  |
| Fuel Quantity Indicators Test                            | SP.12.6  |
| Warning Systems                                          | SP.15    |
| Ground Proximity Warning System (GPWS) Test              | SP.15.1  |
| Adverse Weather                                          | SP.16    |
| Introduction                                             |          |
| Takeoff - Wet or Contaminated Runway Conditions          | SP.16.1  |
| Cold Weather Operations                                  | SP.16.1  |
| Exterior Inspection                                      | SP.16.2  |
| Preflight Procedure - First Officer                      | SP.16.3  |
| Engine Start Procedure                                   |          |
| Engine Anti-ice Operation - On the Ground                |          |
| Wing Anti-ice Operation - On the Ground (as installed) . |          |
| Before Taxi Procedure                                    |          |
| Taxi–Out                                                 |          |
| De-icing / Anti-icing                                    |          |
| Before Takeoff Procedure                                 |          |
| Takeoff Procedure                                        |          |
| Engine Anti-ice Operation - In Flight                    |          |
| Fan Ice Removal                                          |          |
| Wing Anti-ice Operation - In Flight                      |          |
| Cold Temperature Altitude Corrections                    |          |
| Approach and Landing                                     |          |
| After Landing Procedure.                                 |          |
| Shutdown Procedure                                       |          |
| Secure Procedure                                         |          |
| Ice Crystal Icing (ICI)                                  |          |
| Recognizing Ice Crystal Icing                            |          |
| Avoiding Ice Crystal Icing                               |          |
| Ice Crystal Icing Suspected                              | SP.16.19 |
| Hot Weather Operation.                                   | SP.16.20 |
| Operation in a Sandy or Dusty Environment                | SP.16.22 |
| Exterior Inspection                                      | SP.16.22 |
|                                                          | C 1 - 1  |

#### Supplementary Procedures -Table of Contents

### **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

\_

| Preflight Procedure - First Officer           | 3 |
|-----------------------------------------------|---|
| Engine Start Procedure                        | 1 |
| Before Taxi Procedure                         | 1 |
| Taxi–OutSP.16.24                              | 1 |
| Takeoff                                       | 5 |
| Approach                                      | 5 |
| Landing                                       | 5 |
| After Landing Procedure                       | 5 |
| Taxi-In                                       | 5 |
| Secure Procedure                              | 5 |
| Moderate to Heavy Rain, Hail or SleetSP.16.27 | 7 |
| Severe Turbulence                             | 3 |
| Structural                                    | 3 |
| Seat Belts                                    | 3 |
| Power PlantSP.16.28                           | 3 |
| Yaw Damper                                    | 3 |
| Climb and Cruise                              | 3 |
| Auto Flight in Severe Turbulence              | ) |
| Manual Flight in Severe Turbulence            | ) |
| Descent                                       | ) |
| Turbulent Air PenetrationSP.16.29             | ) |
| Windshear                                     | ) |
| Avoidance                                     | ) |
| Precaution                                    | ) |

Intentionally Blank

737 Flight Crew Operations Manual

### Supplementary Procedures Introduction

Chapter SP Section 05

### General

This section contains procedures (adverse weather operation, engine crossbleed start, and so on) that are accomplished as required rather than routinely performed on each flight.

Supplementary procedures may be required because of adverse weather, unscheduled maintenance or as a result of a procedure referenced in a Non–Normal Checklist. Additionally, some may be performed if the flight crew must accomplish preflight actions normally performed by maintenance personnel.

At the discretion of the captain, procedures may be performed by memory, by reviewing the procedure prior to accomplishment, or by reference to the procedure during its accomplishment.

Supplementary procedures are provided by section. Section titles correspond to the respective chapter title for the system being addressed except for the adverse weather section. Intentionally Blank

737 Flight Crew Operations Manual

| Supplementary Procedures                     | Chapter SP   |
|----------------------------------------------|--------------|
| Airplane General, Emer. Equip., Door, Window | vs Section 1 |

### **Interior Inspection**

| Emergency exit lightsCh                                               | neck |
|-----------------------------------------------------------------------|------|
| Passenger signs Ch                                                    | heck |
| Service and entry doors Ch                                            | neck |
| Escape slides Check pres                                              | sure |
| Emergency exits                                                       | neck |
| Wing upper surfaces                                                   | heck |
| Lavatory fire extinguishers Ch                                        | heck |
| Emergency equipmentCh                                                 | neck |
| Check availability and condition of emergency equipment, as required. |      |

### Flight Deck Door Access System Test

| Flight deck access system switchNOR                                        | RΜ  |
|----------------------------------------------------------------------------|-----|
| Flight deck doorOp                                                         | oen |
| Flight deck door lock selectorAU                                           | ГО  |
| Emergency access codeEn                                                    | ter |
| ENT keyPu<br>Verify alert sounds.<br>Verify AUTO UNLK light illuminates.   | ısh |
| Flight deck door lock selector DEN<br>Verify AUTO UNLK light extinguishes. | ٧Y  |
| Flight deck door lock selectorUNL                                          | ٢D  |
| Flight deck access system switchO<br>Verify LOCK FAIL light illuminates.   | FF  |

| Flight deck access system switch     | NORM   |
|--------------------------------------|--------|
| Guard                                | . Down |
| Verify LOCK FAIL light extinguishes. |        |

### Main Cargo Door Operation

### **Normal Operation**

Normal operation requires electrical power, hydraulic pressure from system B and parking brake set.

Do not operate with winds in excess of 40 knots.

In the all cargo configuration the passenger oxygen supply to all outlets aft of the forward attendant panel and forward lavatory can be secured by closing the PSU shutoff valve located at the aft end of the forward lowered ceiling. Whenever passengers are carried this valve must be open.

Open to canopy position:

| External lock handle                                                                             | UNLOCK     |
|--------------------------------------------------------------------------------------------------|------------|
| This illuminates the amber MAIN CARGO door ligh<br>DOORS system annunciator light, the amber MAS | ,          |
| CAUTION light and the amber caution light on the control panel.                                  | main cargo |

Check that the main cargo door is clear.

Switch No. 1 ......Up to CANOPY and hold Cargo door unlatches and raises to the canopy position.

### CAUTION: With the main cargo door in an intermediate position and the B pumps off, pressing the No. 1 switch to close causes the door to free-fall slowly.

| 157 Fight Crew Operations Manual                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Open to full open position:                                                                                                                                                                                                            |
| Switch No. 2 FULL OPEN and hold<br>The door automatically stops in the full open position and is<br>hydraulically locked.                                                                                                              |
| Switch No. 2Release to OFF                                                                                                                                                                                                             |
| <b>Note:</b> If the door is stopped in an intermediate position and<br>hydraulic pressure is lost, pressing the No. 2 switch to<br>DOWN TO CANOPY causes the door to free-fall slowly<br>to the canopy position and mechanically lock. |
| Lower to canopy position:                                                                                                                                                                                                              |
| Check that the main cargo door is clear.                                                                                                                                                                                               |
| Switch No. 2DOWN TO CANOPY and hold                                                                                                                                                                                                    |
| Switch No. 1CLOSE and hold<br>Hydraulic pressure must be available to release the lift actuator<br>internal cam locks and to close the door and engage the latch<br>hooks.                                                             |
| External lock handle LOCKED                                                                                                                                                                                                            |
| Cargo door latch indicators LOCK & check                                                                                                                                                                                               |
| Check a white horizontal line is visible in all eight (8) windows on the exterior side of the door.                                                                                                                                    |
| Check MAIN CARGO door light extinguished and DOORS system annunciator light extinguished on the flight deck.                                                                                                                           |
| Manual Operation                                                                                                                                                                                                                       |
| Manual operation of the main cargo door requires that all electrical power                                                                                                                                                             |

Manual operation of the main cargo door requires that all electrical power be removed from the system (main cargo door circuit breaker pulled.) It is assumed hydraulic system B is inoperable.

#### CAUTION: Control valve motor burnout may occur if control valve is positioned when electrical power is on the system. Ensure the main cargo door circuit breakers is open and suitably tagged before manual operation.

Do not operate in winds in excess of 40 knots.

Open to canopy position:

Check for the following: Cargo door control circuit breaker ......Pulled External lock handle ......UNLOCKED Parking brake ......ON If no hydraulic pressure is available, chock airplane. Motor operated control valve (left This moves the valve to the "door open" position, allowing hydraulic fluid to be pumped to the "up" side of the door actuator Hydraulic hand pump (left wheel well).....Engage handle and operate pump Pump until the main cargo door is slightly above the canopy position (approximately 45 strokes.) Motor operated control valve ...... Manually move to POS 2 This moves the valve to the "door closed" position, removing the hydraulic uplock pressure. The cargo door free-falls to the canopy position and mechanically locks. Open to full open position (if required:) Motor operated control valve ...... Manually move to POS 1 Hydraulic hand pump...... Operate Pump until the door is full open (approximately 70 strokes.) The door is hydraulically locked in the full open position. Lower to canopy position: Check that the door is clear. Motor operated control valve ...... Manually move to POS 2 Hydraulic hand pump...... Operate The pump must be operated to move the door overcenter. The door free-falls to the canopy position.

**Supplementary Procedures -**

**NO NOT USE FOR FLIGHT** Supplementary 1 roccures -

| Hydraulic hand pump<br>The pump must be operated to release the canopy po-<br>mechanical locks. Continue to operate the pump unti<br>pressure required noticeably increases. The door is the | sition<br>l the |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| External lock handle<br>The amber caution light is inoperative with no AC po<br>available. The handle cannot be locked unless the late<br>engaged.                                           | ower            |
| Cargo door latch indicators<br>Check a white horizontal line is visible in all eight (8)<br>the exterior side of the door.                                                                   | windows on      |
| Cargo door control circuit breaker                                                                                                                                                           | Reset           |

### **Forward Airstair Operation**

#### WARNING: Use care not to fall from the airstair platform when operating the forward entry door. The small platform area and bad weather can make the door difficult to operate.

- CAUTION: Operation of airstair in winds exceeding 40 knots is not recommended.
- CAUTION: Do not move airplane with stair extended.

### **Interior Control**

WARNING: Open entry door to cocked position to allow clear visibility of area outside airplane to prevent injury to personnel. Do not open door beyond cocked position while operating airstair.

### To Extend:

Forward Entry Door ..... Open to Cocked Position When operating the airstair from the interior control panel, the forward entry door must be open to the cocked position. Safety circuits prevent airstair operation if the entry door is closed.

| <b>Note:</b> For interior standby operation, the battery switch must be ON.                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hold until extension is complete.                                                                                                                                                                                                                                                                   |
| The STAIRS OPERATING light illuminates during                                                                                                                                                                                                                                                       |
| extension until the airstair is fully extended.                                                                                                                                                                                                                                                     |
| <b>Note:</b> The STAIRS OPERATING light will not illuminate with loss of AC power.                                                                                                                                                                                                                  |
| Control switch Release                                                                                                                                                                                                                                                                              |
| Handrail ExtensionsEngage                                                                                                                                                                                                                                                                           |
| Release latch and pull inboard and up, extend and engage on supports at sides of forward entry doorway.                                                                                                                                                                                             |
| To Retract:                                                                                                                                                                                                                                                                                         |
| Handrail ExtensionsDisengage                                                                                                                                                                                                                                                                        |
| Disengage from door supports, depress latch at base of forward<br>extension to permit retraction within upper segment of handrail.<br>Slide right and left extensions down along upper rails. Stowing in<br>appropriate stowage points provides circuit continuity for<br>energizing retract relay. |
| CAUTION: Use of the standby control switch bypasses all                                                                                                                                                                                                                                             |
| safety circuits. Airstair handrail extensions must be stowed or substantial damage could result.                                                                                                                                                                                                    |
| Control switchRETRACT                                                                                                                                                                                                                                                                               |
| Hold until retraction is complete.                                                                                                                                                                                                                                                                  |
| The STAIRS OPERATING light illuminates during retraction until the airstair door is fully closed.                                                                                                                                                                                                   |
| <b>Note:</b> The STAIRS OPERATING light will not illuminate with loss of AC power.                                                                                                                                                                                                                  |
| Control switch Release                                                                                                                                                                                                                                                                              |
| Exterior Control                                                                                                                                                                                                                                                                                    |
| To Extend:                                                                                                                                                                                                                                                                                          |
| Control Handle                                                                                                                                                                                                                                                                                      |

Control Handle ...... Push Button to Extend Handle

Control Handle ......Rotate to Extend Hold control handle in position until entire extension cycle is complete. Control Handle ......Release

Forward entry door ...... Open to cocked position

### WARNING: Extend and connect the airstair aft handrail to protect against falling and to prevent injuries to personnel.

Aft handrail extension ..... Engage

Release latch and pull inward and up, extend and engage on the support at the side of the forward entry door.

#### WARNING: Step down the airstair as the forward entry door moves to the open position to prevent injuries to personnel.

| Forward entry door Fully open |  |
|-------------------------------|--|
|-------------------------------|--|

Forward handrail extension ..... Engage

Release latch and pull inboard and up, extend and engage on the support side of the forward entry door.

#### To Retract:

#### WARNING: Do not disengage the airstair aft handrail at this time. Injuries to personnel can occur during forward entry door operations if the aft handrail is disengaged.

Forward handrail extension ......Disengage

Disengage from door support, depress latch at base of forward extension to permit retraction within upper segment of handrail. Slide extension down along the upper rail. Stowing in appropriate stowage points provides circuit continuity for energizing retract relay.

#### WARNING: Step down the airstair as the forward entry door moves to the cocked position to prevent injuries to personnel.

Forward entry door ...... Close to cocked position

### Aft handrail extension ..... Disengage

Disengage from door support, depress latch at base of forward extension to permit retraction within upper segment of handrail. Slide extension down along the upper rail. Stowing in appropriate stowage points provides circuit continuity for energizing retract relay.

Forward entry door ...... Fully close

### CAUTION: Use of the standby control switch bypasses all safety circuits. Airstair handrail extension must be stowed or substantial damage could result.

Control handle ...... Rotate to retract

When the airstair is retracted and the airstair door is fully closed, release and stow handle.

### Water System Draining

In the event the passenger water system becomes contaminated, or the airplane is to be parked in freezing temperatures for an extended period, it may be necessary to completely drain the system to prevent damage to the water lines or other equipment.

The system may be drained either by pressure or by gravity.

Pressure Draining:

| APUON                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APU bleed switchON<br>This will pressurize the water tank. If the APU is not usable, an<br>external pneumatic cart may be used by positioning the Isolation<br>Valve switch ON. The tank may also be pressurized through a<br>valve on the external servicing panel. |
| Water HeatersOFF                                                                                                                                                                                                                                                     |
| CAUTION: Failure to do this could cause damage to the heaters when the water is drained.                                                                                                                                                                             |
| Tank drain valve OPEN                                                                                                                                                                                                                                                |
| Shutoff/Drain valvesDRAIN                                                                                                                                                                                                                                            |

| ···· · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When water stops flowing from outlets:                                                                                                                                                                                                       |
| Tank Drain valve CLOSE                                                                                                                                                                                                                       |
| Shutoff/Drain valves ON                                                                                                                                                                                                                      |
| Allow 2 minutes for the pressure to stabilize. To exhaust residual water, turn each shutoff/drain valve to DRAIN and then ON. Open each water faucet, galley water drain shutoff valve and coffee maker drain for 2 minutes, and then close. |
| Lavatory vent valves ON/CLOSED                                                                                                                                                                                                               |
| Open each lavatory water faucet to drain, then close.<br>Depressurize the water tank by deactivating the air pressure<br>source.                                                                                                             |
| Gravity Draining:                                                                                                                                                                                                                            |
| Water HeatersOFF                                                                                                                                                                                                                             |
| Fill and Overflow valveOPEN                                                                                                                                                                                                                  |
| Tank Drain valveOPEN                                                                                                                                                                                                                         |
| Shutoff/Drain valvesDRAIN                                                                                                                                                                                                                    |
| Lavatory vent valvesDRAIN/OPEN                                                                                                                                                                                                               |
| Open each lavatory faucet and galley outlet to drain residual water into containers or through the drain mast.                                                                                                                               |
| When water stops flowing from outlets:                                                                                                                                                                                                       |
| Fill and Overflow valve CLOSE                                                                                                                                                                                                                |
| Tank Drain valve CLOSE                                                                                                                                                                                                                       |
| Shutoff/Drain valvesON<br>Open each lavatory faucet and galley outlet to drain residual<br>water.                                                                                                                                            |
| Lavatory vent valves ON/CLOSED                                                                                                                                                                                                               |

-

### **Oxygen Mask Microphone Test**

| MASK-BOOM or OXY-BOOM switchMASK or OXY                            |
|--------------------------------------------------------------------|
| Flight interphone transmitter selector switch Push                 |
| Speaker switch ON                                                  |
| SUPPLY lever ON                                                    |
| EMERGENCY lever ON                                                 |
| Push-to-Talk switch Push PTT                                       |
| Verify oxygen flow sound is heard through the flight deck speaker. |
| Push-to-Talk switchRelease                                         |
| EMERGENCY leverOFF                                                 |
| Speaker switch As needed                                           |
| MASK-BOOM or OXY-BOOM switchBOOM                                   |
|                                                                    |

### ETOPS

Operators conducting ETOPS are required to comply with appropriate regulations. An operator must have an ETOPS configured and approved airplane, and approved flight operations and maintenance programs in place to support ETOPS.

### **APU Operation**

Unless otherwise authorized, start the APU before the ETOPS segment. The APU must be on for the entire ETOPS segment.

### **Fuel Crossfeed Valve Check**

During the last hour of cruise, do the following steps:

| Crossfeed selector Open                                                 |
|-------------------------------------------------------------------------|
| Verify that the VALVE OPEN light illuminates bright, then dim.          |
| Crossfeed selectorClose                                                 |
| Verify that the VALVE OPEN light illuminates bright, then extinguishes. |

737 Flight Crew Operations Manual

### Supplementary Procedures Air Systems

### Wing-Body Overheat Test

| Wing-body OVHT TEST switchPush             |
|--------------------------------------------|
| Hold for a minimum of 5 seconds.           |
| Both WING-BODY OVERHEAT lights illuminated |
| MASTER CAUTION illuminated                 |
| AIR COND system annunciator illuminated    |
| Wing-body OVHT TEST switch Release         |
| Both WING-BODY OVERHEAT lightsextinguished |
| MASTER CAUTION lightsextinguished          |
| AIR COND system annunciator extinguished   |

### **External Air Cart Use**

# CAUTION: The BAT switch should always be on when using the airplane air conditioning system since the protective circuits are DC. This ensures protection in the event of loss of AC power.

| Air temperature source selectorAs desired                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cabin temperature selectors                                                                                                                                                                                |
| Gasper fan switchAs desired                                                                                                                                                                                |
| ISOLATION VALVE switch OPEN                                                                                                                                                                                |
| APU BLEED air switch OFF                                                                                                                                                                                   |
| Left and/or right air conditioning pack switch(es)ON<br>The operation of two packs from one air source is permitted<br>provided the external air cart can maintain 20-25 psi with both packs<br>operating. |
| Duct pressure                                                                                                                                                                                              |

| If external air cannot hold 20 psi minimum and the APU is operating:                             |
|--------------------------------------------------------------------------------------------------|
| ISOLATION VALVE switchAUTO                                                                       |
| APU BLEED air switchON<br>APU supplies left pack and external air source supplies right<br>pack. |
| Ground Conditioned Air Use                                                                       |
| Before connecting ground conditioned air:                                                        |

| PACK switchesOF                                        | FF |
|--------------------------------------------------------|----|
| Packs can be damaged if operated with conditioned air. |    |

After disconnecting ground conditioned air:

PACK switches ..... As needed

### Using the APU for Heating (on the ground/engines shut down)

Under extremely cold conditions, both packs may be used for more rapid heating.

### Auto Trip and Standby Check

| Pack switchesOFF                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------|
| Pressurization mode selector AUTO                                                                                                |
| FLT/GND switchGRD                                                                                                                |
| Cabin Altitude indicator500 feet above field elevation                                                                           |
| Captain and First Officer<br>altimeters                                                                                          |
| Cabin Rate selectorIndex<br>Verify pressurization mode lights extinguish and the Outflow Valve<br>Position indicator is at OPEN. |
| FLT/GND switch                                                                                                                   |

#### Supplementary Procedures -Air Systems

## **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

| Pressurization mode selector Check                                                                              |
|-----------------------------------------------------------------------------------------------------------------|
| Verify the AUTO FAIL and STANDBY lights illuminated and the Outflow Valve Position indicator moves toward OPEN. |
| Cabin Altitude indicator                                                                                        |
| FLT/GND switch                                                                                                  |
| FLT/GND switch                                                                                                  |
| Verify Outflow Valve Position indicator moves toward CLOSE.                                                     |

#### Auto Trip and Manual Check

| Note: This test must be performed immediately a<br>Standby Check to test excessive pressuriza<br>CHECK input has cleared (approximately<br>FAIL and STANDBY lights do not illumin | ation rates. If the initial 30 seconds) the AUTO |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Pack switches                                                                                                                                                                     | OFF                                              |
| Pressurization mode selector                                                                                                                                                      | AUTO                                             |
| AUTO FAIL light                                                                                                                                                                   | illuminated                                      |
| STANDBY light                                                                                                                                                                     | illuminated                                      |
| Pressurization mode selector                                                                                                                                                      | MAN AC                                           |
| AUTO FAIL light                                                                                                                                                                   | extinguished                                     |
| STANDBY light                                                                                                                                                                     | extinguished                                     |
| MANUAL light                                                                                                                                                                      | illuminated                                      |
| Outflow valve switch                                                                                                                                                              | Hold OPEN                                        |
| Verify Valve Position indicator moves toward                                                                                                                                      | rd OPEN.                                         |
| Outflow valve switch                                                                                                                                                              | Hold CLOSE                                       |
| Verify Valve Position indicator moves toward                                                                                                                                      | rd CLOSE.                                        |
| Pressurization Mode selector                                                                                                                                                      | MAN DC                                           |
| MANUAL light                                                                                                                                                                      | illuminated                                      |
| Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions                                                                                                     | under EAR. See title page for details.           |

#### Supplementary Procedures - **DO NOT USE FOR FLIGHT** Air Systems

737 Flight Crew Operations Manual

| Outflow valve switchHold OPEN<br>Verify Valve Position indicator moves toward OPEN.    |
|----------------------------------------------------------------------------------------|
| Outflow valve switch Hold CLOSE<br>Verify Valve Position indicator moves toward CLOSE. |
| FLT/GRD switchGRD                                                                      |
|                                                                                        |
| Pressurization mode selector                                                           |

#### **Standby Mode Operation**

Before start:

| Pressurization mode selectorSTBY                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standby lightilluminated                                                                                                                                                                    |
| Cabin Altitude indicatorSet                                                                                                                                                                 |
| CAB ALT takeoff field elevation minus 200 feet                                                                                                                                              |
| Cabin Rate selectorIndex                                                                                                                                                                    |
| FLT/GND switch                                                                                                                                                                              |
| Air Conditioning Pack switchesON                                                                                                                                                            |
| FLT/GRD switch                                                                                                                                                                              |
| Cabin Altitude indicatorSet<br>Check the placard below the pressurization module for the cabin<br>altitude corresponding to the planned flight altitude. Reset CAB<br>ALT to this altitude. |
| Cabin Rate selector Adjust<br>Maintain normal proportional climb rate.                                                                                                                      |

737 Flight Crew Operations Manual

| Cruise:                                                                                                                                                                                           |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Cabin Altitude indicator                                                                                                                                                                          | .Reset       |
| Reset CAB ALT using the placard for flight altitude chan greater than 1000 feet.                                                                                                                  | nges         |
| Before descent:                                                                                                                                                                                   |              |
| Cabin Altitude indicator                                                                                                                                                                          | Set          |
| CAB ALT landing field elevation minus 200                                                                                                                                                         | feet         |
| Descent:                                                                                                                                                                                          |              |
| Cabin Rate selector                                                                                                                                                                               | •            |
| FLT/GND switch                                                                                                                                                                                    | .GRD         |
| Manual Mode Operation                                                                                                                                                                             |              |
| CAUTION: Switch actuation to the manual mode causes an<br>immediate response by the outflow valve. Full ra<br>motion of the outflow valve can take up to 20 sec                                   |              |
| Pressurization mode selector                                                                                                                                                                      | MAN          |
| MANUAL light illum                                                                                                                                                                                | inated       |
| CABIN/FLIGHT ALTITUDE placard<br>Determine the desired cabin altitude.                                                                                                                            | Check        |
| If a higher cabin altitude is desired:                                                                                                                                                            |              |
| Outflow valve switch (momentarily)<br>Verify the outflow valve position indicator moves right,<br>altitude climbs at the desired rate, and differential pressu<br>decreases. Repeat as necessary. | cabin        |
| If a lower cabin altitude is desired:                                                                                                                                                             |              |
| Outflow valve switch (momentarily)Cl                                                                                                                                                              | LOSE         |
| Verify the outflow valve position indicator moves left, ca<br>altitude descends at the desired rate, and differential pres-<br>increases. Repeat as necessary.                                    |              |
| Boeing Proprietary, Copyright © Boeing. May be subject to export restrictions under EAR. See title page                                                                                           | for details. |

#### **During Descent**

Thrust lever changes should be made as slowly as possible to prevent excessive pressure bumps.

Outflow valve switch (momentarily) ..... CLOSE

During descent, intermittently position the outflow valve switch toward CLOSE, observing cabin altitude decrease as the airplane descends.

Before entering the landing pattern, slowly position the outflow valve switch to full open to depressurize the airplane. Verify differential pressure is zero.

#### **Pressurization Control Operation – Landing at Alternate Airport**

At top of descent:

| CAB ALT indicator                                     | SET         |
|-------------------------------------------------------|-------------|
| Set CAB ALT to new destination airport elevation minu | s 200 feet. |
| LAND ALT indicator                                    | Reset       |
| Reset to new destination field elevation.             |             |

#### Automatic Pressurization Control – Landing Airport Elevation Above 6000 Feet but 8300 Feet and Below

Do the normal Preflight Procedure - First Officer except as modified below.

Prior to takeoff:

| LAND ALT indicator                         | 6000 feet               |
|--------------------------------------------|-------------------------|
| CAB ALT indicator                          | 6000 feet               |
| At initial descent or approximately 20 min | nutes prior to landing: |
| LAND ALT indicatorDest                     | ination field elevation |
| CAB ALT indicator                          | Reset                   |
| Reset CAB ALT to destination airport       | ort elevation minus 200 |

737 Flight Crew Operations Manual

### Unpressurized Takeoff and Landing

When making a no engine bleed takeoff or landing with the APU inoperative, or operative but not providing bleed air:

Takeoff

When starting the turn to final approach:

Engine BLEED air switches ......OFF

Avoid high rates of descent for passenger comfort.

### No Engine Bleed Takeoff and Landing

When making a no engine bleed takeoff or landing with the APU operating.

Takeoff

| <b>Note:</b> If anti–ice is required for taxi, configure for a "No Engine Bleed Takeoff" just prior to takeoff.                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Note:</b> If anti–ice is not required for taxi, configure for a "No Engine Bleed Takeoff" just after engine start.                                                                        |
| Right PACK switch ON                                                                                                                                                                         |
| ISOLATION VALVE switch CLOSE                                                                                                                                                                 |
| Left PACK switch ON                                                                                                                                                                          |
| Engine No. 1 BLEED air switchOFF                                                                                                                                                             |
| APU BLEED air switch ON                                                                                                                                                                      |
| Engine No. 2 BLEED air switchOFF                                                                                                                                                             |
| WING ANTI-ICE switchOFF<br>The WING ANTI-ICE switch must remain OFF until the engine<br>BLEED air switches are repositioned to ON and the<br>ISOLATION VALVE switch is repositioned to AUTO. |
| After Takeoff                                                                                                                                                                                |
| <b>Note:</b> If engine failure occurs, do not position engine BLEED air switches ON until reaching 1500 feet or until obstacle clearance height has been attained.                           |
| Engine No. 2 BLEED air switch ON                                                                                                                                                             |
| APU BLEED air switchOFF                                                                                                                                                                      |
| When CABIN rate of CLIMB indicator stabilizes:                                                                                                                                               |
| Engine No. 1 BLEED air switchON                                                                                                                                                              |
|                                                                                                                                                                                              |

737 Flight Crew Operations Manual

| ISOLATION VALVE switchAUTO                                                            |
|---------------------------------------------------------------------------------------|
| Landing                                                                               |
| If additional go-around thrust is desired, configure for a "No Engine Bleed Landing:" |
| When below 10,000 feet:                                                               |
| WING ANTI-ICE switchOFF                                                               |
| Right PACK switchON                                                                   |
| ISOLATION VALVE switch CLOSE                                                          |
| Left PACK switchON                                                                    |
| Engine No. 1 BLEED air switchOFF                                                      |
| APU BLEED air switchON                                                                |
| Engine No. 2 BLEED air switchOFF                                                      |
|                                                                                       |

#### **High Moisture Producing Cargo**

During transportation of live main deck loads such as animals, fowl, etc., excessive moisture accumulates if the moisture produced exceeds the moisture removal capability of the air conditioning system. When this occurs, outflow valve restriction from ice may result. Therefore, the following supplementary procedures should be used when the main deck loads are primarily high moisture producers.

The following steps may be performed prior to takeoff to reduce inflight workload:

| Cabin rate selector MAXIMUM INCR                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cabin altitude indicatorSet<br>Set 500 feet higher than anticipated or indicated cabin altitude.                                                                  |
| Pressurization mode selector                                                                                                                                      |
| Pressurization mode selectorAUTO<br>Following stabilization, position the mode selector back to AUTO<br>and observe a normal response of the cabin rate of climb. |

If response is not normal, refer to the Manual Mode Operation supplementary normal procedure. Manual control of the outflow valve may be adequate to free any ice blockage.

If manual control of the outflow valve cannot be established and the differential pressure is rising uncontrollably, shut down one pack to reduce mass airflow. Cabin differential pressure may rise to the relief valve setting and may be tolerated to destination.

737 Flight Crew Operations Manual

## **Supplementary Procedures**

Anti–Ice, Rain

Chapter SP Section 3

#### Anti–Ice Operation

Requirements for use of anti-ice and operational procedures for engine and wing anti-ice are contained in Supplementary Procedures, Adverse Weather, section SP.16.

#### Rain Repellent Use

Do not actuate rain repellent unless windshield wipers are operating and medium or heavy rain conditions exist.

#### CAUTION: Do not use rain repellent in an attempt to clean a dry dirty windshield. If rain repellent is inadvertently applied, do not use the windshield wipers until required for rain removal.

Inflight operation:

Windshield Wiper selector ...... Desired position

Rain Repellent

switches ...... Push and hold momentarily (one at a time)

Rain repellent may be used any time rain intensity requires the use of windshield wipers.

One application of repellent should be sufficient for an entire takeoff or landing. Additional applications may be required for takeoff or landing in very heavy rain.

#### Window Heat System Tests

#### **Overheat Test**

The overheat test simulates an overheat condition to check the overheat warning function of the window heat system.

| WINDOW HEAT switches    | ON   |
|-------------------------|------|
| WINDOW HEAT TEST switch | OVHT |
| OVERHEAT lights         | On   |

# Supplementary Procedures - DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

| ON lightsE                                      | xtinguish |
|-------------------------------------------------|-----------|
| Lights extinguish after approximately 1 minute. |           |
| MASTER CAUTION                                  | On        |
| ANTI-ICE system annunciator                     | On        |
| WINDOW HEAT switches                            | Reset     |
| Position the WINDOW HEAT switches OFF, then ON. |           |

#### **Power Test**

The power test verifies operation of the window heat system. The test may be accomplished when any of the window heat ON lights are extinguished and the associated WINDOW HEAT switch is ON.

| WINDOW HEAT switches ON                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------|
| <b>Note:</b> Do not perform the power test when all ON lights are illuminated                                         |
| WINDOW HEAT TEST switch PWR                                                                                           |
| The controller is forced to full power, bypassing normal temperature control. Overheat protection is still available. |
| WINDOW HEAT ON lightsIlluminated                                                                                      |
| If any ON light remains extinguished, the window heat system is                                                       |

If any ON light remains extinguished, the window heat system is inoperative. Observe the maximum airspeed limit of 250 kts below 10,000 feet.

737 Flight Crew Operations Manual

| 757 Fight Crew Operations Manual                                                                                                              |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Supplementary Procedures                                                                                                                      | Chapter SP                       |
| Automatic Flight                                                                                                                              | Section 4                        |
| Autopilot Preflight                                                                                                                           |                                  |
| Self-test switches                                                                                                                            | OFF                              |
| [Any self-test switch left on in the electronic equipt<br>compartment illuminates the AUTOPILOT disenga                                       |                                  |
| Engaging:                                                                                                                                     |                                  |
| Control wheel and column                                                                                                                      | Center                           |
| Autopilot mode selector                                                                                                                       | MAN                              |
| Autopilot aileron and elevator<br>engage switches                                                                                             | Engage                           |
| Manual Mode Test:                                                                                                                             |                                  |
| Control wheel steering:                                                                                                                       |                                  |
| Autopilot mode selector                                                                                                                       | MAN                              |
| Control column and wheelExert force in<br>[A force above low detent level will activate the<br>and cause movement of the control column of co | flight controls                  |
| Altitude hold:                                                                                                                                |                                  |
| Autopilot mode selector                                                                                                                       | MAN                              |
| Autopilot pitch mode selector                                                                                                                 | ALT HOLD                         |
| Control column Exert                                                                                                                          | force in pitch                   |
| [A force in excess of the high detent level will tr<br>pitch mode selector to OFF. Subsequent pitch in<br>autopilot are by low detent CWS.]   | · ·                              |
| Heading select:                                                                                                                               |                                  |
| Autopilot heading switch                                                                                                                      | HDG SEL                          |
| Heading selectorRotate left and air                                                                                                           | l right through<br>plane heading |
| [The control wheel will follow the movement of selector.]                                                                                     | the heading                      |
| Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR.                                                      | See title page for details.      |

737 Flight Crew Operations Manual

Control wheel ...... Exert force in roll [A force in excess of the high detent level will trip the autopilot heading switch to the center position. Subsequent roll inputs to the autopilot are by low detent CWS.]

#### VOR/LOC Mode Test

VHF navigation radio ......Usable VOR frequency

Autopilot mode selector ......VOR/LOC

Check that the autopilot VOR/LOC annunciator illuminates amber. The control wheel remains centered. Roll inputs to the autopilot are by low detent CWS.

Course selector ...... Rotate slowly to center the course deviation bar

Check that the autopilot VOR/LOC annunciator illuminates green at approximately 1/2 dot deviation. This simulates capture of the VOR. The control wheels rotate to complete capture. Subsequent roll inputs to the autopilot are from the VHF NAV radio.

#### **Auto Approach Mode Test**

| VHF navigation radio                                                                                                                       | Usable ILS frequency    |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Autopilot mode selector                                                                                                                    | AUTO APP                |
| Check that the autopilot VOR/LOC and GLID<br>illuminate amber. The control column remain<br>pitch inputs to the autopilot are by low deten | ns centered. Subsequent |

### Manual G/S Mode Test

Autopilot mode selector ......MAN G/S Check that the autopilot GLIDE SLOPE annunciator illuminates green. The control column pitches forward. Pitch inputs to the autopilot are longer from CWS.

Control column ...... Exert force in pitch A force in excess of high detent level will trip the mode selector to MAN. Subsequent pitch inputs to the autopilot are by low detent

CWS.

737 Flight Crew Operations Manual

### **Disengage Test**

| Autopilot aileron and elevator                               |        |
|--------------------------------------------------------------|--------|
| engage switches                                              | Engage |
| Autopilot disengage switch                                   | Push   |
| Note: The autopilot disengage light flashes when the autopil | ot is  |
| disengaged automatically.                                    |        |

## Stabilizer Out of Trim Light Test

| Autopilot              | Engage             |
|------------------------|--------------------|
| Control column         | Pull back and hold |
| STAB OUT OF TRIM light | Illuminated        |
| Control column         |                    |
| STAB OUT OF TRIM light | Extinguished       |

### **Flight Control Switches Test**

To check system B:

| Autopilot system select switch | B          |
|--------------------------------|------------|
| Autopilot                      | Engage     |
| Yaw damper switch              | ON         |
| Flight control switch B        | OFF        |
|                                |            |
| Autopilot                      | Disengages |
| Autopilot                      |            |
|                                | Disengages |

### **Autopilot Operation**

| Yaw damj | per switch |  | ON |
|----------|------------|--|----|
|----------|------------|--|----|

Autopilot elevator and aileron engage switches ...... Engaged

If bank angle is less than 5 degrees, the airplane will roll wings level and maintain heading. If bank angle is greater than 5 degrees, the airplane will maintain bank angle.

The airplane will maintain the pitch attitude at the time of engagement.

To maneuver in pitch and roll:

Use CWS at a force greater than LOW detent level. When CWS pitch force is relaxed below low detent level, the airplane maintains the existing pitch attitude. When CWS roll force is relaxed below low detent level, if the bank angle is less than 5 degrees, the airplane rolls wings level and maintains heading. If bank angle is greater than 5 degrees, the airplane maintains bank angle.

To maintain bank angle less than 5 degrees:

To maneuver in roll and hold altitude:

Pitch mode selector ...... ALT HOLD

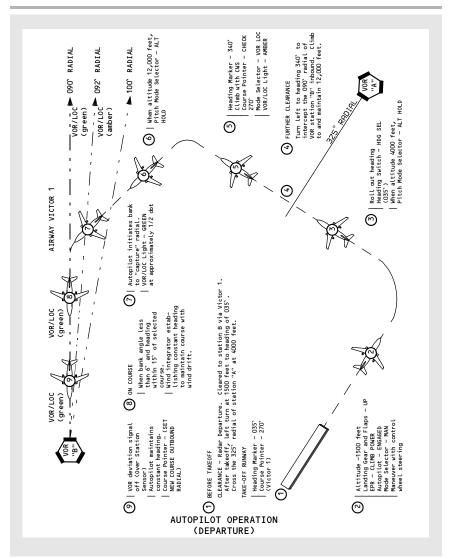
Use CWS to induce roll at low detent level force. Altitude is maintained by input from the air data computer at the time the pitch mode selector is positioned to ALT HOLD. CWS pitch input greater than high detent level trips the pitch mode selector to OFF.

To maneuver in pitch and hold heading:

Autopilot heading switch ..... HDG SEL

Use CWS to control pitch attitude at low detent level. The airplane turns to and maintains the heading selected on the HSI with the autopilot heading switch in HDG SEL. CWS roll input greater than high detent level trips the autopilot heading switch to the center position.

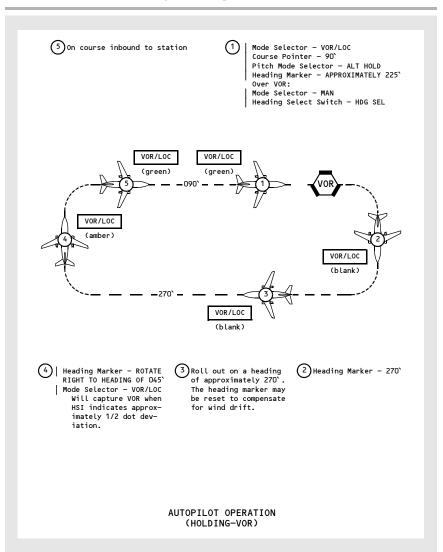
To maneuver in turbulence:


Pitch mode selector ...... TURB

Use CWS at low detent level to control pitch and roll. Pitch signals are damped and roll is limited to 8 degrees bank.

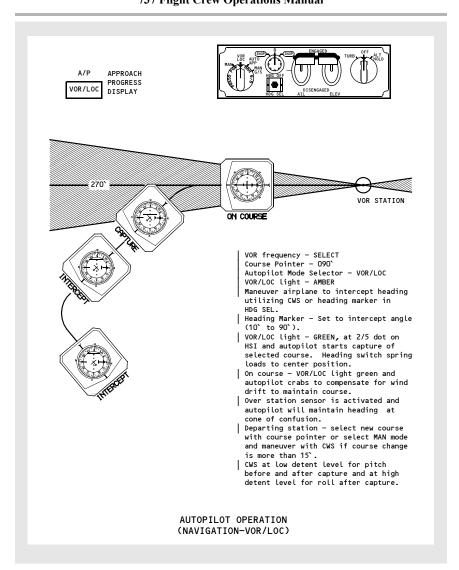
Supplementary Procedures -Automatic Flight

## DO NOT USE FOR FLIGHT


737 Flight Crew Operations Manual



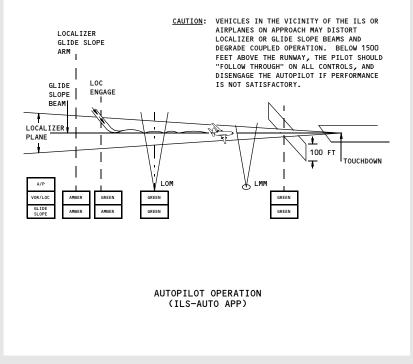
Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. November 13, 2015 D6-27370-200A-TBC SP.4.5


## Supplementary Procedures - DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

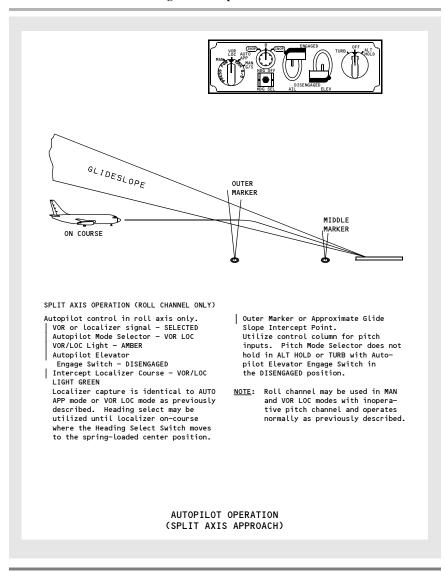


Supplementary Procedures -Automatic Flight


#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual



Supplementary Procedures - **DO NOT USE FOR FLIGHT** 


#### 737 Flight Crew Operations Manual

| PRE-REQUISITES                                                                                       | VOR/LOC                                                   | GLIDE SLOPE                                                                                                                                                    | 1500 FEET                                                                              | DECISION HEIGHT                         | GO-AROUND                                                                      |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|
| Autopilot engaged<br>Localizer tuned<br>Select "AUTO APP"<br>Utilize CWS or HDG<br>SEL for intercept | VOR LOC armed<br>Engaged 2 dots<br>from localizer<br>beam | Glide slope armed<br>Engaged at approx.<br>1/3 dot HSI fly up<br>Airplane sets up<br>descent approx. 700<br>fpm for 10 seconds<br>and then follows<br>the beam | Localizer and glide<br>slope gain programming<br>function of radio<br>altimeter inputs | Disengage autopilot<br>prior to landing | Disengage autopilot<br>and fly manually.<br><u>Of</u><br>  Revert to CWS mode. |



Supplementary Procedures -Automatic Flight

#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual



#### Non-ILS Approach (VOR/LOC/LOC-BC/NDB/ASR/LDA/SDF)

DME or other appropriate fix information is required to determine distance to the landing runway on final approach. The INS, Omega or equivalent navigation system (as installed) may be used to determine distance to the landing runway provided the flight crew verifies present position accuracy before to commencing the approach. 737 Flight Crew Operations Manual

This procedure assumes the following approach preparations are complete:

- Navaids tuned and identified
- Final approach course set (VOR, localizer, etc.)
- RDMI/RMIs (as installed) show the appropriate course or bearing information
- Minimum descent altitude is set on altimeter reference marker (as installed)
- Approach briefing is complete
- For a straight-in approach, the landing configuration is established when on the final approach descent path
- For a circling approach, the circling configuration (gear down, flaps 15 or gear up, flaps 10) is established at or before the final approach descent point and landing configuration is established when intercepting the landing profile.

Recommended roll modes:

- VOR, localizer, LDA or SDF: VOR LOC
- LOC-BC, NDB or ASR: HDG SEL

| Initially                                              |                                 |
|--------------------------------------------------------|---------------------------------|
| If on radar vectors:                                   |                                 |
| • HDG SEL                                              |                                 |
| • Pitch mode (as needed)                               |                                 |
| If enroute to a fix:                                   |                                 |
| • Roll mode (as needed)                                |                                 |
| • Pitch mode (as needed)                               |                                 |
| Call "FLAPS" according to the flap extension schedule. | Set the flap lever as directed. |

When on an intercept heading to the final approach course:

Roll mode (as needed) ...... Select

| Approximately 2 NM before the final<br>approach fix:<br>• "GEAR DOWN"<br>• Arm the speedbrake<br>• Set the MDA(H) on the MCP | Approximately 2 NM before the final<br>approach fix, call "APPROACHING<br>GLIDE PATH." |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

At the final approach descent point (FAF or other appropriate fix):

Vertical Speed ...... Select/Establish

Select or establish an appropriate vertical speed resulting in a constant angle approach (constant descent final approach) Initially, use a vertical speed corresponding to the airplane ground speed (shown on the approach chart). Once established on the final approach descent path, use distance and recommended height information on the approach chart (if available) to determine relative height to recommended vertical path. Make small and frequent adjustments to the vertical speed to maintain proper path and to comply with minimum altitudes on final approach. The MDA(H) will be reached at approximately the same position as the Visual Descent Point (VDP) shown on some approach charts.

If recommended height information is not available, use a path that approximates 3 degrees. To maintain a 3 degree constant angle approach path, make small but frequent adjustments to the vertical speed to comply with the following recommended heights above touchdown (HAT) and comply with the minimum altitudes on final approach:

| Distance remaining to the Runway, NM |      |      |      |      |      |      |      |     |     |     |
|--------------------------------------|------|------|------|------|------|------|------|-----|-----|-----|
| NM                                   | 10   | 9    | 8    | 7    | 6    | 5    | 4    | 3   | 2   | 1   |
| HAT (ft)                             | 3000 | 2700 | 2400 | 2100 | 1800 | 1500 | 1200 | 900 | 600 | 300 |

| On descent to MDA(H):<br>• Call "FLAPS" as needed for<br>landing.<br>• Use CSWS pitch mode |                           |  |  |
|--------------------------------------------------------------------------------------------|---------------------------|--|--|
| Call "LANDING CHECKLIST"                                                                   | Do the LANDING checklist. |  |  |
| At the final approach fix, crosscheck the altimeters. Verify they agree within 100 feet.   |                           |  |  |
| When at least 300 feet above the MDA(H), set the missed approach                           |                           |  |  |

For a straight-in approach:

At approximately 50 feet above MDA (H) and suitable visual reference established:

Autopilot ..... Disengage

If suitable visual reference is not established:

Execute a missed approach.

For a circling approach:

If a missed approach is needed at any time while circling, make an initial climbing turn toward the landing runway and intercept the missed approach course.

Configuration at MDA(H):

- Gear down
- Flaps 15
- Arm speedbrake

Approaching MDA (H) and suitable visual reference is established:

Altitude Hold ..... Engage

Maintain level flight and suitable visual reference while circling.

Set the missed approach altitude.

Use HDG SEL or CWS to maneuver.

Before starting the turn to base:

- Landing flaps
- Do the LANDING checklist

Intercepting the landing profile:

Autopilot ...... Disengage

If suitable visual reference not established or is lost:

Execute a missed approach. If a missed approach is started while circling, make a climbing turn in the shortest direction toward the landing runway and comply with the published missed approach procedure.

737 Flight Crew Operations Manual

#### **Supplementary Procedures**

Chapter SP Section 5

Communications

#### **Cockpit Voice Recorder Test**

Test switch .....Push

After a slight delay, observe that the monitor indicator rises into the green band. A tone may be heard through a headset plugged into the headset jack.

The indicator remains in the green band and the tone continues until the switch is released.

Intentionally Blank

737 Flight Crew Operations Manual

### Supplementary Procedures Electrical

### **Electrical Power Up**

The following procedure is accomplished to permit safe application of electrical power.

| BATTERY switch Guard closed                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STANDBY POWER switch Guard closed                                                                                                                                                                                                                                                          |
| ALTERNATE FLAPS master switch Guard closed                                                                                                                                                                                                                                                 |
| Windshield WIPER selector(s) OFF                                                                                                                                                                                                                                                           |
| ELECTRIC HYDRAULIC PUMPS switches OFF                                                                                                                                                                                                                                                      |
| LANDING GEAR leverDN<br>Verify that the green landing gear indicator lights are illuminated<br>Verify that the red landing gear indicator lights are extinguished                                                                                                                          |
| WEATHER RADAROff                                                                                                                                                                                                                                                                           |
| If external power is needed:<br>Verify that the GRD POWER AVAILABLE light is illuminated.<br>GRD POWER switchON<br>Verify that the BUS OFF lights are extinguished.<br>Verify that the TRANSFER BUS OFF lights are extinguished.<br>Verify that the STANDBY PWR OFF light is extinguished. |
| <ul><li>If APU power is needed:</li><li>Verify that the engine No. 1, APU, and the engine No. 2 fire switches are in.</li><li>Alert ground personnel before the following test is accomplished.</li></ul>                                                                                  |
| Overheat and fire protection panel<br>(Passenger airplanes)Check                                                                                                                                                                                                                           |
| OVHT DET switches NORMAL                                                                                                                                                                                                                                                                   |
| TEST switch Hold to OVHT/INOP<br>Verify that the MASTER CAUTION lights are illuminated.                                                                                                                                                                                                    |

## Supplementary Procedures - **DO NOT USE FOR FLIGHT** Electrical 737 Flight Crew Operations Manual

| Verify that the OVHT/DET annunciator is illuminated.                                |
|-------------------------------------------------------------------------------------|
| Verify that the ENG 1 OVERHEAT and ENG 2 OVERHEAT lights are illuminated.           |
| Verify that the APU DET INOP light is illuminated.                                  |
| Do not run the APU if the APU DET INOP light does not illuminate.                   |
| TEST switchHold to FIRE                                                             |
| Verify that the fire warning bell sounds.                                           |
| Verify that the master FIRE WARN lights are illuminated.                            |
| Verify that the engine No. 1, APU, and engine No. 2 fire switches are illuminated.  |
| Master FIRE WARN lightPush                                                          |
| Verify that the master FIRE WARN lights are extinguished.                           |
| Verify that the fire warning bell cancels.                                          |
| Verify that the engine No. 1, APU, and engine No. 2 fire switches stay illuminated. |
| Overheat and fire protection panel<br>(Cargo airplanes)Check                        |
| OVHT DET switchesNORMAL                                                             |
| TEST switchHold to OVHT/INOP/A SMOKE                                                |
| Verify that the fire warning bell sounds.                                           |
| Verify that the master FIRE WARN lights are illuminated.                            |
| Verify that the MASTER CAUTION lights are illuminated.                              |
| Verify that the OVHT/DET annunciator is illuminated.                                |
| Verify that the ENG 1 OVERHEAT and ENG 2 OVERHEAT lights are illuminated.           |
| Verify that the FWD and AFT CARGO SMOKE lights are illuminated.                     |
| Verify that the APU DET INOP light is illuminated.                                  |
| Do not run the APU if the APU DET INOP light does not illuminate.                   |
| Master FIRE WARN lightPush                                                          |
| Verify that the master FIRE WARN lights are extinguished.                           |

#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| Verify that the                  | e fire warning bell cancels.                            |
|----------------------------------|---------------------------------------------------------|
| Verify that the                  | e MASTER CAUTION lights stay illuminated.               |
| Verify that the                  | e OVHT/DET annunciator stays illuminated.               |
| Verify that the lights stay illu | e ENG 1 OVERHEAT and ENG 2 OVERHEAT uninated.           |
| Verify that the illuminated.     | e FWD and AFT CARGO SMOKE lights stay                   |
| Verify that the                  | e APU DET INOP light stays illuminated.                 |
| TEST switch                      | Hold to FIRE/B SMOKE                                    |
| Verify that the                  | e fire warning bell sounds.                             |
| Verify that the                  | e master FIRE WARN lights are illuminated.              |
| Verify that the switches are i   | e engine No. 1, APU, and engine No. 2 fire lluminated.  |
| Verify that the illuminated.     | e FWD and AFT CARGO SMOKE lights are                    |
| Master FIRE WA                   | ARN lightPush                                           |
| Verify that the                  | e master FIRE WARN lights are extinguished.             |
| Verify that the                  | e fire warning bell cancels.                            |
| Verify that the switches stay    | e engine No. 1, APU, and engine No. 2 fire illuminated. |
| Verify that the illuminated.     | e FWD and AFT CARGO SMOKE lights stay                   |
| Extinguisher test sw             | ritch Check                                             |
| TEST EXT swite                   | ch Push and hold                                        |
| Verify that the illuminated.     | e three green extinguisher test lights are              |
| TEST EXT swite                   | ch Release                                              |
| Verify that the extinguished     | e three green extinguisher test lights are              |
| APU                              | Start                                                   |

| Note: | If extended APU operation is needed on the ground and   |
|-------|---------------------------------------------------------|
|       | the airplane busses are powered by AC electrical power, |
|       | position an AC powered fuel pump ON. This will extend   |
|       | the service life of the APU fuel control unit.          |

**Note:** If fuel is loaded in the center tank, position the left center tank fuel pump switch ON to prevent a fuel imbalance before takeoff.

#### CAUTION: Center tank fuel pump switches should be positioned ON only if the fuel quantity in the center tank exceeds 1000 lbs.

# CAUTION: Do not operate the center tank fuel pumps with the flight deck unattended.

When the APU GEN OFF BUS light is illuminated:

APU GENERATOR bus switches ......ON Verify that the BUS OFF lights are extinguished. Verify that the TRANSFER BUS OFF lights are extinguished. Verify that the STANDBY PWR OFF light is extinguished. Verify that the LOW OIL QUANTITY light is extinguished. Verify that the APU LOW OIL PRESSURE light is extinguished. Verify that the APU HIGH OIL TEMP light is extinguished. Verify that the APU OVERSPEED light is extinguished.

Wheel well fire warning system ...... Test

TEST switch ...... Hold to FIRE only

Verify that the fire warning bell sounds.

Verify that the master FIRE WARN lights illuminate.

Verify that the WHEEL WELL light is illuminated.

Fire warning BELL CUTOUT switch ......Push Verify that the master FIRE WARN lights are extinguished. Verify that the fire warning bell cancels. Verify that the WHEEL WELL light stays illuminated.

## **Electrical Power Down**

This procedure assumes the Secure procedure is complete.

If APU was operating: It is recommended that the APU be operated for one full minute with no pneumatic load prior to shutdown. APU switch and/or GROUND POWER switch ...... OFF If APU was operating: Delay approximately 20 seconds after APU shutdown for the APU door to close to assure the APU will start on the next flight. **Standby Power Test** Battery switch ......ON APU GEN No. 2 switch or GRD PWR switch ...... OFF Turn OFF appropriate switch depending on power source in use. Removes power from TR3. STANDBY POWER switch ...... OFF Check STANDBY PWR OFF light illuminated. Captain's ADI (ATT/GYRO) flag ......In view Check STANDBY PWR OFF Light extinguished AC–DC voltmeters ...... Check AC voltmeter  $115 \pm 5$  volts DC voltmeter  $26 \pm 4$  volts Frequency meter ...... Check Check frequency meter for normal indication: 400 +/- 10 CPS. Captain's ADI (ATT/GYRO) flag .....Out of view

Verifies that the AC standby bus is powered by the inverter (flag retraction may take up to 10 seconds.)

#### Supplementary Procedures - **DO NOT USE FOR FLIGHT** Electrical

737 Flight Crew Operations Manual

| STANDBY POWER switch                   | UTO |
|----------------------------------------|-----|
| APU GEN No. 2 switch or GRD PWR switch | ON  |

737 Flight Crew Operations Manual

## Supplementary Procedures Engines, APU

## Battery Start

| (With APU bleed or ground air available)                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Passenger oxygen shutoff valve (cargo airplanes) Set                                                                                                                                                                               |
| All cargo configurationCLOSED                                                                                                                                                                                                      |
| Passenger configurationOPEN                                                                                                                                                                                                        |
| Maintenance documents Check                                                                                                                                                                                                        |
| FLIGHT DECK ACCESS SYSTEM switch Guard closed                                                                                                                                                                                      |
| THRUST REVERSER OVERRIDE switchesGuards closed                                                                                                                                                                                     |
| BATTERY switch Guard closed                                                                                                                                                                                                        |
| System B HYDRAULIC PUMPS switches OFF                                                                                                                                                                                              |
| LANDING GEAR leverDN<br>Verify that the green landing gear indicator lights are illuminated.<br>Verify that the red landing gear indicator lights are extinguished.<br>Verify that the alternate gear safe lights are illuminated. |
| Weather radar OFF                                                                                                                                                                                                                  |
| Emergency equipment Check                                                                                                                                                                                                          |
| Fire extinguisher Checked and stowed                                                                                                                                                                                               |
| Crash axe Stowed                                                                                                                                                                                                                   |
| Escape ropes Stowed                                                                                                                                                                                                                |
| Other needed equipment Checked and stowed.                                                                                                                                                                                         |
| Flight recorder switch Guard closed                                                                                                                                                                                                |
| Circuit breakers (P6 panel) Check                                                                                                                                                                                                  |
| Crew oxygen valveOpen                                                                                                                                                                                                              |

#### Supplementary Procedures - **DO NOT USE FOR FLIGHT** Engines, APU

737 Flight Crew Operations Manual

| 157 Fight Crew Operations Manual                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rain repellentChec                                                                                                                                                                  |
| Verify that the float is above the line and the shutoff valve handle is<br>in the vertical position.                                                                                |
| Circuit breakers (control stand, P18 panel)Chec                                                                                                                                     |
| Accomplish the Interior and Exterior Inspection if required, except for items requiring electrical or hydraulic power.<br>Verify that the oxygen pressure is sufficient for flight. |
|                                                                                                                                                                                     |
| Accomplish the following Preflight ProcedureFirst Officer items                                                                                                                     |
| Overheat and fire protection panelCheck                                                                                                                                             |
| OVERHEAT DETECTOR switchesNORMAL                                                                                                                                                    |
| TEST switchHold to OVHT/INOP                                                                                                                                                        |
| TEST switchHold to FIRE                                                                                                                                                             |
| EXTINGUISHER TEST switch Check                                                                                                                                                      |
| APU switch<br>(bleed air source, if available)START<br>On the captain's command, the first officer reads and the captain does the<br>following items:                               |
| Oxygen Test and set                                                                                                                                                                 |
| Standby power switchBAT                                                                                                                                                             |
| GALLEY power switch ON                                                                                                                                                              |
| EMERGENCY EXIT LIGHTS switchGuard closed                                                                                                                                            |
| Passenger signsSet                                                                                                                                                                  |
| HYDRAULIC PUMP switches ON                                                                                                                                                          |
| Air conditioning panelSet                                                                                                                                                           |
| PACK switches One switch AUTO or HIGH,<br>one switch OFF                                                                                                                            |
| Engine BLEED air switchesON                                                                                                                                                         |
| APU BLEED air switchON                                                                                                                                                              |
| SPEED BRAKE leverDOWN detent                                                                                                                                                        |
| Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.                                                                |

737 Flight Crew Operations Manual

\_

| Reverse thrust leversDown                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| Forward thrust levers Closed                                                                                                                |
| Parking brake Set                                                                                                                           |
| Note: The wheels should be chocked in case the brake pressure has bled down.                                                                |
| Engine start levers CUTOFF                                                                                                                  |
| Papers Aboard                                                                                                                               |
| When cleared for Engine Start, do the following:                                                                                            |
| Air conditioning PACK switchesOFF                                                                                                           |
| ANTICOLLISION light switchON                                                                                                                |
| Gravel protect switch (as installed)As required<br>Engine Start                                                                             |
| Engine No. 2 start Accomplish<br>Only the self-generating and standby bus powered engine<br>instruments will be operative (N1, N2 and EGT.) |
| If APU air is being used, starter cutout can be confirmed by a definite drop in APU EGT. The START VALVE OPEN light extinguishes.           |
| Generator 2 switchON                                                                                                                        |
| Engine instruments Check                                                                                                                    |
| Verify that the following are sufficient for flight:<br>• hydraulic quantity<br>• engine oil quantity                                       |
| Engine No. 1 start Accomplish                                                                                                               |
| Generator 1 switchON                                                                                                                        |
| Cabin pressurization panel Set                                                                                                              |
| FLIGHT ALTITUDE indicator Cruise altitude                                                                                                   |
| LANDING ALTITUDE indicator Destination field elevation                                                                                      |
| CABIN rate selectorIndex                                                                                                                    |
|                                                                                                                                             |

#### Supplementary Procedures - **DO NOT USE FOR FLIGHT** Engines, APU

-

737 Flight Crew Operations Manual

| CABIN ALTITUDE indicator200 feet below destination<br>field elevation                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FLT/GRD switchGRD                                                                                                                                                                                                 |
| Pressurization mode selectorAUTO                                                                                                                                                                                  |
| Verify that the STANDBY light is extinguished.                                                                                                                                                                    |
| Verify that the MANUAL light is extinguished.                                                                                                                                                                     |
| Complete the Preliminary Preflight Procedure - Captain or First Officer by doing the following items:                                                                                                             |
| SERVICE INTERPHONE switchOFF                                                                                                                                                                                      |
| Oxygen panelSet                                                                                                                                                                                                   |
| CREW OXYGEN pressure indicator Check                                                                                                                                                                              |
| Verify that the pressure meets dispatch requirements.                                                                                                                                                             |
| <b>Note:</b> PASSENGER OXYGEN switch activation causes deployment of the passenger oxygen masks.                                                                                                                  |
| PASSENGER OXYGEN switch Guard closed                                                                                                                                                                              |
| Verify that the PASS OXY ON light is extinguished.                                                                                                                                                                |
| Manual gear extension access doorClosed                                                                                                                                                                           |
| Accomplish the normal Preflight Procedure -First Officer, Preflight<br>Procedure - Captain, Before Start Procedure and Before Taxi Procedure<br>to ensure that the flight deck preparation procedure is complete. |
| BEFORE TAXI checklistAccomplish                                                                                                                                                                                   |
| The airplane is ready for taxi. Refer to the normal checklists for subsequent checks.                                                                                                                             |
| Ingina Crosspland Start                                                                                                                                                                                           |

### **Engine Crossbleed Start**

Do not accomplish a crossbleed start during pushback.

Before using this procedure, ensure that the area to the rear is clear.

Increase thrust on the operating engine until there is a minimum of 30 psi duct pressure.

| Engine BLEED air switches | ON  |
|---------------------------|-----|
| APU BLEED air switch      | OFF |

737 Flight Crew Operations Manual

| PACK switches Ol          | FF |
|---------------------------|----|
| ISOLATION VALVE switchAUT | Ю  |
|                           |    |

Ensures bleed air supply for engine start.

Engine thrust lever (operating engine)...... Advance thrust lever until bleed duct pressure indicates 30 PSI

#### CAUTION: With gravel protection installed, do not exceed 1.4 EPR on gravel or contaminate surfaces.

Non-operating engine ...... Start

Use normal start procedures with crossbleed air.

After starter cutout, adjust thrust on both engines, as required.

#### Manual Engine Start

An engine with an inoperative starter valve may be started by operating the valve manually. When this procedure is used, review the items listed and coordinate the procedure closely with ground personnel.

Use normal start procedures with the following additions:

Direct ground crewman to open the starter valve when "START ENGINE NO. \_\_\_\_\_ "is announced.

Direct ground crewman to release starter valve override when "RELEASE" is announced.

Inform ground crewman when N2 is rotating.

Normal start procedures ...... Observe

When N2 RPM indicates 35%, the captain announces over interphone, "RELEASE."

Engine start switch ..... OFF

Observe the start switch moves to OFF and duct pressure increases to the prestart value.

#### **Starting at High Airport Elevation**

During engine start at very high altitude airports, if an engine will not accelerate to idle and fails to respond to thrust lever movement; shut down the engine by placing the start lever to CUTOFF, and continue motoring the engine until fuel is purged from the aft section (observe starter limitations.)

Set the thrust lever approximately one inch forward of the closed position and restart the engine. Normal engine start and acceleration should result. Maintain RPM slightly above idle. Minimum duct pressure for start may be reduced 0.5 psi per 1000 feet above sea level. 737 Flight Crew Operations Manual

**DO NOT USE FOR FLIGHT** 

# Performance Data Computer System

| MODE | PAGE                            | PAGE<br>NO.                      | DESCRIPTION                                                                                                                                                                                                                    |
|------|---------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STBY | STANDBY<br>CONFIG<br>SELF TEST  | (1–3)<br>(2–3)<br>(3–3)          | Standby is used for data entry and automatic system<br>verification.<br>μ Indication of system power status and program number.<br>μ Airplane and engine identification.<br>μ Indication of system self test results.          |
| то   | FULL<br>REDUCED                 | (1-2)<br>(2-2)                   | Displays takeoff EPR limits for the temperature entered and takeoff mode.<br>$\mu$ Full takeoff thrust.<br>$\mu$ Reduced thrust takeoff.                                                                                       |
| CLB  | ECON<br>RATE<br>MANUAL<br>LIMIT | (1-4)<br>(2-4)<br>(3-4)<br>(4-4) | <pre>Climb EPR and speeds for the desired climb profile.</pre>                                                                                                                                                                 |
| CRZ  | ECON<br>LRC<br>MANUAL<br>LIMIT  | (1-4)<br>(2-4)<br>(3-4)<br>(4-4) | Cruise EPR and speeds for the desired cruise schedule:<br>μ Most economical cruise speed for altitude and<br>gross weight.<br>μ Approximates best operational fuel mileage.<br>μ Crew selected speed.<br>μ Maximum cruise EPR. |
| DES  | ECON<br>MANUAL                  | (1–2)<br>(2–2)                   | Descent speed, time, and distance.<br>μ Most economical schedule.<br>μ Crew selected speed.                                                                                                                                    |
| HOLD | HOLD                            | 1 page                           | Holding EPR, speed and endurance time.                                                                                                                                                                                         |
| CON  | E/OUT MAX<br>E/OUT LRC<br>LIMIT | (1-3)<br>(2-3)<br>(3-3)          | Continuous EPR limit and engine out data.<br>μ EPR limits, speed guidance to maximize altitude<br>capability and new flight level.<br>μ Same as (1-3) except flight level is for LRC.<br>μ EPR limits.                         |
| GA   | LIMIT                           | 1 page                           | Go-around EPR limit for existing altitude and temperature and $\ensuremath{VREF}$ .                                                                                                                                            |
| TURB | TURB                            | 1 page                           | Turbulent air penetration speed, pitch attitude, and N1 for level flight.                                                                                                                                                      |

#### FLIGHT MODES SUMMARY

#### 737 Flight Crew Operations Manual

| PERFORMANCE<br>FUNCTIONS | PAGE                                                       | PAGE<br>NO.                               | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOAD                     | LOAD                                                       | (1-2)<br>(2-2)                            | Permits flight data entry to enable the system to<br>compute takeoff EPR, gross weight, optimum<br>descent distance, and airspeeds.<br>μ Outside air temperature, destination<br>elevation, reserves and alternate fuel,<br>and zero fuel weight.<br>μ Flight index, flight level restriction,<br>speed restriction.                                                                                                                                                                                                                                        |
| ALTITUDE<br>INTERCEPT    | X∳ECON<br>X∳RATE<br>X∲MANUAL<br>∳XECON<br>∳XMAN            | (1–5)<br>(2–5)<br>(3–5)<br>(4–5)<br>(5–5) | Used to solve time/distance and flight level<br>intercept problems during climb and descent.<br>µ Most economical schedule to climb to desired<br>altitude.<br>µ Schedule for maximum rate of climb to desired<br>altitude.<br>µ Schedule for crew-selected climb speed to<br>desired altitude.<br>µ Most economical schedule to descend to<br>desired altitude.<br>µ Schedule for crew-selected descent speed to<br>desired altitude.<br>µ Schedule for crew-selected descent speed to<br>desired altitude.                                                |
| FLIGHT                   | FL ECON<br>FL LRC<br>FL MANUAL                             | (1-3)<br>(2-3)<br>(3-3)                   | Used to determine optimum flight level, maximum<br>altitude capability, and the wind altitude trade<br>considerations.<br>μ Flight level information for ECON speed<br>schedule.<br>μ Flight level information for LRC speed<br>schedule.<br>μ Flight level for manually entered speed<br>schedules.                                                                                                                                                                                                                                                        |
| GROUND<br>SPEED          | GS                                                         | 1 page                                    | Computes groundspeed and wind, or time and distance to a waypoint or destination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RANGE                    | RNG ECON<br>RNG LRC<br>RNG MANUAL<br>RNG E/OUT<br>RNG HOLD | (2–5)<br>(3–5)                            | Displays total endurance, distance and time<br>remaining to reserve fuel quantity or empty<br>tanks at any flight level.<br>µ Endurance, distance and time remaining to<br>reserves at flight level shown, for economy<br>speed schedule.<br>µ Same as RNG ECON except LRC schedule is used.<br>µ Same as RNG ECON except crew selects speed<br>schedule. Also displays MACH and IAS.<br>µ Same as RNG ECON but for engine out. Also<br>displays MACH and IAS.<br>µ Endurance and time to reserves at flight level<br>shown for race track holding pattern. |

#### PERFORMANCE FUNCTIONS SUMMARY

Supplementary Procedures -Engines, APU

#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

|                          |                                                     |                                  | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PERFORMANCE<br>FUNCTIONS | PAGE                                                | PAGE<br>NO.                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FUEL                     | FUEL ECON<br>FUEL LRC                               |                                  | Displays total fuel, fuel reserves and fuel over<br>destination, (FOD).<br>μ For inserted distance, displays, FOD, RSV +<br>ALT, total fuel weight, and wind for CRZ ECON<br>speed schedule.<br>μ Same as FUEL ECON except CRZ LRC speed<br>schedule is used.                                                                                                                                                                                                                                          |
|                          | FUEL MAN<br>FUEL E/OUT                              | (3–4)<br>(4–4)                   | $\mu$ Same as above for manual speed schedule.<br>$\mu$ Same as above for CON ENG OUT speed schedule.                                                                                                                                                                                                                                                                                                                                                                                                  |
| TEMPERATURE              | TEMP<br>TEMP                                        | (1–2)<br>(2–2)                   | Displays temperatures for ISA <sup>-</sup> , TAT, and SAT, and<br>TAS.<br>µ Displays ISA <sup>-</sup> , TAT, SAT, and TAS.<br>µ Calculates ISA <sup>-</sup> or SAT for given FL.                                                                                                                                                                                                                                                                                                                       |
| REFERENCE<br>SPEED       | VREF                                                | 1 page                           | Displays reference speed for landing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TRIP<br>PLANNING         | TRIP                                                | 1 page                           | Displays most economical cruise flight level for trip distances, ISA <sup>-</sup> , and wind.                                                                                                                                                                                                                                                                                                                                                                                                          |
| WIND                     | WIND $\Omega$<br>WIND AUTO<br>WIND AUTO<br>WIND MAN | (1-4)<br>(2-4)<br>(3-4)<br>(4-4) | Displays automatically computed or manually<br>entered wind data.<br>µ OMEGA wind data and update status for OMEGA<br>input.<br>µ DME wind data and update status for 1st DME<br>input.<br>µ Same as above for 2nd DME input (if<br>installed).<br>µ Wind direction, wind velocity, course,<br>longitudinal wind component and update<br>status for manually entered wind direction,<br>wind velocity and airplane course.<br>wind velocity and airplane course.<br>wind velocity and airplane course. |

PERFORMANCE FUNCTIONS SUMMARY (cont)

**Note:** The CDU displays shown in this section are representative only and may not reflect the precise values for any airplane/engine configuration.

# Preflight

#### **Checking the System**

Flight mode selector ...... STBY

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 9, 2007 D6-27370-200A-TBC SP.7.9

Supplementary Procedures - DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual



Confirm that the correct program number and part number are in use by comparing this number to the correct number provided by the airline.

Page forward key..... Push



Confirm that the correct airplane type, weight units and engine type are stored in the computer.

PAGE forward key ...... Push

SELF TEST 3-3 VALID

The computer will perform a self-test. If the self-test is not satisfactory, it will display INVALID and in some cases the type of failure. Partial capability may still exist.

737 Flight Crew Operations Manual

#### ENGAGE key ..... Push

Observe the mode annunciator cycles through all modes and return to STBY, the airspeed bugs drive to 110 knots and return to the stowed position at 440 knots, and the EPR bugs drive to 2.60 and return to the stowed position at 1.00.

#### Entering flight data:

| LOAD key | Push |
|----------|------|
|----------|------|

| LOAD    | 1-2   |
|---------|-------|
| OAT`C   | ???<  |
| OAT` F  | ???*  |
| D ELV   | ????* |
| RSV+ALT | ???*  |
| ZFW     | ????* |
|         |       |

OAT ..... Enter

Push the CLR key with the caret on either the  $^{\circ}$ C or  $^{\circ}$ F line. The question marks erase and the caret blinks. Push the numbered keys. Check the number on the display for correctness and then push the ENT key.

Remaining data ...... Enter

Enter the destination airport elevation, reserve plus alternate fuel quantity and zero fuel weight in the same manner.

**Note:** If any parameter on the load page is changed when engaged in any mode other than standby, in order to ensure data is duplicated on all applicable pages, accomplish the following:

RCL key.....Push

Observe that the page for the engaged mode is displayed and that the light in the ENGAGE key illuminates.

ENGAGE key ......Push The changed information is now duplicated on all applicable pages.

PAGE forward key ..... Push

Supplementary Procedures - **DO NOT USE FOR FLIGHT** 

737 Flight Crew Operations Manual

| LOAD<br>INDE<br>BELC | X   | 2-2<br>30<<br>100* |
|----------------------|-----|--------------------|
| МАХ                  | IAS | 250*               |

Line 2 displays the flight index number.

Lines 3 and 4 display the preset low altitude/airspeed restrictions. If restrictions have not been pre-entered, the bottom line will read: MAX IAS NONE.



Flight index numbers and low altitude flight levels and airspeeds can be entered from the CDU, if required.

#### **Flight Modes:**

#### Takeoff

Flight mode selector ......TO

| FULL 1-2<br>OAT`C 15<<br>OAT`F 59* |  |
|------------------------------------|--|
| EPR<br>2.10 2.10                   |  |

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Crew calculated and PDCS takeoff EPR are checked to ensure that they are consistent. If there is a difference in value of more than .01 EPR, check initial data loaded and performance chart EPR. PDCS and calculated EPR will not be the same if existing aircraft bleed configuration is different from that used for calculations. Should a difference still exist, use manual EPR bug operation and calculate EPR values for takeoff.

If a reduced thrust takeoff is desired, select page 2:



The EPR values are not displayed until the assumed takeoff temperature is entered into the computer.

The assumed takeoff temperature may be determined from airport analysis data.

| ENGAGE key                                                                              | Push              |
|-----------------------------------------------------------------------------------------|-------------------|
| Observe the ENGAGE light extinguishes, TO is an EPR bugs drive to the displayed values. | nunciated and the |

Airspeed selector ..... Pulled out

Set airspeed bug(s) for manual operation.

#### Climb

When climb thrust is desired:

Flight mode selector .....CLB

| ECON        | 1 - 4 |
|-------------|-------|
| IAS         | 311   |
| MACH        | .700  |
| WIND        | 0     |
| EPR<br>2.06 | 2.06  |

**Note:** All CLB pages use the low altitude/speed restriction as discussed on page 2 of LOAD.

#### Cruise

Prior to the top of climb the PDCS should be set for cruise:

Flight mode selector.....CRZ

| ECON    | 1-4  |
|---------|------|
| IAS     | 315  |
| MACH    | .730 |
| WIND -> | -10< |
| EPR     |      |
| 1.92    | 1.92 |
| l l     |      |

Select the desired page for cruise.

Page 1 displays values for ECON; the most economical cruise.

Page 2 displays values for LRC; long range cruise.

Page 3 displays data for MANUAL; a manually entered cruise speed schedule.

All values are computed for the present gross weight and altitude. An updated wind component should be entered if available.

Engage the preselected PDCS cruise flight mode after the displayed cruise airspeed/Mach is achieved.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

ENGAGE key .....Push

Observe the ENGAGE light extinguishes, CRZ is annunciated and the EPR bugs drive to the displayed values.

#### Descent

When approaching the area where the start of descent is anticipated, the PDCS should be set for descent:

Flight mode selector ..... DES



Select the desired page for descent.

Page 1 displays values for ECON; the most economical descent profile.

This display indicates descent from present altitude to destination, elevation 1681 feet, requires 15 minutes and 76 miles if the ECON airspeed/Mach is maintained.

The time and distance display blanks when the airplane is less than 2000 feet above the destination airport.

Page 2 displays MANUAL; a manually selected MACH/airspeed schedule.

Engage the preselected PDCS descent flight mode when the descent is initiated:

ENGAGE key .....Push

Observe the ENGAGE light extinguishes, DES is annunciator illuminates and airspeed bug(s) drive to the displayed value.

The EPR bugs drive to 1.0 EPR. Descend maintaining target airspeed. Both descent pages assume idle thrust, or 55% N1 if anti-ice is on. EPR bug settings should not be used in this mode.

If anti-ice is turned on during descent, time and distance calculations assume the throttles are set at 55% N1 and change accordingly. Descent IAS does not change as a function of anti-ice.

**Note:** DES pages use the low altitude speed restriction as displayed on page 2 of LOAD.

#### **Turbulent Air Penetration**

The TURB key displays information for turbulent air penetration information in cruise. It is necessary to have the flight mode selector positioned to CRZ to engage the turbulence mode of operation. CRZ must be engaged:

| Flight mode selector | CRZ  |
|----------------------|------|
| ENGAGE key           | Push |
| TURB key             | Push |

| CRZ TURB  |      |
|-----------|------|
| IAS       | 280  |
| MACH      | .700 |
| PITCH ATT | 10`  |
| N1%       |      |
| 88        | 88   |
|           |      |

CRZ and TURB are annunciated. Target Mach/airspeed, N1 and pitch attitude necessary to maintain present altitude at turbulence penetration airspeed are displayed.

Note: TURB data is displayed for reference during manual flight.

To disengage TURB:

TURB key ......Push The mode annunciator returns to the cruise mode.

#### Holding

The information displayed on the HOLD page is based on minimum fuel usage at present holding altitude, at the present gross weight, with flaps up in a standard race track holding pattern:

Flight mode selector.....HOLD

#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

```
HOLD
M.680 IAS 210
TIME+R+A 3:55
→E 4:55
EPR
1.86 1.86
```

Line 2 indicates MACH and/or airspeed for holding.

Line 3 displays endurance time in hours and minutes to reserve fuel levels (R+A.)

Line 4 shows endurance time in hours and minutes to empty fuel tanks.

ENGAGE key .....Push

Observe the ENGAGE light extinguishes, HOLD is annunciated and the airspeed and EPR bugs drive to displayed values.

#### **Continuous Thrust**

Pages 1 and 2 provide data for one engine inoperative operation. They display maximum continuous thrust EPR limits, time and distance and MACH/airspeed for driftdown to, or climb to, a maximum flight level which can be maintained with one engine inoperative.

Page 3 displays maximum continuous thrust EPR limits only.

Example: Engine failure at an altitude above maximum flight level for one engine inoperative.

Flight mode selector ..... CON

| E/OUT MA<br>O:8 DIST<br>MAX FL<br>M.700 IA | 260  |
|--------------------------------------------|------|
| EPR<br>2.26                                | 1.00 |

Line 2 is in the time and distance to level off at the maximum flight level (line 3.)

#### Supplementary Procedures - DO NOT USE FOR FLIGHT Engines, APU

#### 737 Flight Crew Operations Manual

Line 4 is the target MACH/airspeed for the best possible driftdown flight path.

EPR values are for MCT

Page 2 displays data similar to page 1 except the flight level displayed is the maximum flight level at which LRC speed can be maintained using MCT with one engine inoperative.

ENGAGE key ..... Push

Observe the ENGAGE light extinguishes, CON is annunciated and the airspeed and EPR bugs drive to displayed values.

#### **Go-Around**

Prior to commencing approach:

Flight mode selector.....GA

| LIMIT<br>V REF | 40<br>30<br>15 | 129<br>132<br>140 |
|----------------|----------------|-------------------|
| EPR<br>2.07    |                | 2.07              |

VREF speeds are based on present gross weight. Go-around EPR limits are based on present total air temperature and pressure altitude.

Airspeed selector ......Pulled out

Set airspeed bugs for manual operation.

Engage the GA flight mode when it is desired to have the EPR bugs drive to the displayed EPR values.

ENGAGE key ..... Push

Observe the ENGAGE light extinguishes, GA is annunciated and the EPR bugs drive to the displayed values.

**Note:** If the airspeed selector remains in PDCS control, the airspeed bugs drive to the stowed position, 440 KTS.

**Performance functions:** 

#### **Checking Altitude Intercepts**

Displays time and distance to intercept of a selected altitude from the airplane's present altitude. Any one of the three variables, altitude, time or distance may be entered into the PDCS in order to obtain the other two values. Five pages are provided to display intercept data.

Climb intercept - ECON - most economical climb.

Climb intercept – RATE – maximum rate of climb.

Climb intercept – MANUAL – climb with a manually selected airspeed.

Descent intercept - ECON - most economical descent.

$$\label{eq:loss_eq_loss} \begin{split} \text{Descent intercept} &- \text{MANUAL} - \text{descent with a manually selected} \\ \text{airspeed.} \end{split}$$

Example: The airplane's present altitude is 27,000 feet in economy cruise. It is desired to find time and distance to 35,000 feet.

Intercept key ..... Push



The initial display always shows time and distance for present altitude plus 4000 feet (or minus in the case of descent) of altitude change.

To display time and distance to 35,000 feet, enter 350 on the GO-FL line and if a new wind component is available enter it on the WIND line.

Now the display shows:

#### Supplementary Procedures - **DO NOT USE FOR FLIGHT** Engines, APU 737 Flight Crew Operations Manual

Lines 3 and 4 display time and distance required to reach the new altitude.

# Checking the Wind (WIND)

The WIND performance function automatically computes the wind component from DME-1, DME-2 or from manually entered values of wind direction, wind velocity and airplane course direction.

The displayed headwind/tailwind component is only valid if the airplane is flying directly to or from the DME station.

A displayed minus sign (-) indicates a headwind component. Absence of a sign indicates a tailwind component.

WIND key ..... Push

| WIND $\Omega$ | 1-4 |
|---------------|-----|
| WIND→ Ω       | -20 |
| UPDATE        | NO< |

Line 2 is the wind component.

To update the PDCS with this wind information:

CLR key ...... Push The caret blinks. NO changes to YES.

ENT key ..... Push

The caret stops blinking. The PDCS is now updated.

When the wind component is "updated" all flight mode and performance function pages which specify wind are simultaneously updated.

Page 2 displays the wind component computed from DME-1.

Page 3 displays the wind component computed from DME-2.

Page 4 is used for computation of the wind component from manually entered data:

Supplementary Procedures -Engines, APU

#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual


| WIND MAN | 4-4  |
|----------|------|
| W/DIR    | ???< |
| W/VEL    | ???* |
| COURSE   | ???* |
| WIND 🗕   |      |
| UPDATE   | N0*  |
|          |      |

#### **Checking the Flight Level (FL)**

FL furnishes data the crew requires to fly an optional step climb schedule in cruise. FL displays provide continuously updates values of maximum and optimum cruise flight levels for ECON, LRC and MANUAL speed schedules based on current flight conditions. Each display also contains present flight level information making deviations from the optimum flight level readily apparent. Buffet margin for each flight level and wind-altitude trade data is also displayed.

Example: The airplane's present altitude is 27,000 feet in economy cruise. It is desired to check optimum flight level for ECON CRZ.

FL key .....Push



Line 2 is the optimum altitude of 31,000 feet with a buffet margin of 1.54 gs.

Line 3 is the maximum altitude of 33,000 feet with a buffet margin of 1.41 gs.

Line 4 is present flight level and buffet margin.

To check wind-altitude trade data for 31,000 feet, enter flight level 31,000 on line 4.

Supplementary Procedures - **DO NOT USE FOR FLIGHT** 

737 Flight Crew Operations Manual

FL ECON 1-3 OPT 1.54/310 MAX 1.41/330 1.49/310< FL WIND -10

Line 5 now shows you can accept 10 knots less tailwind or 10 knots more headwind at FL 310 without affecting your fuel mileage.

#### **Checking the Temperature and TAS (TEMP)**

When desired, the PDCS may be used to check the SAT, TAT, ISA deviation and TAS.

TEMP key ..... Push

| TEMP               | 1-2 |
|--------------------|-----|
| ISA <sup>-</sup> C | 5   |
| TAT `C             | -20 |
| SAT `C             | -40 |
| SAT `F             | -40 |
| TAS KT             | 320 |

This display is information only; no entries can be made.

Page 2 converts SAT to ISA deviation at any altitude; this is most frequently done as part of the preflight planning activity.

PAGE FORWARD key ..... Push

| TEMP         2-2           FL         ???<           SAT         C         ???*           ISA         C         ???* |
|----------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------|

Entering flight level and SAT causes the PDCS to compute and display the ISA deviation.

Supplementary Procedures -Engines, APU

#### 737 Flight Crew Operations Manual

IOT USE FOR FLIGHT



Alternately, entering the flight level and ISA deviation causes the computer to display the corresponding SAT.

#### Checking the Range (RNG)

RNG is operational only when CRZ, CON or HOLD is selected.

To find the range capability on the remaining fuel quantity at the present flight level or any other flight level:

RNG key ..... Push



The display shows range data corresponding to the engaged cruise speed:

Line 2 is range to total fuel reserve fuel quantity. Line 3 is range to empty tanks. The flight level and wind may be changed as desired.

Page 2 displays RNG LRC.

Page 3 RNG MANUAL provides data for a manually selected airspeed.

Page 4 displays RNG E/OUT information for one inoperative engine and maximum continuous thrust (MCT.)

Page 5 RNG HOLD gives endurance data for holding.

#### **Checking the Fuel (FUEL)**

The FUEL performance function is operational only when CRZ or CON is selected.

To determine the total fuel on board or the fuel remaining over destination:

Supplementary Procedures -Engines, APU

<sup>7</sup> **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| FUEL key | , | Push |
|----------|---|------|
|----------|---|------|

| FUEL | EC0 | N 1-4 |
|------|-----|-------|
| DIST | NM  | 850<  |
| RSV+ | ۱L۲ | 4.4   |
| FOD  |     | 8.4   |
| WIND | +   | -10*  |
| FUEL | WΤ  | 15.7  |
| (    |     |       |

The display shows range data corresponding to the engaged cruise page.

Line 2 - enter distance to go. The display shows entered distance to go.

Line 3 displays total of reserve fuel plus alternative fuel entered on the load page in thousands of KGS.

Line 4 displays fuel remaining over destination or waypoint at the CRZ ECON speed for the present altitude and distance to go in thousands of KGS.

Line 5 displays the wind component the data is based on.

Line 6 displays total fuel quantity remaining in thousands of KGS.

Page 2 FUEL LRC is the same as ECON except CRZ LRC speed is used.

Page 3 FUEL MAN is the same as ECON except CRZ MAN speed is used.

Page 4 FUEL E/OUT is the same as ECON except CON ENG OUT speed is used.

#### Checking the Ground Speed (GS)

GS is operational only if CRZ or CON is selected.

The ground speed performance function enables the crew to determine the present ground speed and to solve time/distance/speed problems.

GS key ..... Push

| -     |    |       |
|-------|----|-------|
| GS    |    | 437<) |
| TAS   |    | 427   |
| WIND→ | •  | 10*   |
| TIME  |    | ????* |
| DIST  | ΝM | ????* |
|       |    |       |
|       |    |       |

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

The ground speed initially shown is current ground speed; it may be changed. Changing the ground speed causes the PDCS to compute and display the corresponding wind or vice versa. For any two entered numbers the system computes and displays the remaining two; thus entering GS and DIST results in a display of computed WIND and TIME, etc.

#### Checking V REF (V REF)

When desired, the PDCS can be used to check V REF speeds for flaps 15, 30 and 40.

V REF key ..... Push



The initial display shows data for the airplane's current gross weight. However, other GW's such as predicted landing GW may be entered to provide V REF for landing.

#### **Checking Optimum Trip Flight Level (TRIP)**

After LOAD data has been entered:

TRIP key .....Push



Enter the trip distance.

Line 2 displays entered trip distance.

Lines 3 and 4 display 0 for ISA deviation in °C and the WIND component. If known, these values may be entered.

Line 5 displays optimum flight level for economy cruise.

Changing ISA deviation in °C or WIND may change the displayed optimum TRIP FL.

## Error and alert message displays:

The PDCS provides error and alert message displays as a crew advisory.

Error messages are in two categories:

Crew correctable errors – such as invalid entry or an invalid flight configuration. These can be cleared by pressing recall.

System failures – such as the failure of an input or a system self-test failure. System failures are discussed in Malfunctions.

Some typical crew correctable errors are shown in the following displays.

An invalid entry is displayed in the example:



"OUT OF LIMIT" indicates that the value entered is outside the airplane's performance flight envelope.



## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

This example displays a situation concerned with an entered ZFW that is higher than MAX ZFW.



The first page of TO indicates that engine anti-ice has been switched on when the temperature is greater than  $10^{\circ}$  C. Push recall to clear the message.

For all flight modes and the appropriate performance functions; when the displayed (or engaged) speed and altitude put the airplane closer to buffet than an internal PDCS preset value allows, an alert message is displayed.

This example is a typical alert message display for buffet:



Line 2 for flight modes shall show DISPLAYED or ENGAGED, determined by which data caused the alert message.

Lines 3, 4 and 5 display the alert information.

To clear the buffet margin ALERT message and to continue operation with the reduced level, push RECALL.

# **Malfunctions:**

#### Blank display

A blank display indicates an internal power supply failure, a character generator failure or a lack of signals between the CDU and the computer. The PDCS cannot be used.

#### **Failure messages**

A failure message is displayed if there is a PDCS input failure or an internal PDCS failure. Except for the failures noted below, the PDCS is unusable.

Use EPR limit

A display of USE EPR LIMIT indicates a failure of the fuel summation unit. This failure causes the PDCS to lose its gross weight information.

**Note:** There is not a failure message for an inoperative fuel quantity indicator; however an inoperative indicator creates an error in the PDCS gross weight computation.

In the event of a USE EPR LIMIT display or an inoperative fuel quantity indicator, the PDCS may only be used to display limit EPR for each thrust rating.

Max Climb EPR is displayed on CLB page 4. Max Continuous EPR is displayed on CON page 3. Go-Around EPR is displayed on the GA page.

The TO mode is not affected by the failures.

Ind F/B

A display of IND F/B indicates failure of the engine's EPR input to the PDCS computer. This failure affects only the K-factor calculation, if active, (actual EPR is adjusted for drag.) All other modes and performance functions are normal.

DME failure

A display of DME FAILURE indicates a failure of the DME system input to the PDCS computer. The WIND information associated with the failed system is unusable.

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

# Supplementary Procedures Flight Controls

# **Mach Trim Test**

Prior to test:

| System B hydraulic pumps | ON           |
|--------------------------|--------------|
| Flight control switches  | ON           |
| Flaps                    | UP           |
| Autopilot                | DISENGAGE    |
| MACH TRIM FAIL light     | Extinguished |
|                          |              |

#### Test:

#### MACH TRIM

TEST switch ...... Push and hold for 10 seconds The MACH TRIM FAIL light illuminates and the control columns move aft approximately one inch. Upon release of the TEST switch, the control columns reposition forward and the MACH TRIM FAIL light extinguishes.

# Stabilizer Trim Operation with a Forward or Aft CG

In the event the stabilizer is trimmed to the end of the electrical trim limits, additional trim is available through the use of the manual trim wheels. If manual trim is used to position the stabilizer beyond the electrical trim limits, the stabilizer trim switches may be used to return the stabilizer to the electrical trim limits.

Intentionally Blank

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

# **Supplementary Procedures**

Flight Instruments

Chapter SP Section 10

# **Altitude Alert Test**

Acquisition test:

Altitude selector .....Rotate

Set the altitude counter to be more than 1000 feet higher or lower than the captain's altimeter indication.

Altitude selector ...... Reset

Reset the altitude counter to agree with the captain's altimeter. When the altitude counter indicates a difference from the captain's altimeter of approximately 1000 feet, the audio tone sounds for two seconds and the ALTITUDE ALERT lights illuminate steady.

The light extinguishes when the altitude counter indicates a difference from the captain's altimeter of approximately 375 feet.

#### **Altimeter Difference**

**Note:** If flight in RVSM airspace is planned, use the RVSM table in the limitations section.

This procedure is accomplished when there is a noticeable difference between the altimeters. Accomplish this procedure in stabilized level flight or on the ground.

Altimeters ...... Set

The reference barometric setting for this check is field barometric pressure or standard barometric pressure (29.92 in Hg or 1013 mb) as appropriate. Perform the following for all altimeters:

- First rotate the Baro Set knob clockwise to a higher barometric setting than the reference.
- Then rotate the Baro Set knob counterclockwise back to the reference barometric setting.

Altimeters ..... Crosscheck

Maximum differences between the altimeter readings:

Supplementary Procedures -Flight Instruments



| ALTITUDE    | ELEC/ELEC | ELEC/STBY |
|-------------|-----------|-----------|
| Sea level   | 50 feet   | 50 feet   |
| 5,000 feet  | 50 feet   | 80 feet   |
| 10,000 feet | 60 feet   | 120 feet  |
| 15,000 feet | 70 feet   | see note  |
| 20,000 feet | 80 feet   | see note  |
| 25,000 feet | 100 feet  | see note  |
| 30,000 feet | 120 feet  | see note  |
| 35,000 feet | 140 feet  | see note  |
| 40,000 feet | 160 feet  | see note  |

737 Flight Crew Operations Manual

**Note:** Above 10,000 feet and .4 Mach, position error causes the tolerance to diverge rapidly and direct crosscheck becomes inconclusive. Between 10,000 feet and 29,000 feet, differences greater than 400 feet should be suspect and verified by ground maintenance checks. Between 29,000 feet and the maximum operating altitude, differences greater then 500 feet should be suspect and verified by ground maintenance checks.

If it is not possible to identify which altimeter is indicating the correct altitude:

| ATCNotify |
|-----------|
|-----------|

#### **QFE** Operation

Use this procedure when ATC altitude assignments are referenced to QFE altimeter settings.

| Cabin pressure barometric counter Set QFE                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Altimeters                                                                                                                                   |  |  |
| Set altimeters to QFE when below transition altitude/level.                                                                                  |  |  |
| <b>Note:</b> If the QFE altimeter setting is beyond the range of the altimeters, QNH procedures must be used with QNH set in the altimeters. |  |  |
| Landing Altitude Indicator Set at zero                                                                                                       |  |  |
| Cabin Altitude Indicator                                                                                                                     |  |  |

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

| <b>Supplementary Procedures</b> |
|---------------------------------|
| Flight Management, Navigation   |

Chapter SP Section 11

## Navigation/General

## **Flight Director Tests**

| Mode selector                                            | OFF |
|----------------------------------------------------------|-----|
| Verify the flight director command bars are out of view. |     |

#### HDG Mode

| Mode selector                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Heading selectorRotate                                                                                                                                            |
| Rotate the heading cursor left and right through the airplane heading.<br>The flight director command bars display roll commands to follow<br>the heading cursor. |
| Pitch commandRotate                                                                                                                                               |
| Rotate the pitch command control up and down. The flight director<br>command bars display pitch command to follow the movement of the<br>pitch command control.   |
| Altitude hold switchON                                                                                                                                            |
| Pitch command control Rotate<br>The flight director command bars should not move.                                                                                 |

#### MAN GS Mode

This test may be made in conjunction with the HSI test.

#### Supplementary Procedures - DO NOT USE FOR FLIGHT Flight Management, Navigati DO NOT USE FOR FLIGHT

| ILS test switchLEFT                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verify flight director command bars up and left, glideslope pointer one dot up and course deviation bar one dot left.                                          |
| ILS test switch                                                                                                                                                |
| Verify flight director command bars down and right, glideslope pointer one dot down and course deviation bar one dot right.                                    |
| HSI and VHF NAV Tests                                                                                                                                          |
| HSI/VOR RMI Test                                                                                                                                               |
| If this test is conducted in flight, it affects the flight director in VOR/LOC, AUTO APP and MAN GS modes.                                                     |
| No. 1 VHF navigation radioSet<br>Tune radio to a VOR frequency.                                                                                                |
| Course selector                                                                                                                                                |
| Set course 000 in course selector window.                                                                                                                      |
| VOR TEST switch Push<br>Verify course deviation bar centered, TO/FROM flag indicates<br>FROM and the No. 1 VOR pointer indicates approximately 180<br>degrees. |
| HSI/ILS Test                                                                                                                                                   |
| <b>Note:</b> Operating the ILS test switch causes the autopilot mode selector to trip to MAN mode.                                                             |
| No. 1 VHF navigation radioSet<br>Tune radio to an ILS frequency.                                                                                               |
| Verify navigation and glide slope warning flags are out of view.                                                                                               |
| ILS test switchLEFT and hold                                                                                                                                   |
| Verify glideslope pointer indicates one dot up and course deviation bar one dot left.                                                                          |
| ILS test switch                                                                                                                                                |
| Verify glideslope pointer indicates one dot down and course deviation bar one dot right.                                                                       |
| NAV test switchRelease                                                                                                                                         |
| Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.                                           |

# **DO NOT USE FOR FLIGHT** Supplementary Procedures -Flight Management, Navigation

737 Flight Crew Operations Manual

# **Instrument Comparator Test**

| No. 1 VHF navigation radioSet<br>Tune radio to an ILS frequency.                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Instrument comparator test switchPush<br>Verify the comparator light (pilots' panels) illuminate.                                       |
| Instrument comparator test switch Release<br>Verify the comparator light extinguish.                                                    |
| Low Range Radio Altimeter Test                                                                                                          |
| MDA cursorSet<br>Set MDA cursor 100 feet above test altitude.<br>[MDA light illuminates.]                                               |
| Test switchPush and hold                                                                                                                |
| Warning flag appears and altitude pointer moves to preset test altitude.                                                                |
| MDA cursorReset                                                                                                                         |
| While holding the test switch, rotate MDA cursor to zero feet. The MDA light extinguishes when the MDA cursor goes below test altitude. |
| Test switch                                                                                                                             |
| Altitude pointer returns to zero and warning flag is out of view.                                                                       |
| DME Test                                                                                                                                |
| Airplanes with indicator in HSI:                                                                                                        |
| VHF navigation radio Select VOR frequency                                                                                               |
| DME test switchPush                                                                                                                     |
| Verify that both DME indicators for the DME being tested drive to 000 miles.                                                            |
| DME test switchRelease                                                                                                                  |
| Airplanes with separate digital indicator:                                                                                              |
| VHF navigation radio Select VOR frequency                                                                                               |

#### Supplementary Procedures - DO NOT USE FOR FLIGHT Flight Management, Navigati DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

DME switch ..... TEST

Verify both DME indicators being tested go blank for one second, then display dashes for one second, then display zeroes until the switch is released.

#### **Transponder Test**

ATC transponder test switch ......TEST

Check that the REPLY light illuminates.

On airplanes with TCAS, verify "TCAS SYSTEM TEST OK" aural sounds.

**Note:** The REPLY light will also illuminate if the system is being interrogated by a ground station.

| Aural Alerts                                          | Definition                         |
|-------------------------------------------------------|------------------------------------|
| "TCAS SYSTEM TEST FAIL"                               | Test failed. Maintenance required. |
| "TCAS SYSTEM TEST OK" Test complete. System operable. |                                    |

#### **ADF Radio and RMI Test**

| ADF/VOR test switch<br>(on RMI) ADF                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ADF mode selector Push<br>The ADF pointer on the RMI should point approximately 45<br>degrees left of the lubber line.                           |
| Instrument Transfer Switching Tests                                                                                                              |
| Fail the captain's equipment by pulling the appropriate circuit breakers.                                                                        |
| Appropriate transfer switch Transfer to alternate<br>or auxiliary system                                                                         |
| Check that operation of the system is restored; also check that the flags are out of view and the instrument comparator lights are extinguished. |
| Circuit breakers                                                                                                                                 |

Transfer switches.....NORMAL

Repeat the above steps for the first officer's equipment.

## **Compass Switching**

In the event that an RDMI and HSI HDG flag appears, or a compass system is giving erroneous headings (even without an OFF flag,) accomplish the following:

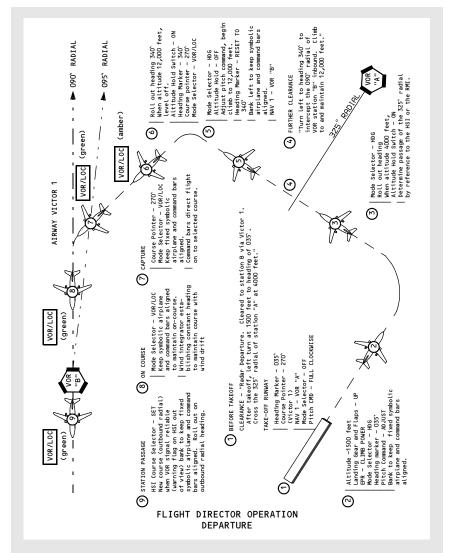
Determine which system is accurate.

Note flags, or absence of flags in level flight, check the two systems with the standby compass.

Position the compass transfer switch from NORMAL to the operative system (BOTH ON 1 or BOTH ON 2.)

The compass card that has been switched must be aligned (using the HDG SET knob on the compass control panel) to agree with the operative compass card.

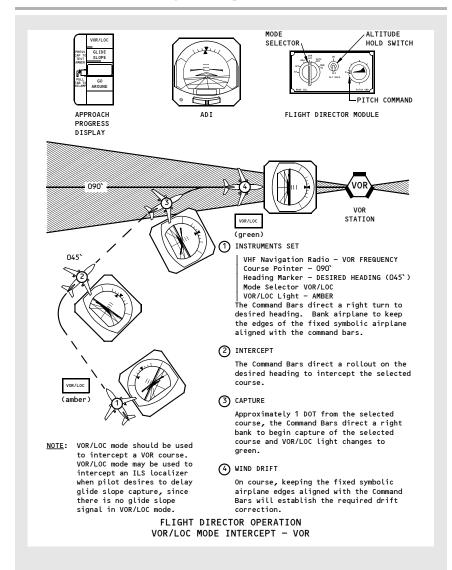
# Weather Radar Test - Monochromatic Radar


CAUTION: Tests involving radiation of RF energy by the radar antenna must not be made while radar antenna is directed toward people, nearby large metal objects, during refueling operations or in the vicinity of trucks or containers holding flammable or explosive liquids.

| Function selector                       | STBY                         |
|-----------------------------------------|------------------------------|
| Allow three to five minutes for radar w | /arm-up.                     |
| Brightness control                      | Full counterclockwise        |
| Panel dim control                       | Full counterclockwise        |
| Gain control                            | FIXED                        |
| Antenna tilt                            | Full up                      |
| Range selector                          |                              |
| Function selector                       |                              |
| Brightness control                      | Clockwise until marks appear |
| Panel dim control                       | Clockwise for desired light  |
| Function selector                       | As desired                   |

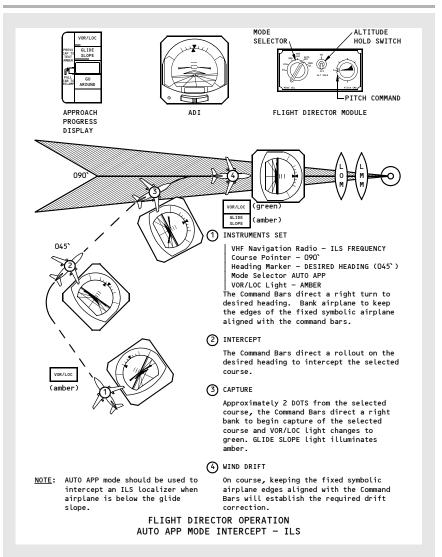
Supplementary Procedures -Flight Management, Navigati DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

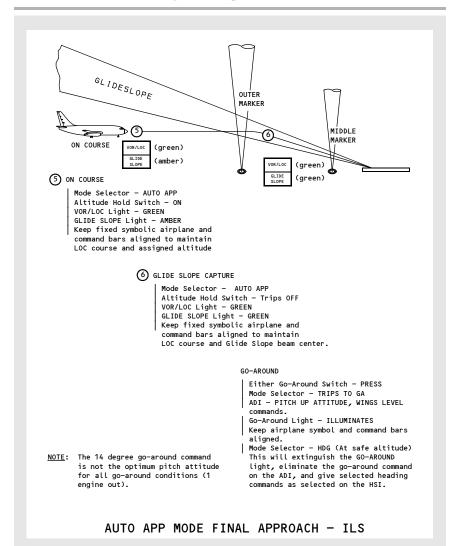

#### **Flight Director Operation**



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. SP.11.6 D6-27370-200A-TBC April 3, 2015 **DO NOT USE FOR FLIGHT** Supplementary Procedures -Flight Management, Navigation


| INSTRUMENT SET<br>Mode Selector - HDG<br>Altitude Hold - ON<br>Heading Pointer ROTATE CLOCKWISE FROM<br>090' to 260' WITH HDG SELECTOR<br>The command bars direct a right bank when<br>the heading cursor is changed from 090'<br>to 260'.                                                                                                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ② By rolling the airplane to the right until<br>the edges of the fixed symbolic airplane<br>and the command bars are aligned, the proper<br>bank angle is attained and the desired<br>altitude is held.                                                                                                                                               |  |  |
| <ul> <li>The command bars direct a roll back left to wings level as the 260° heading is approached, thereby directing the airplane to roll out on the 260° heading with the wings level and still hold the desired altitude.</li> </ul>                                                                                                               |  |  |
| When the edges of the fixed symbolic airplane<br>and the command bars are aligned with wings<br>level, the airplane is on the selected heading<br>and holding the desired altitude. The heading submode is used to navigate without<br>radio aids or to position the airplane on an<br>intercept heading to a desired VOR radial or<br>an ILS course. |  |  |
| HDG MODE TURN                                                                                                                                                                                                                                                                                                                                         |  |  |

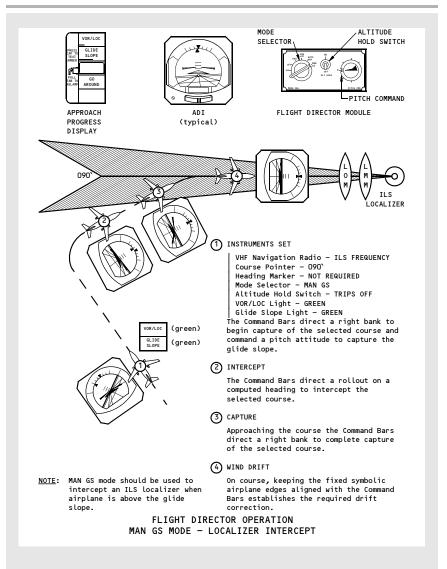
#### Supplementary Procedures - DO NOT USE FOR FLIGHT Flight Management, Navigat




**Supplementary Procedures -**

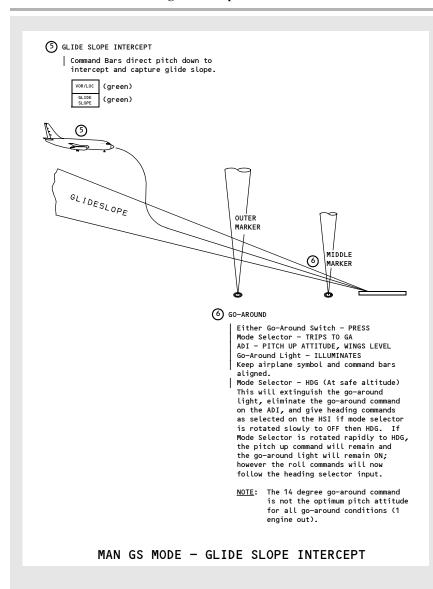
**DO NOT USE FOR FLIGHT** Supplementary Procedures -Register of the supplement, Navigation




#### Supplementary Procedures - DO NOT USE FOR FLIGHT Flight Management, Navigati DO NOT USE FOR FLIGHT

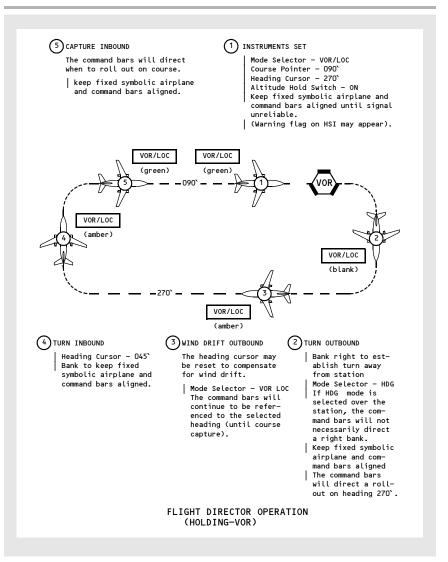


**Supplementary Procedures -**


**DO NOT USE FOR FLIGHT** Supplementary Procedures -Register of the supplement, Navigation

737 Flight Crew Operations Manual




#### Supplementary Procedures - DO NOT USE FOR FLIGHT Flight Management, Navigati DO NOT USE FOR FLIGHT

#### 737 Flight Crew Operations Manual



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. SP.11.12 D6-27370-200A-TBC April 3, 2015 **DO NOT USE FOR FLIGHT** Supplementary Procedures -Flight Management, Navigation

737 Flight Crew Operations Manual



Intentionally Blank

## **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

## Supplementary Procedures

#### Fuel

#### **Auxiliary Tank Refueling**

Fuel, in excess of full wing and center tank capacities is loaded into the auxiliary fuel tanks.

| Auxiliary fueling panel doorOpen                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refueling panel access doorOpen                                                                                                                                                                                                                |
| Manual defueling valve OPEN                                                                                                                                                                                                                    |
| Engine No. 2 start lever IDLE                                                                                                                                                                                                                  |
| Fueling valve switch(es)<br>(FWD, MID or AFT) OPEN                                                                                                                                                                                             |
| VALVES OPEN light(s) Illuminated                                                                                                                                                                                                               |
| Close when selected tanks are full, or when filled to the desired<br>quantity. Each tank is a selected group and can fill simultaneously but<br>may not fill evenly. Tank valve green lights extinguish when all tanks<br>in a group are full. |
| Fueling valve switch(es)CLOSE                                                                                                                                                                                                                  |
| VALVES OPEN lights Extinguished                                                                                                                                                                                                                |
| Manual defueling valveCLOSED                                                                                                                                                                                                                   |
| Refueling panel access door Closed & secured                                                                                                                                                                                                   |
| Auxiliary fueling panel door Closed & secured                                                                                                                                                                                                  |
| Engine No. 2 start lever CUTOFF                                                                                                                                                                                                                |

#### **Refueling With Battery Only**

**When** the APU is inoperative and no external power source is available, refueling can be accomplished as follows:

| Battery switch       | ON   |
|----------------------|------|
| Standby power switch | .BAT |

Supplementary Procedures - **DO NOT USE FOR FLIGHT** Fuel

737 Flight Crew Operations Manual

The battery operates the entire fueling system normally, including the gages and fuel shutoff system. The only limitation during this type of operation is the battery life.

#### **Fuel Balancing**

If an engine fuel leak is suspected: Accomplish the Fuel Leak Engine Checklist. Maintain main tank No. 1 and No. 2 fuel balance within limitations. Fuel pump pressure should be supplied to the engines at all times. At high altitude, without fuel pump pressure, thrust deterioration or engine flameout may occur. If the center/auxiliary tank contains fuel: Center/auxiliary tank fuel pump switches .....OFF Crossfeed selector ...... Open Fuel pump switches (low tank).....OFF When quantities are balanced: Fuel pump switches (main tank).....ON Center/auxiliary tank fuel pump switches .....ON If the center/auxiliary tank contains no fuel: Crossfeed selector ...... Open Fuel pump switches (low tank) .....OFF When quantities are balanced: Fuel pump switches ......ON 

#### **Fuel Balancing before Engine Start**

If extended APU operation is required on the ground and fuel is loaded in the center tank:

#### CAUTION: Center tank fuel pump switches should be positioned ON only if the fuel quantity in the center tank exceeds 1000 lbs.

## CAUTION: Do not operate the center tank fuel pumps with the flight deck unattended.

Left center tank fuel pump switch ......ON

This precludes fuel from being used from main tank No. 1 and prevents a fuel imbalance before takeoff.

#### Refueling

#### **Fuel Load Distribution**

Main tanks No. 1 and No. 2 should normally be serviced equally until full. Additional fuel is loaded into the center tank until the desired fuel load is reached. If the airplane is equipped with an aux tank, additional fuel can be loaded into the aux tank for greater desired fuel loading.

#### **Fuel Pressure**

Apply from a truck or fuel pit. A nozzle pressure of 50 psi. provides approximately 300 U.S. gallons per minute.

#### **Normal Refueling**

When a full fuel load is required, the fuel shutoff system closes the fueling valves automatically when the tanks are full. When a partial fuel load is required, the fuel quantity indicators are monitored and the fueling valves are closed by manually positioning the fueling valve switches to CLOSED when the desired fuel quantity is aboard the airplane.

#### **Auxiliary Tank**

**Note:** Ensure all fuel pump switches are off during pressure refueling of the auxiliary tank to avoid an inadvertent transfer of fuel into the auxiliary tank.

The manual defueling and crossfeed valves must be open when pressure refueling the auxiliary tank.

Supplementary Procedures - DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

#### **Refueling With Battery Only**

When the APU is inoperative and no external power source is available, refueling can be accomplished as follows:

Battery switch ..... ON

Standby power switch ..... BAT

The battery operates the entire fueling system normally, including the gages and fuel shutoff system. The only limitation during this type of operation is the battery life.

#### **Refueling With No AC or DC Power Source Available**

When it becomes necessary to refuel with the APU inoperative, the aircraft battery depleted, and no external power source available, refueling can still be accomplished:

Fueling hose nozzle .....Attached to the refueling receptacle

Fueling valves ...... Open for the tanks to be refueled

**Note:** Main tanks No. 1 and No. 2, and the center tank refueling valves each have a red override button that must be pressed and held while fuel is being pumped into the tank. Releasing the override button allows the spring in the valve to close the valve.

Caution must be observed not to overfill a tank, since there is no automatic fuel shutoff during manual operation. When the desired amount of fuel has been pumped into the tanks, the refueling valves for the respective tanks can be released. Main tanks No. 1 and No. 2 may also be refueled through filler ports over the wing. It is not possible to refuel the center tank externally.

#### **Ground Transfer of Fuel**

Fuel can be transferred from one tank to another tank using the fuel pumps, fueling valve, defueling valve, and crossfeed valve. AC power must be available.

**Note:** Before transferring fuel, ensure that the associated FUEL PUMP LOW PRESSURE lights are operating.

### **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

#### CAUTION: On airplanes with the center tank fuel pump automatic shutoff system installed, transferring fuel with passengers onboard is prohibited, unless the fuel quantity in the tank from which fuel is being taken is maintained at or above 2000 pounds/900 kilograms.

To transfer fuel from the main tanks to the center tank:

| Main tank fuel pump switchesON                                                             |
|--------------------------------------------------------------------------------------------|
| Crossfeed selector Open                                                                    |
| Engine No. 2 start lever (airplanes without aux tank)IDLE                                  |
| Manual defueling valveOpen                                                                 |
| Center tank fueling valve switch (if fuel transfer<br>into center tank is desired)OPEN     |
| Auxiliary tank fueling valve switch (if fuel transfer into aux tank is desired) OPEN       |
| Fuel transfer                                                                              |
| <b>When</b> a FUEL PUMP LOW PRESSURE light illuminates, turn OFF the associated fuel pump. |
| When the required amount of fuel has been transferred:                                     |
| Center and aux (as installed) tank fueling valve switchesCLOSED                            |
| Manual defueling valveClose                                                                |
| Engine No. 2 start lever (airplanes without aux tank) CUTOFF                               |
| Crossfeed selectorClose                                                                    |
| Main tank fuel pump switches OFF                                                           |
| Main TanksRefill                                                                           |
| Refueling panel and defuel panel access doorClose                                          |

### Supplementary Procedures - DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

### **Fuel Crossfeed Valve Check**

| Crossfeed selectorOpen                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verify Crossfeed VALVE OPEN light illuminates bright and then dim.                                                                                                     |
| Crossfeed selector                                                                                                                                                     |
| Verify Crossfeed VALVE OPEN light illuminates bright and then extinguishes.                                                                                            |
| Fuel Quantity Indicators Test                                                                                                                                          |
| <b>Note:</b> With a fuel quantity indicator inoperative, a zero fuel quantity input will be sent to the fuel summation unit causing a possible FMC gross weight error. |
| Fuel quantity test switch Push and hold                                                                                                                                |
| Hold until the fuel quantity indicators drive to zero.                                                                                                                 |
| <b>Note:</b> Do not push the QTY TEST switch when the airplane is being fueled. This will cause inaccurate indications at the external fueling panel.                  |
| Fuel quantity test switchRelease<br>Indicators return to previous reading.                                                                                             |

## **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

#### **Supplementary Procedures**

Chapter SP Section 15

Warning Systems

#### Ground Proximity Warning System (GPWS) Test

Verify that the guards are closed for all GROUND PROXIMITY INHIBIT switches.

Ground proximity SYS TEST switch ..... Push momentarily

Verify the following:

- BELOW G/S, PULL UP and GPWS INOP lights illuminate
- "GLIDESLOPE" and "WHOOP, WHOOP, PULL UP" aurals sound.

**Note:** If the test switch is held until the aurals begin, additional GPWS aural warnings are tested.

Intentionally Blank

## **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

#### Supplementary Procedures Adverse Weather

#### Introduction

Airplane operation in adverse weather conditions may require additional considerations due to the effects of extreme temperatures, precipitation, turbulence, and windshear. Procedures in this section supplement normal procedures and should be observed when applicable.

#### **Takeoff - Wet or Contaminated Runway Conditions**

The following information applies to takeoffs on wet or contaminated runways:

- For wet runways, reduced thrust (assumed temperature method) is allowed provided suitable takeoff performance accountability is made for the increased stopping distance on a wet surface
- For runways contaminated by slush, snow, standing water, or ice, reduced thrust (assumed temperature method) is not allowed
- V1 may be reduced to minimum V1 to provide increased stopping margin provided the field length required for a continued takeoff from the minimum V1 and obstacle clearance meet the regulatory requirements. The determination of such minimum V1 may require a real-time performance calculation tool or other performance information supplied by dispatch
- Takeoffs are not recommended when slush, wet snow, or standing water depth is more than 1/2 inch (13 mm) or dry snow depth is more than 4 inches (102 mm).

#### **Cold Weather Operations**

Considerations associated with cold weather operation are primarily concerned with low temperatures and with ice, snow, slush, and standing water on the airplane, ramps, taxiways, and runways.

Icing conditions exist when OAT (on the ground) or TAT (in flight) is 10°C or below, and any of the following exist:

- visible moisture (clouds, fog with visibility of one statute mile (1600 m) or less, rain, snow, sleet, ice crystals, and so on) is present, or
- ice, snow, slush, or standing water is present on the ramps, taxiways, or runways.

# CAUTION: Do not use engine or wing anti-ice when OAT (on the ground) or TAT (in flight) is above 10°C.

#### **Exterior Inspection**

Although removal of surface snow, ice and frost is normally a maintenance function, during preflight procedures, the captain or first officer should carefully inspect areas where surface snow, ice or frost could change or affect normal system operations.

Do the normal Exterior Inspection with the following additional steps:

Surfaces ...... Check

Takeoff with light coatings of frost, up to 1/8 inch (3mm) in thickness on lower wing surfaces due to cold fuel is allowable; however, all leading edge devices, all control surfaces, tab surfaces, upper wing surfaces and control surface balance panel cavities must be free of snow, ice and frost.

Thin hoarfrost is acceptable on the upper surface of the fuselage provided all vents and ports are clear. Thin hoarfrost is a uniform white deposit of fine crystalline texture, which usually occurs on exposed surfaces on a cold and cloudless night, and which is thin enough to distinguish surface features underneath, such as paint lines, markings or lettering.

| Control surface balance | panel cavities | Check |
|-------------------------|----------------|-------|
|-------------------------|----------------|-------|

Check drainage after snow removal. Puddled water may freeze in flight.

Pitot probes and static ports ......Check

Verify that all pitot probes and static ports are free of snow and ice. Water rundown after snow removal may freeze immediately forward of static ports and cause an ice buildup which disturbs airflow over the static ports resulting in erroneous static readings even when static ports are clear.

| Air conditioning inlets and | exits | Check |
|-----------------------------|-------|-------|
|-----------------------------|-------|-------|

Verify that the air inlets and exits, including the outflow valve, are free of snow and ice.

If the APU is operating, verify that the outflow valve is fully open.

Engine inlets ...... Check

Verify that the inlet cowling is free of snow and ice.

Verify that the fan is free to rotate.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Snow or ice that accumulates on the fan spinner or fan blades during extended shutdown periods must be removed by maintenance or other means before engine start.

Snow or ice that accumulates on the fan spinner or fan blades as a result of operation in icing conditions, such as during approach or taxi in, is allowed if the fan is free to rotate and the snow or ice is removed using the ice shedding procedure during taxi out and before setting takeoff thrust.

| Fuel tank vents Chec                                | :k |
|-----------------------------------------------------|----|
| Verify that all traces of ice and frost are removed |    |

Verify that all traces of ice and frost are removed.

Landing gear doors ...... Check Landing gear doors should be free of snow and ice.

APU air inlets ...... Check The APU inlet door and cooling air inlet must be free of snow and ice before APU start.

#### **Preflight Procedure - First Officer**

Do the normal Preflight Procedure - First Officer with the following modifications:

Under extremely cold conditions, both packs may be used for more rapid heating:

| APU switchSTART                  | F/O |
|----------------------------------|-----|
| Air conditioning PACK switchesON | F/O |
| ISOLATION VALVE switch OPEN      | F/O |
| APU BLEED air switch ON          | F/O |

Note: Keep all doors to the airplane closed as much as possible.

During right pack operation only, under cold conditions, if the left PACK TRIP OFF light illuminates, position the recirculation fan OFF until the cabin temperature stabilizes.

Do the following step after completing the normal Preflight Procedure - First Officer:

| PITOT STATIC HEAT switches ON | F/O |
|-------------------------------|-----|
|-------------------------------|-----|

Verify that all pitot static heat lights are extinguished.

#### **Engine Start Procedure**

Do the normal Engine Start Procedure with the following modifications:

- If the START VALVE OPEN light does not illuminate or the air duct pressure drop is not observed, the start valve solenoid may be frozen. If the engine will not start, use ground heating to warm the starter valve, fuel control unit and the ignition system.
- If the START VALVE OPEN light is still not observed, use the Manual Engine Start supplementary procedure.
- If N2 is not observed, apply external heat. Start the engine as soon as possible after thawing to prevent freezing.
- If ambient temperature is below -35°C, idle the engine for two minutes before changing thrust lever position.
- Oil pressure may not indicate any increase until oil temperature rises. Immediately shut down the engine if there is no indication of oil pressure within 30 seconds. Following a precautionary shutdown due to no indication of oil pressure, allow 10 to 15 minutes for internal heat to warm the oil system.
- Up to three and one-half minutes may be allowed for oil pressure to reach the minimum operating pressure. During this period, the LOW OIL PRESSURE light may remain illuminated, pressure may go above the normal range and the OIL FILTER BYPASS light may illuminate. Operate the engine at idle thrust until oil pressure returns to the normal range.

#### **Engine Anti-ice Operation - On the Ground**

Engine anti-ice must be selected ON immediately after both engines are started and remain on during all ground operations when icing conditions exist or are anticipated.

#### WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.

CAUTION: Do not use engine anti-ice when OAT is above 10°C.

When engine anti-ice is needed:

| ENGINE START switches | LOW IGN | F/O |
|-----------------------|---------|-----|
|                       |         |     |

ENGINE ANTI-ICE switches ..... ON F/O

Verify that all engine anti-ice VALVE OPEN lights illuminate bright, then dim.

Supplementary Procedures -Adverse Weather

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| When engine EPR has stabilized:                                                       |     |
|---------------------------------------------------------------------------------------|-----|
| ENGINE START switchesOFF                                                              | F/O |
| When engine anti-ice is no longer needed:                                             |     |
| ENGINE ANTI-ICE switches OFF                                                          | F/O |
| Verify that all engine anti-ice VALVE OPEN lights illuminate bright, then extinguish. |     |

#### Wing Anti-ice Operation - On the Ground (as installed)

On airplanes with ground operational wing anti-ice, use wing anti-ice during all ground operations between engine start and takeoff when icing conditions exist or are anticipated, unless the airplane is, or will be protected by the application of Type II or Type IV fluid in compliance with an approved ground de-icing program.

WARNING: Do not use wing anti-ice as an alternative for ground de-icing/anti-icing. Close inspection is still needed to ensure that no frost, snow or ice is adhering to the wing, leading edge devices, stabilizer, control surfaces or other critical airplane components at takeoff.

#### CAUTION: Do not use wing anti-ice when OAT is above 10°C.

When wing anti-ice is needed:

| WING ANTI-ICE switch | ON | F/O |
|----------------------|----|-----|
|----------------------|----|-----|

Verify that the L and R VALVE OPEN lights illuminate bright, then dim.

**Note:** The wing anti-ice VALVE OPEN lights may cycle bright/dim due to the control valves cycling closed/open in response to thrust setting and duct temperature logic.

When wing anti-ice is no longer needed:

WING ANTI-ICE switch ..... OFF F/O

Verify that the L and R VALVE OPEN lights illuminate bright, then extinguish.

#### **Before Taxi Procedure**

Do the normal Before Taxi Procedure with the following modifications:

# Supplementary Procedures - DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

| GENERATOR 1 and 2 switches<br>Normally the generator drives stabilize within or<br>although due to cold oil, up to five minutes can<br>to produce steady power.                                                                                                                   | one minute,                        | F/O     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------|
| If there is snow or ice accumulation on the wing, c<br>flight control check until after de-icing/anti-icing i                                                                                                                                                                     |                                    |         |
| Flight controls<br>An increase in control forces can be expected a<br>temperatures.                                                                                                                                                                                               |                                    | C       |
| CAUTION: The flap position indicator and the<br>devices annunciator panel should b<br>for positive movement. If the flaps<br>flap lever should be placed immedia<br>position as indicated.                                                                                        | e closely obse<br>should stop, t   | he      |
| Flaps                                                                                                                                                                                                                                                                             | Check                              | F/O     |
| Move flaps from Flaps up to Flaps 40 back to Fl full travel) to ensure freedom of movement.                                                                                                                                                                                       | aps up (i.e.,                      |         |
| If taxi route is through ice, snow, slush, or standing<br>temperatures or if precipitation is falling with temp<br>freezing, taxi out with the flaps up. Taxiing with the<br>subjects the flaps and flap drives to contamination.<br>are also susceptible to slush accumulations. | peratures below<br>ne flaps extend | v<br>ed |
| Call "FLAPS" as needed.                                                                                                                                                                                                                                                           |                                    | С       |
| Flap leverSet flaps, a                                                                                                                                                                                                                                                            | as needed                          | F/O     |
| Taxi–Out                                                                                                                                                                                                                                                                          |                                    |         |
|                                                                                                                                                                                                                                                                                   |                                    |         |

When standing water, snow or ice is present on the ramps, taxiways or runways, maintain a greater distance than normal between airplanes. Engine exhaust may form ice on the ramp and takeoff areas of the runway or blow snow or slush which freezes on the surfaces it contacts.

Idle reverse thrust can be used during taxi to reduce brake usage on clean, paved taxiways and runways. Do not use reverse thrust on snow, ice, or slush covered surfaces.

C

## **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

CAUTION: Taxi at a reduced speed. Use smaller nose wheel steering wheel and rudder inputs, and apply minimum thrust smoothly. Differential thrust may be used to help maintain airplane momentum during turns. At all other times, apply thrust evenly. Taxiing on slippery taxiways or runways at excessive speed or with high crosswinds may start a skid.

CAUTION: When operating the engines over significant amounts of standing de-icing or anti-icing fluid, limit thrust to the minimum required. Excessive ingestion of de-icing or anti-icing fluid can cause the fluid to build up on the engine compressor blades, resulting in compressor stalls and engine surges.

When moderate to severe icing conditions are present during prolonged ground operation, do an engine run up, as needed, to minimize ice build-up. Use the following procedure:

| Check that the area behind the airplane is clear.         | С |
|-----------------------------------------------------------|---|
| Run-up to a minimum of 70% N1 for approximately 15        |   |
| seconds duration at intervals no greater than 15 minutes. | С |

**Note:** Fan blade ice build up is cumulative. If the fan spinner and fan blades were not deiced prior to taxi out, the time the engines were operating during the taxi in should be included in the 15 minute interval.

If airport surface conditions and the concentration of aircraft do not allow the engine thrust level to be increased to 70% N1, then set a thrust level as high as practical and time at that thrust level.

**De-icing / Anti-icing** 

Testing of undiluted de-icing/anti-icing fluids has shown that some of the fluid remains on the wing during takeoff rotation and initial climb. The residual fluid causes a decrease in lift and increase in drag; however, the effects are temporary. Use the normal takeoff rotation rate.

Although no performance adjustments are required, it is recommended that a 5°C (9°F) buffer on the maximum assumed temperature be used when performing reduced thrust takeoffs (assumed temperature method). Use a takeoff flap setting of flaps 10 or greater whenever possible.

Supplementary Procedures - **DO NOT USE FOR FLIGHT** Adverse Weather

737 Flight Crew Operations Manual

| CAUTION: Operate the APU during de-icing only if necessar<br>the APU is running, ingestion of de-icing fluid ca<br>objectionable fumes and odors to enter the airpla<br>Ingestion of snow, slush, ice, or de-icing/anti-icin<br>can also cause damage to the APU. | auses<br>ane. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| If de-icing / anti-icing is needed:                                                                                                                                                                                                                               |               |
| APU As needed<br>The APU should be shut down unless APU operation is<br>necessary.                                                                                                                                                                                | F/O           |
| Call "FLAPS UP".                                                                                                                                                                                                                                                  | С             |
| FlapsUP<br>Prevents ice and slush from accumulating in flap cavities<br>during de-icing.                                                                                                                                                                          | F/O           |
| Thrust levers Idle<br>Reduces the possibility of injury to personnel at inlet or<br>exhaust areas.                                                                                                                                                                | C             |
| WARNING: Ensure that the stabilizer trim wheel handles a stowed before using electric trim to avoid pers injury.                                                                                                                                                  |               |
| Stabilizer trim UNITS<br>Set the trim for takeoff.<br>Verify that the trim is in the green band.                                                                                                                                                                  | C             |
| If the engines are running:                                                                                                                                                                                                                                       |               |
| FLT/GRD switch                                                                                                                                                                                                                                                    | F/O           |
| Engine BLEED air switches OFF<br>Reduces the possibility of fumes entering the air<br>conditioning system.                                                                                                                                                        | F/O           |
| APU BLEED air switch OFF<br>Reduces the possibility of fumes entering the air<br>conditioning system.                                                                                                                                                             | F/O           |

Supplementary Procedures -Adverse Weather

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| After de-icing / anti-icing is completed:                                                                                                           |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| APU As needed                                                                                                                                       | F/O         |
| CAUTION: After de-icing, the use of APU bleed air du takeoff can cause smoke in the airplane.                                                       | ring        |
| APU BLEED air switch As needed                                                                                                                      | FO          |
| Wait approximately one minute after de-icing is completed<br>engine BLEED air switches on to ensure all de-icing fluid<br>cleared from the engines: |             |
| Engine BLEED air switches ON                                                                                                                        | F/O         |
| If the engines are running:                                                                                                                         |             |
| FLT/GRD switchFLT                                                                                                                                   | F/O         |
| Flight controls Check, as needed<br>An increase in control forces can be expected at low<br>temperatures.                                           | C           |
| Before Takeoff Procedure                                                                                                                            |             |
| Do the normal Before Takeoff Procedure with the following mo                                                                                        | dification: |
| When tank fuel temperature is 0° C or below:                                                                                                        |             |

| Fuel HEAT switchesON<br>Fuel heat switches must remain on for one cycle just<br>prior to takeoff.                                                                                                                                                                                             | РМ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Call "FLAPS" as needed for takeoff.                                                                                                                                                                                                                                                           | PF |
| Flap lever Set takeoff flaps, as needed<br>Extend the flaps to the takeoff setting at this time if they<br>have been held because of slush, standing water, or icing<br>conditions, or because of exterior de-icing / anti-icing.<br>Verify that the LE FLAPS EXT green light is illuminated. | РМ |
| Fuel HEAT switchesOFF<br>Fuel heat switches must be OFF for takeoff.                                                                                                                                                                                                                          | PM |

#### **Takeoff Procedure**

Do the normal Takeoff Procedure with the following modification:

When moderate to severe icing conditions are present during prolonged ground operation, the takeoff must be preceded by a static engine run-up. Use the following procedure:

Run-up to a minimum of 70% N1 and confirm stable engine operation before the start of the takeoff roll.

Crosscheck EPR and N1 to ensure the required takeoff thrust has been obtained. A blocked PT2 probe may occur during operations in icing conditions and cause incorrect EPR indications.

#### **Engine Anti-ice Operation - In Flight**

Engine anti-ice must be ON during all flight operations when icing conditions exist or are anticipated, except during climb and cruise when the temperature is below  $-40^{\circ}$ C SAT. Engine anti-ice must be ON before, and during descent in all icing conditions, including temperatures below  $-40^{\circ}$ C SAT.

When operating in areas of possible icing, activate engine anti-ice before entering icing conditions.

#### WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.

#### CAUTION: Do not use engine anti-ice when TAT is above 10°C.

When penetrating or operating in icing conditions, maintain a minimum of 40% N1 when TAT is between  $10^{\circ}$ C and  $0^{\circ}$ C or 55% N1 when TAT is below  $0^{\circ}$ C.

When engine anti-ice is needed:

| ENGINE START switches                                              | LOW IGN                   | PM |
|--------------------------------------------------------------------|---------------------------|----|
| ENGINE ANTI-ICE switches                                           | ON                        | PM |
| Verify that all engine anti-ice VALVE illuminate bright, then dim. | OPEN lights               |    |
| EPR indications - Observe decrease and a                           | adjust thrust as required | 1. |

When engine EPR has stabilized:

| ENGINE START switches | OFF | PM |
|-----------------------|-----|----|
|-----------------------|-----|----|

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

When engine anti-ice is no longer needed:

ENGINE ANTI-ICE switches ..... OFF PM

Verify that all engine anti-ice VALVE OPEN lights illuminate bright, then extinguish.

EPR indications - Observe increase and adjust thrust as required.

#### Fan Ice Removal

## CAUTION: Avoid prolonged operation in moderate to severe icing conditions.

Prolonged operation in moderate to severe icing conditions can lead to fan blade/spinner icing and engine vibration. Severe icing can usually be avoided by a change in altitude and/or airspeed. If flight in moderate to severe icing conditions cannot be avoided, maintain a minimum of 70% N1. Necessary thrust reductions to not less that 55% N1 should be limited in duration to a maximum of one minute.

Engine vibration can occur due to fan blade icing. If engine vibration continues after increasing thrust, do the following on both engines, one engine at a time:

| ENGINE START switch                          | FLT    | PM |
|----------------------------------------------|--------|----|
| Thrust                                       | Adjust | PF |
| A direct the most to 700/ NIL for an annexin |        |    |

Adjust thrust to 70% N1 for approximately 1 minute.

If vibration does not decrease, consider shutting down the engine.

#### Wing Anti-ice Operation - In Flight

Ice accumulation on the flight deck window frames, windshield center post, or on the windshield wiper arm may be used as an indication of structural icing conditions and the need to turn on wing anti-ice.

In flight, the wing anti-ice system may be used as a de-icer or as an anti-icer. The primary method is to use it as a de-icer by allowing ice to accumulate before turning wing anti-ice on. This procedure provides the cleanest airfoil surface, the least possible runback ice formation, and the least thrust and fuel penalty. Normally it is not necessary to shed ice periodically unless extended flight through icing conditions is necessary (holding).

The secondary method is to use wing anti-ice before ice accumulation. Operate the wing anti-ice system as an anti-icer only during extended operations in moderate or severe icing conditions, such as holding.

#### CAUTION: Do not use wing anti-ice when TAT is above 10°C.

**Note:** Prolonged operation in icing conditions with the leading edge and trailing edge flaps extended is not recommended.

When wing anti-ice is needed:

WING ANTI-ICE switch ..... ON PM

Verify that the L and R VALVE OPEN lights illuminate bright, then dim.

When wing anti-ice is no longer needed:

| WING ANTI-ICE switch                                        | OFF               | PM |
|-------------------------------------------------------------|-------------------|----|
| Verify that the L and R VALVE OPEN bright, then extinguish. | lights illuminate |    |

#### **Cold Temperature Altitude Corrections**

Extremely low temperatures create significant altimeter errors and greater potential for reduced terrain clearance. When the temperature is colder than ISA, true altitude will be lower than indicated altitude. Altimeter errors become significantly larger when the surface temperature approaches -30°C or colder, and also become larger with increasing height above the altimeter reference source.

Apply the altitude correction table when needed:

- apply corrections to all published minimum departure, en route and approach altitudes, including missed approach altitudes, according to the table below. Advise ATC of the corrections.
- MDA/DA settings should be set at the corrected minimum altitudes for the approach
- corrections apply to QNH and QFE operations

To determine the correction from the Altitude Correction Table:

- subtract the elevation of the altimeter barometric reference setting source (normally the departure or destination airport elevation) from the published minimum altitude to be flown to determine "height above altimeter reference source"
- if the corrected indicated altitude to be flown is between 100 foot increments, set the MCP altitude to the closest 100 foot increment above the corrected indicated altitude to be flown.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

- enter the table with Airport Temperature and with "height above altimeter reference source." Read the correction where these two entries intersect. Add the correction to the published minimum altitude to be flown to determine the corrected indicated altitude to be flown. To correct an altitude above the altitude in the last column, use linear extrapolation (e.g., to correct 6000 feet or 1800 meters, use twice the correction for 3000 feet or 900 meters, respectively). The corrected altitude must always be greater than the published minimum altitude
- do not correct altitmeter barometric reference settings

An altitude correction due to cold temperature is not needed for the following conditions:

- While under ATC radar vectors
- When maintaining an ATC assigned flight level (FL)
- When the reported airport temperature is above 0°C or if the airport temperature is at or above the minimum published temperature for the procedure being flown
- **Note:** Regulatory authorities may have other requirements for cold temperature altitude corrections.

| Airport |             | Height Above Altimeter Reference Source |             |             |             |             |             |             |              |              |              |              |
|---------|-------------|-----------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|
| Temp °C | 200<br>feet | 300<br>feet                             | 400<br>feet | 500<br>feet | 600<br>feet | 700<br>feet | 800<br>feet | 900<br>feet | 1000<br>feet | 1500<br>feet | 2000<br>feet | 3000<br>feet |
| 0°      | 20          | 20                                      | 30          | 30          | 40          | 40          | 50          | 50          | 60           | 90           | 120          | 170          |
| -10°    | 20          | 30                                      | 40          | 50          | 60          | 70          | 80          | 90          | 100          | 150          | 200          | 290          |
| -20°    | 30          | 50                                      | 60          | 70          | 90          | 100         | 120         | 130         | 140          | 210          | 280          | 420          |
| -30°    | 40          | 60                                      | 80          | 100         | 120         | 140         | 150         | 170         | 190          | 280          | 380          | 570          |
| -40°    | 50          | 80                                      | 100         | 120         | 150         | 170         | 190         | 220         | 240          | 360          | 480          | 720          |
| -50°    | 60          | 90                                      | 120         | 150         | 180         | 210         | 240         | 270         | 300          | 450          | 590          | 890          |

#### Altitude Correction Table (Heights and Altitudes in Feet)

Supplementary Procedures - DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

#### **Altitude Correction Table (Heights and Altitudes in Meters)**

| Airport    |         | Height Above Altimeter Reference Source |          |          |          |          |          |          |          |          |          |          |
|------------|---------|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Temp<br>°C | 60<br>m | 90<br>m                                 | 120<br>m | 150<br>m | 180<br>m | 210<br>m | 240<br>m | 270<br>m | 300<br>m | 450<br>m | 600<br>m | 900<br>m |
| 0°         | 5       | 5                                       | 10       | 10       | 10       | 15       | 15       | 15       | 20       | 25       | 35       | 50       |
| -10°       | 10      | 10                                      | 15       | 15       | 20       | 20       | 25       | 30       | 30       | 45       | 60       | 90       |
| -20°       | 10      | 15                                      | 20       | 25       | 25       | 30       | 35       | 40       | 45       | 65       | 85       | 130      |
| -30°       | 15      | 20                                      | 25       | 30       | 35       | 40       | 45       | 55       | 60       | 85       | 115      | 170      |
| -40°       | 15      | 25                                      | 30       | 40       | 45       | 50       | 60       | 65       | 75       | 110      | 145      | 220      |
| -50°       | 20      | 30                                      | 40       | 45       | 55       | 65       | 75       | 80       | 90       | 135      | 180      | 270      |

#### **Approach and Landing**

If ice formations are observed on the airplane surfaces (wings, windshield wipers, window frames, etc.):

- VREF .....Add 10 knots This ensures maneuvering capability.
- **Note:** The combined airspeed corrections for ice formations, steady wind and gust should not exceed 20 knots.

PF

Note: To prevent increased landing distance due to high airspeed, bleed off airspeed in excess of VREF + 5 knots + gust correction when below 200 feet AGL. Maintain the gust correction to touchdown.

#### **After Landing Procedure**

CAUTION: Taxi at a reduced speed. Use smaller nose wheel steering wheel and rudder inputs, and apply minimum thrust smoothly. Differential thrust may be used to help maintain airplane momentum during turns. At all other times, apply thrust evenly. Taxiing on slippery taxiways or runways at excessive speed or with high crosswinds may start a skid.

737 Flight Crew Operations Manual

#### CAUTION: When operating the engines over significant amounts of standing de-icing or anti-icing fluid, limit thrust to the minimum required. Excessive ingestion of de-icing or anti-icing fluid can cause the fluid to build up on the engine compressor blades, resulting in compressor stalls and engine surges.

Do the normal After Landing Procedure with the following modifications:

After prolonged operation in icing conditions with the flaps extended, or when an accumulation of airframe ice is observed, or when operating on a runway or taxiway contaminated with ice, snow, or slush, or standing water:

Do not retract the flaps to less than flaps 15 until the flap areas have been checked to be free of contaminates.

Engine anti-ice must be selected ON and remain on during all ground operations when icing conditions exist or are anticipated.

WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.

CAUTION: Do not use engine anti-ice when OAT is above 10°C.

When engine anti-ice is needed:

| ENGINE START switchesLOW IGN                                                          | F/O |
|---------------------------------------------------------------------------------------|-----|
| ENGINE ANTI-ICE switches ON                                                           | F/O |
| Verify that all engine anti-ice VALVE OPEN lights illuminate bright, then dim.        |     |
| When engine EPR has stabilized:                                                       |     |
| ENGINE START switchesOFF                                                              | F/O |
| When engine anti-ice is no longer needed:                                             |     |
| ENGINE ANTI-ICE switches OFF                                                          | F/O |
| Verify that all engine anti-ice VALVE OPEN lights illuminate bright, then extinguish. |     |

When moderate to severe icing conditions are present during prolonged ground operation, do an engine run up, as needed, to minimize ice build-up. Use the following procedure:

| Check that the area behind the airplane is clear                                                                                                                                 | С |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Run-up to a minimum of 70% N1 for approximately 15 seconds duration at intervals no greater than 15 minutes                                                                      | C |
| If airport surface conditions and the concentration of aircraft do not allow the engine thrust level to be increased to 70% N1, then set a thrust level as high as practical and |   |
| time at that thrust level.                                                                                                                                                       | С |
|                                                                                                                                                                                  |   |

#### Shutdown Procedure

Do the following step before doing the normal Shutdown Procedure:

After landing in icing conditions:

#### WARNING: Ensure that the stabilizer trim wheel handles are stowed before using electric trim to avoid personal injury.

С

| Stabilizer trim Set 5 units                                                                                                        |  |
|------------------------------------------------------------------------------------------------------------------------------------|--|
| Prevents melting snow and ice from running into the tail<br>cone. Excessive water in the tailcone can freeze and lock<br>controls. |  |

#### **Secure Procedure**

Do the normal Secure Procedure with the following modifications:

If the airplane will be attended and warm air circulation throughout the cargo and E/E compartments is desired:

#### CAUTION: Do not leave the interior unattended with a pack operating and all doors closed. With the airplane in this configuration, accidental closure of the main outflow valve can cause unscheduled pressurization of the airplane.

| APUStart                    | F/O |
|-----------------------------|-----|
| APU GENERATOR switches ON   | F/O |
| One PACK switch ON          | F/O |
| ISOLATION VALVE switch AUTO | F/O |

## **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

| Pressurization mode selector MAN AC                                                                                                                                                                                    | F/O      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| FLT/GRD switch GRD                                                                                                                                                                                                     | F/O      |  |
| Outflow valve switch OPEN                                                                                                                                                                                              | F/O      |  |
| Prevents aircraft pressurization.                                                                                                                                                                                      |          |  |
| <b>Note:</b> The airplane must be parked into the wind when the outflow valve is full open.                                                                                                                            |          |  |
| APU BLEED air switchON                                                                                                                                                                                                 | F/O      |  |
| If the airplane will not be attended, or if staying overnight at off-line stations or at airports where normal support is not available, the flight crew must arrange for or verify that the following steps are done: |          |  |
| Pressurization mode selector MAN AC                                                                                                                                                                                    | F/O      |  |
| Outflow valve switch CLOSE                                                                                                                                                                                             | F/O      |  |
| Position the outflow valve fully closed to inhibit the intake of snow or ice.                                                                                                                                          |          |  |
| Wheel chocks Verify in place                                                                                                                                                                                           | C or F/O |  |
| Parking brake Released<br>Reduces the possibility of frozen brakes.                                                                                                                                                    | C        |  |
| Cold weather maintenance procedures for securing the airp                                                                                                                                                              | lane may |  |

Cold weather maintenance procedures for securing the airplane may be required. These procedures are normally done by maintenance personnel, and include, but are not limited to:

- protective covers and plugs installed
- water storage containers drained
- toilets drained
- · doors and sliding windows closed
- battery removed. If the battery will be exposed to temperatures below -18° C, the battery should be removed and stored in an area warmer than -18° C, but below 40° C. Subsequent installation of the warm battery ensures the starting capability of the APU.

#### Ice Crystal Icing (ICI)

At temperatures below freezing near convective weather, the airplane can encounter visible moisture made up of high concentrations of small ice crystals. Ice crystals can accumulate aft of the engine fan, in the engine core. Ice shedding can cause engine vibration, engine power loss, and engine damage.

Ice crystal icing is difficult to detect because ice crystals do not cause significant weather radar returns. They are often found in high concentrations above and near regions of heavy precipitation. Ice crystals do not stick to cold aircraft surfaces.

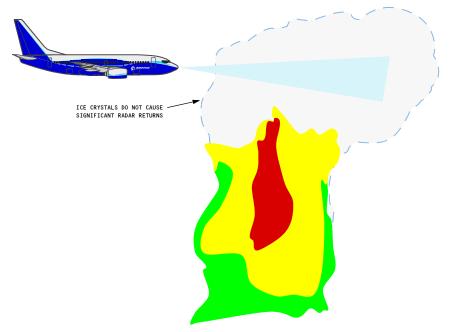
Avoid ICI conditions. Flight in clouds containing high concentration of ice crystals has been associated with engine vibration, engine power-loss, and engine damage.

Because these conditions can be difficult to recognize, careful preflight planning is a key component of in-flight situational awareness. When ICI is encountered or suspected, do the QRH Ice Crystal Icing NNC to mitigate the effect on the flight.

### **Recognizing Ice Crystal Icing**

Ice crystals are most frequently found in areas of visible moisture and above altitudes normally associated with icing conditions. Their presence can be indicated by one or more of the following:

- Appearance of rain on the windshield at temperatures too cold for liquid water to exist. This is due to ice crystals melting on the heated windows (sounds different than rain)
- Areas of light to moderate turbulence
- In IMC with:
  - No significant airframe icing and
  - No significant radar returns at airplane altitude and
  - Heavy precipitation below the airplane, identified by amber and red radar returns on weather radar
- Cloud tops above typical cruise levels (above the tropopause)
- Smell of ozone or sulfur
- Humidity increase
- Static discharge around the windshield (St. Elmo's fire)


**Note:** The ice detection system does not detect ice crystal icing. It is designed to detect supercooled water only.

737 Flight Crew Operations Manual

#### **Avoiding Ice Crystal Icing**

During flight in IMC, avoid flying directly over significant amber or red radar returns, even if there are no returns at airplane altitude.

Use the weather radar controls to assess weather radar reflectivity below the airplane flight path. Refer to weather radar operating instructions for additional information.



Areas with a higher risk of High Ice Water Content (HIWC) are identified by some aviation weather vendors. In these areas, ICI should be suspected while operating in IMC. Use of this of HIWC information is recommended for strategic preflight planning and in-flight adjustments in order to avoid potential ICI conditions.

#### Ice Crystal Icing Suspected

Exit the ice crystal icing conditions. Request a route change to minimize the time above red and amber radar returns.

Do the Ice Crystal Icing non-normal checklist.

#### **Hot Weather Operation**

During ground operation the following considerations will help keep the airplane as cool as possible:

- If cooling air is available from an outside source, the supply should be plugged in immediately after engine shutdown and should not be removed until just prior to engine start.
- Keep all doors and windows, including cargo doors, closed as much as possible.
- Electronic components which contribute to a high temperature level in the flight deck should be turned off while not needed.
- Open windshield air, foot air vents and all air outlets on the flight deck.
- Open all passenger cabin gasper outlets and close all window shades on the sun–exposed side of the passenger cabin.

Do the following for maximum cooling on the ground:

#### If ground air source is available:

| APU BLEED air switchOFF                                                                                        |
|----------------------------------------------------------------------------------------------------------------|
| ISOLATION VALVE switch OPEN                                                                                    |
| GASPER FAN ON                                                                                                  |
| Air conditioning PACK switchesON                                                                               |
| Duct pressure                                                                                                  |
| If the ground air source supply will not maintain $20 - 25$ psi:                                               |
| ISOLATION VALVE switchCLOSE                                                                                    |
| GASPER FANON                                                                                                   |
| APU BLEED air switchON<br>The APU supplies the left pack and the ground air source<br>supplies the right pack. |
| If the APU is the only source of pneumatic air pressure:                                                       |
| APU BLEED air switch ON                                                                                        |
| One PACK switch ON                                                                                             |

Supplementary Procedures -Adverse Weather

## DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

| ISOLATION VALVE switch                               | As needed               |
|------------------------------------------------------|-------------------------|
| Position the ISOLATION VALVE switch a selected pack. | as needed to supply the |
| GASPER FAN                                           | ON                      |
| Temperature selectors                                | AUTO                    |

Brake temperature levels may be reached which can cause the wheel fuse plugs to melt and deflate the tires. Consider the following actions:

- Be aware of brake temperature buildup when operating a series of short flight sectors. The energy absorbed by the brakes from each landing is accumulative
- Extending the landing gear early during the approach provides additional cooling for tires and brakes
- In-flight cooling time can be determined from the "Brake Cooling Schedule" in the Performance–Inflight section of the QRH.

At the pilot's discretion, reverse thrust may be used during taxi to control forward speed. The procedure should be used to maintain normal taxi speeds and should be considered when operating under the following conditions:

- High ambient temperatures
- Following an excessively braked landing
- Downslope taxi
- Tailwinds
- Light gross weight
- Any combination of the above.

When using reverse thrust to reduce taxi speed, a smooth rearward movement of the reverse thrust levers is desired to avoid overshooting the limit of the interlock position. If an EPR of more than 1.1 results, modulate the reverse thrust levers forward until 1.1 EPR or less is reached. The 1.1 EPR setting will normally preclude foreign object ingestion and air conditioning contamination. If the odor of exhaust gases is detected or excessive dust is generated, return the thrust levers to forward thrust to avoid contamination. Reverse thrust for taxi should be used with caution on airports with dirty runway or taxi conditions. During flight planning consider the following:

- High temperatures inflict performance penalties which must be taken into account on the ground before takeoff.
- Alternate takeoff procedures (No Engine Bleed Takeoff, Improved Climb Performance, etc.).

#### **Operation in a Sandy or Dusty Environment**

The main hazards of a sandy or dusty environment are erosion (especially of engine fan blades), accumulation of sand or dust on critical surfaces, and blockage. The effects of sand ingestion occur predominantly during takeoff, landing and taxi operations. The adverse effects, however, can occur if the airplane's flight path was through a cloud of visible sand or dust or the airplane was parked during a sand or dust storm. Premature engine deterioration can result from sand or dust ingestion, causing increased fuel burn and reduced EGT margins.

#### CAUTION: After a sandstorm, if all taxiways and runways are not carefully inspected and swept for debris before flight ops are conducted, the risk of engine damage and wear is increased.

#### **Exterior Inspection**

Although removal of sand and dust contaminants is primarily a maintenance function, during the exterior inspection, the captain or first officer should carefully inspect areas where accumulation of sand or dust could change or affect normal system operations.

Do the normal Exterior Inspection with the following additional steps:

Windshield ......Check

Verify that the windshield has been cleaned.

**Note:** Do not use windshield wipers for sand or dust removal. Wash deposits off with water and wipe residue off with a soft cloth.

Surfaces ...... Check

Verify that the upper surfaces of the wings and other control surfaces are free of sand.

#### CAUTION: Particular care should be taken to ensure that the fuselage and all surfaces are clean after a sand storm that occurs with a rain storm.

Supplementary Procedures -Adverse Weather

## **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

| Probes, sensors, ports, ram turbine doors, vents,<br>and drains (as applicable)                                                                                                                                 |                                  | Check |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|
| Verify that the left and right ram air inlets are free                                                                                                                                                          | e of sand and                    | dust. |
| Verify that the cabin pressure outflow valve and b<br>pressure relief valves are free of sand and dust.                                                                                                         | ooth positive                    |       |
| Leading edge flaps                                                                                                                                                                                              |                                  | Check |
| Verify that all leading edges are undamaged.                                                                                                                                                                    |                                  |       |
| Engine inlets                                                                                                                                                                                                   |                                  | Check |
| Verify that the inlet cowling is free of sand and du                                                                                                                                                            | ust.                             |       |
| Verify that the fan is free to rotate and fan blades                                                                                                                                                            | are undamage                     | ed.   |
| Fuel tank vents                                                                                                                                                                                                 |                                  | Check |
| Verify that all vents are free of sand and dust.                                                                                                                                                                |                                  |       |
| Landing gear                                                                                                                                                                                                    |                                  | Check |
| Verify that gear struts and doors are free of sand a                                                                                                                                                            | and dust build                   | l-up. |
| Vertical and horizontal stabilizers                                                                                                                                                                             |                                  | Check |
| Verify that all leading edges are undamaged.                                                                                                                                                                    |                                  |       |
| APU air inlet                                                                                                                                                                                                   |                                  | Check |
| Ensure that the APU inlet door and cooling air inl<br>and dust before APU start.                                                                                                                                |                                  |       |
| Preflight Procedure - First Officer                                                                                                                                                                             |                                  |       |
| Do the normal Preflight Procedure - First Officer with modifications:                                                                                                                                           | the following                    | 3     |
| <b>Note:</b> Minimize the use of air conditioning, other than conditioner, as much as possible. If the APU mu conditioning, maintain a temperature as high as still providing a tolerable flight deck and cabin | ust be used for<br>possible whil | r air |
| APU BLEED air switch                                                                                                                                                                                            | OFF                              | F/O   |
| If A PLI bleed air will be used and the A PLI is not one                                                                                                                                                        | erating                          |       |

If APU bleed air will be used and the APU is not operating:

APU switch ......START F/O

**Note:** Run the APU for one full minute before using it as a bleed air source.

737 Flight Crew Operations Manual

| Engine BLEED air switches | OFF | F/O |
|---------------------------|-----|-----|
| APU BLEED air switch      | ON  | F/O |

#### **Engine Start Procedure**

Do the normal Engine Start Procedure with the following modifications:

Note: Use a filtered ground cart for pneumatic air for engine start, if available.

#### **Before Taxi Procedure**

Do the normal Before Taxi Procedure with special emphasis on the following steps:

If bleed air is needed to maintain tolerable flight deck and cabin temperatures, use APU bleed air rather than engine bleed air during the taxi out. Limit APU bleed air use as much as possible to reduce sand and dust ingestion.

If APU bleed air will be used and the APU is not operating:

| APU switch                                                                          | START | F/O |
|-------------------------------------------------------------------------------------|-------|-----|
| <b>Note:</b> Run the APU for one full minute before using it as a bleed air source. |       |     |
| Engine BLEED air switches                                                           | OFF   | F/O |
| APU BLEED air switch                                                                | ON    | F/O |
| Flight controls                                                                     | Check | С   |
| Verify that there is no increase in control forces due to sand                      |       |     |

or dust contaminants.

### Taxi–Out

Do the following, conditions permitting, to minimize sand and dust ingestion by the engines and to improve visibility during taxi:

- Use all engines during taxi and taxi at low speed. Limit ground speed to 10 knots and maintain thrust below 40% N1 whenever possible to avoid creating engine vortices during ground operations.
- Maintain a greater than normal separation from other aircraft while taxiing and avoid the ingestion of another engine's wake.
- Avoid engine overhang of unprepared surfaces.
- In the event of a crosswind during 180° turns, turn away from the wind if possible to minimize sand and dust ingestion.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

- Whenever possible, avoid situations that would require the airplane to be brought to a complete stop.
- Avoid excessive braking. The presence of sand or dust will increase brake wear.
- Use reverse thrust during taxi for emergency stopping only.

## Takeoff

Do the following to minimize sand and dust ingestion by the engines during takeoff:

- Use the maximum fixed derate and/or assumed temperature thrust reduction that meets performance requirements.
- Make an No Engine Bleed Takeoff if operations permit. If cabin and flight deck temperatures can be maintained at a tolerable temperature, consider an Unpressurized Takeoff.
- Before takeoff, allow sand and dust to settle if conditions allow.
- Do not take off into a sand or dust cloud.
- Use a rolling takeoff. Whenever possible, avoid setting high thrust at low speed.
- When visible sand and dust exist, consider delaying flap retraction until above the dust cloud, if operations permit.

## Approach

Do the following, conditions permitting, to minimize sand and dust ingestion:

• Make an No Engine Bleed Landing if operations permit. If cabin and flight deck temperatures can be maintained at a tolerable temperature, consider an Unpressurized Landing.

## Landing

Do the following to minimize sand and dust ingestion by the engines during landing:

- Use autobrakes on landing to help minimize the need for reverse thrust.
- Performance permitting, minimize the use of reverse thrust to prevent ingestion of dust and sand and to prevent reduction of visibility. Reverse thrust is most effective at high speed.

## **After Landing Procedure**

Do the normal After Landing Procedure with the following modifications:

#### Supplementary Procedures - **DO NOT USE FOR FLIGHT** Adverse Weather 737 Flight Crew Operations Manual

If bleed air is needed to maintain tolerable flight deck and cabin temperatures, use APU bleed air rather than engine bleed air during the taxi in. Limit APU bleed air use as much as possible to reduce sand and dust ingestion.

If APU bleed air will be used and the APU is not operating:

| APUswitch                                                     | . START            | PM    |
|---------------------------------------------------------------|--------------------|-------|
| <b>Note:</b> Run the APU for one full minute befo air source. | re using it as a l | bleed |
| Engine BLEED air switches                                     | OFF                | PM    |
| APU BLEED air switch                                          | ON                 | PM    |

## Taxi-In

Do the following, conditions permitting, to minimize sand and dust ingestion by the engines and to improve visibility during the taxi-in:

- Use all engines and taxi at low speed. Limit ground speed to 10 knots and maintain thrust below 40% N1 whenever possible.
- Maintain a greater than normal separation from other aircraft while taxiing and avoid the ingestion of another engine's wake.
- Avoid engine overhang of unprepared surfaces.
- In the event of a crosswind during 180° turns, turn away from the wind if possible to minimize sand and dust ingestion.
- Whenever possible, avoid situations that would require the airplane to be brought to a complete stop.
- Avoid excessive braking. The presence of sand or dust will increase brake wear.
- Use reverse thrust during taxi for emergency stopping only.

## **Secure Procedure**

Do the normal Secure Procedure with the following modifications:

### CAUTION: Do not leave the the interior unattended with a pack operating and all doors closed. With the main outflow valve closed, an unscheduled pressurization of the airplane may occur.

| PACK switches                | Verify OFF | F/O |
|------------------------------|------------|-----|
| Pressurization mode selector | MAN DC     | F/O |
| Outflow VALVE switch         | CLOSE      | F/O |

Position the outflow valve fully closed to inhibit the intake of sand or dust.

Additional procedures for securing the airplane during sandy or dusty conditions may be needed. These procedures are normally done by maintenance personnel, and include, but are not limited to:

- engine covers installed, if applicable.
- protective covers and plugs installed (streamers should be used to remind personnel to remove before flight).
- · doors and sliding windows closed.
- all compartments closed.

## Moderate to Heavy Rain, Hail or Sleet

Flights should be conducted to avoid thunderstorm or hail activity. If visible moisture is present at high altitude, avoid flight over the storm cell. (Storm cells that do not produce visible moisture at high altitude can be overflown safely.) To the maximum extent possible, moderate to heavy rain, hail or sleet should also be avoided.

If moderate to heavy rain, hail or sleet is encountered or anticipated:

| Note: | Start descent early. For each 1,000 feet of descent that 55%   |
|-------|----------------------------------------------------------------|
|       | N1 is expected to be used, start descent one mile earlier than |
|       | the computed top of descent point.                             |

| ENGINE           | START switches                                                                                                                          | LOW IGN                                                          |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Minimum          | n engine N1                                                                                                                             |                                                                  |
| If thru<br>Avoid | vers<br>ist changes are necessary, mo<br>changing thrust lever direction<br>elected setting. Maintain an in                             | ve the thrust levers slowly.<br>on until engines have stabilized |
| setting          | e                                                                                                                                       | icreased minimum unust                                           |
| CAUTION:         | Do not shutdown an engine<br>respond normally to thrust<br>EGT is stable and is within<br>response will return upon l<br>precipitation. | t lever movement if the<br>limits. Normal engine                 |
| ENGINE AN        | NTI-ICE switches                                                                                                                        | As required                                                      |

Consider starting the APU (if available).

### Severe Turbulence

The best airspeed and flight configuration to use in severe turbulence is that which affords ample protection from stall and high speed buffet and which also provides structural integrity. The recommended procedures for flight in severe turbulence are summarized as follows:

### Structural

Flap extension in an area of know turbulence should be delayed as long as possible because the airplane can withstand higher gust loads in the clean configuration. Diversion to another airfield is the best policy if severe turbulence persists in the area.

## Seat Belts

Advise passengers to fasten seat belts prior to entering areas of reported or anticipated turbulence. Instruct flight attendants to check all passengers' seat belts are fastened.

### **Power Plant**

Flying in turbulence or hail may cause engine inlet airflow distortion. this distortion, along with engine icing, angle of attack changes and high altitude surge margins can result in engine surge and flameout. Activate ignition as soon as turbulence is encountered.

## Yaw Damper

Flight test data substantiates that important benefits are obtained from the use of yaw damping during turbulence penetration. Excursions in sideslip and roll are minimized and, even though the rudder control may be more active, the structural loads imposed on the vertical tail are considerably reduced.

## **Climb and Cruise**

The autoflight system may be used in turbulence at the discretion of the flight crew. After takeoff and retraction of the gear and flaps, use climb thrust and the recommended climb airspeed for penetration of turbulence.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

When operating in severe turbulence, refer to the use of the PDC to obtain recommended thrust setting, pitch attitude and airspeed. If without operable PDC, refer to the TURBULENT AIR PENETRATION charts in the CRUISE pages. This provides approximate RPM settings that will maintain near optimum penetration airspeed. The most important objective is to obtain an initial thrust setting close to the correct one. Once the proper thrust setting for the recommended penetration speed is achieved, it is undesirable to make thrust changes during severe turbulence. Large variations in airspeed and altitude can occur in severe turbulence.

## Auto Flight in Severe Turbulence

When penetrating areas of severe turbulence, the autopilot should be engaged in the TURB mode. Maintain altitude and heading by manual autopilot controls. If sustained trimming occurs, disengage the autopilot.

## Manual Flight in Severe Turbulence

Trim the airplane for penetration speed, then do not change stabilizer position. Control the airplane pitch attitude with the elevators using the attitude indicator as the primary instrument. In extreme drafts, large attitude changes may occur. Do not make sudden large elevator control inputs. Corrective actions to regain the desired attitude should be smooth and deliberate. Altitude variations are probable in severe turbulence and should be allowed to occur if terrain clearance is adequate. Control airplane attitude first, then make corrections for airspeed, altitude and heading.

## Descent

If severe turbulence is encountered at altitudes below 15,000 feet and the airplane gross weight is less than the maximum landing weight, the airplane may be slowed to 250 knots in the clean configuration. Adequate stall margin exists under these conditions.

## **Turbulent Air Penetration**

In the event that severe turbulence is encountered:

| Yaw Damper            | ON      |
|-----------------------|---------|
| A/P selector          | TURB    |
| ENGINE START switches | LOW IGN |

737 Flight Crew Operations Manual

| Engine anti-ice switches |   |
|--------------------------|---|
| (if needed) ON           | 1 |

Thrust ...... Adjust

Adjust thrust to achieve turbulent air penetration speed (280 knot or.70 Mach.) Refer to Unreliable Airspeed page in the Performance-Inflight section of the QRH for approximate N1 settings that maintain near optimum penetration airspeed.

## Windshear

Windshear is a change of wind speed and/or direction over a short distance along the flight path. Indications of windshear are listed in the Windshear non-normal maneuver in this manual.

## Avoidance

The flight crew should search for any clues to the presence of windshear along the intended flight path. Presence of windshear may be indicated by:

- Thunderstorm activity
- Virga (rain that evaporates before reaching the ground)
- Pilot reports
- Low level windshear alerting system (LLWAS) warnings

Stay clear of thunderstorm cells and heavy precipitation and areas of known windshear. If the presence of windshear is confirmed, delay takeoff or do not continue an approach.

## Precaution

If windshear is suspected, be especially alert to any of the danger signals and be prepared for the possibility of an inadvertent encounter. The following precautionary actions are recommended if windshear is suspected:

## Takeoff

- Takeoff with full rated takeoff thrust is recommended.
- For optimum takeoff performance, use flaps 5, 10 or 15 unless limited by obstacle clearance and/or climb gradient
- Use the longest suitable runway provided it is clear of areas of known windshear

737 Flight Crew Operations Manual

- Consider increasing Vr speed to the performance limited gross weight rotation speed, not to exceed actual gross weight Vr + 20 knots. Set V speeds for the actual gross weight. Rotate at the adjusted (higher) rotation speed. This increased rotation speed results in an increased stall margin, and meets takeoff performance requirements. If windshear is encountered at or beyond the actual gross weight Vr, do not attempt to accelerate to the increased Vr, but rotate without hesitation
- Be alert for any airspeed fluctuations during takeoff and initial climb. Such fluctuations may be the first indication of windshear
- Know the all-engine initial climb pitch attitude. Rotate at the normal rate to this attitude for all non-engine failure takeoffs. Minimize reductions from the initial climb pitch attitude until terrain and obstruction clearance is assured, unless stick shaker activates
- Crew coordination and awareness are very important. Develop an awareness of normal values of airspeed, attitude, vertical speed, and airspeed build–up. Closely monitor vertical flight path instruments such as vertical speed and altimeters. The pilot monitoring should be especially aware of vertical flight path instruments and call out any deviations from normal
- Should airspeed fall below the trim airspeed, unusual control column forces may be required to maintain the desired pitch attitude. Stick shaker must be respected at all times

### **Approach and Landing**

- Use flaps 30 for landing
- Establish a stabilized approach no lower than 1000 feet above the airport to improve windshear recognition capability
- Use the most suitable runway that avoids the areas of suspected windshear and is compatible with crosswind or tailwind limitations. Use electronic or visual glide path indications to detect flight path deviations and help with timely detection of windshear
- Avoid large thrust reductions or trim changes in response to sudden airspeed increases as these may be followed by airspeed decreases
- Crosscheck flight director commands using vertical flight path instruments
- Crew coordination and awareness are very important, particularly at night or in marginal weather conditions. Closely monitor the vertical flight path instruments such as vertical speed, altimeters, and glideslope displacement. The pilot monitoring should call out any deviations from normal. Use of the autopilot for the approach may provide more monitoring and recognition time

### Recovery

Accomplish the Windshear Escape Maneuver found in the Non–Normal Maneuvers section of this manual.

737 Flight Crew Operations Manual

| Performance Inflight       | Chapter PI  |
|----------------------------|-------------|
| Table of Contents          | Section TOC |
| 737-200ADV JT8D-15A LB FAA | Pl.10.1     |
| 737-200ADV JT8D-17A LB FAA | PI.20.1     |
| 737-200ADV JT8D-9 LB FAA   | Pl.30.1     |



Intentionally Blank

737 Flight Crew Operations Manual

# **Performance Inflight**

**Table of Contents** 

Chapter PI Section 10

## 737-200ADV JT8D-15A LB FAA

| General PI.10.1                                                      |
|----------------------------------------------------------------------|
| Takeoff Speeds PI.10.1                                               |
| VMCG PI.10.2                                                         |
| Clearway and Stopway V1 Adjustments PI.10.2                          |
| Stab Trim Setting PI.10.2                                            |
| VREF (KIAS) PI.10.3                                                  |
| Flap Maneuver Speeds PI.10.4                                         |
| Slush/Standing Water Takeoff PI.10.5                                 |
| Slippery Runway Takeoff PI.10.6                                      |
| Takeoff EPR PI.10.8                                                  |
| %N1 vs EPR Crosscheck PI.10.8                                        |
| Reduced Takeoff EPR PI.10.9                                          |
| Max Climb EPR PI.10.13                                               |
| Go-around EPR                                                        |
| Flight With Unreliable Airspeed / Turbulent Air Penetration PI.10.15 |
| All Engines                                                          |
| Long Range Cruise Maximum Operating Altitude PI.11.1                 |
| Long Range Cruise Control PI.11.2                                    |
| Long Range Cruise Enroute Fuel and Time - Low Altitudes . PI.11.2    |
| Long Range Cruise Enroute Fuel and Time - High Altitudes. PI.11.3    |
| Long Range Cruise Wind-Altitude Trade PI.11.4                        |
| Descent at .70/280/250 PI.11.5                                       |
| Holding PI.11.5                                                      |
| Normal Configuration Landing Distance - Autobrake System PI.12.1     |
| Normal Configuration Landing Distance - Digital                      |
| Autobrake System PI.12.4                                             |
| Non-Normal Configuration Landing Distance PI.12.7                    |
| Brake Cooling Schedule PI.12.11                                      |

737 Flight Crew Operations Manual

| Engine Inoperative                        | PI.13.1         |
|-------------------------------------------|-----------------|
| Max Continuous EPR                        | PI.13.1         |
| Driftdown Speed/Level Off Altitude        | PI.13.2         |
| Driftdown/LRC Cruise Range Capability     | PI.13.2         |
| Long Range Cruise Altitude Capability     | PI.13.3         |
| Long Range Cruise Control                 | PI.13.3         |
| Long Range Cruise Diversion Fuel and Time | PI.13.4         |
| Holding                                   | PI.13.5         |
| Gear Down                                 | DI 1 <i>4</i> 1 |
| Gear Down                                 |                 |
| 220 KIAS Cruise Altitude Capability       | PI.14.1         |
| 220 KIAS Cruise Control                   | PI.14.1         |
| 220 KIAS Enroute Fuel and Time            | PI.14.2         |
| Descent at 220 KIAS                       | PI.14.2         |
| Holding                                   | PI.14.3         |
| Text                                      | PI.15.1         |
| Introduction                              | PI.15.1         |
| General                                   | PI.15.1         |
| All Engines                               | PI.15.6         |
| Advisory Information                      | PI.15.7         |
| Engine Inoperative                        | PI.15.9         |
| Gear Down                                 | PI.15.10        |

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight** General

#### **Takeoff Speeds**

| V1, V           | 'R • V2                                    | 2        |                                               |                                 |                                 |                                                             |                                  |                          |                                 |                                 |                                                      |                            |                                                      |                                                    |                      |                                 | AI                       | NTI                                    | -sk               | ID                              | ON                |
|-----------------|--------------------------------------------|----------|-----------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------|----------------------------------|--------------------------|---------------------------------|---------------------------------|------------------------------------------------------|----------------------------|------------------------------------------------------|----------------------------------------------------|----------------------|---------------------------------|--------------------------|----------------------------------------|-------------------|---------------------------------|-------------------|
| PRE<br>ALT      | SSURE<br>ITUDE<br>DO FT                    |          |                                               |                                 |                                 |                                                             |                                  |                          |                                 |                                 | OA                                                   | т                          |                                                      |                                                    |                      |                                 |                          |                                        |                   |                                 |                   |
| 9 TO            |                                            | °F<br>°C |                                               |                                 |                                 |                                                             |                                  |                          |                                 |                                 |                                                      | _                          | 65<br>54 т                                           | 0 _1                                               | 2<br>9               | - 1<br>-18                      | то                       | 32<br>0                                | 33<br>1           |                                 | 85<br>29          |
| 7 TO            | 7 (                                        | °F<br>°C |                                               |                                 |                                 |                                                             |                                  |                          | -6<br>-5                        | 5<br>4 то                       | 5<br>-15                                             | _                          | 6<br>14 <sup>т</sup>                                 | 0 3                                                | 6<br>2               | 37<br>3                         | то                       | 85<br>29                               | 86<br>30          | ) то                            | 103<br>39         |
| 5 TO            | ' '                                        | °F<br>°C |                                               |                                 |                                 | -65<br>-54                                                  | то.                              | 14<br>-10                | - 1                             | 5<br>9 то                       | 42<br>5                                              |                            | <sup>43</sup> т<br>6 т                               |                                                    | 0                    |                                 | 10                       | 101<br>38                              | 102<br>39         | то 1                            | 12<br>44          |
| 3 TO            | <b>с</b>                                   | °F<br>°C | -65<br>-54                                    | то                              | 23<br>-5                        | 24<br>- 4                                                   |                                  | 49<br>9                  | 5<br>1                          | 0 10                            | 32                                                   |                            |                                                      | 0 <sup>10</sup><br>4                               |                      | 106<br>41                       | то                       | 120<br>48                              |                   |                                 |                   |
| 1 TO            | ، د                                        | °F<br>°C | -65<br>-54                                    |                                 | 71<br>22                        | 72<br>23                                                    |                                  | 93<br>33                 |                                 |                                 | 107<br>41                                            |                            | 08<br>42 Т                                           |                                                    | 2                    |                                 |                          |                                        |                   |                                 |                   |
| -1 TO           | 1                                          | °F<br>°C | -65<br>-54                                    |                                 | 93<br>34                        | 94<br>35                                                    | то                               | 110<br>43                | 11<br>4                         | 1<br>4 то                       | 121<br>49                                            | 1                          | 22<br>50 Т                                           | 0 <sup>13</sup> 5                                  | 1<br>5               |                                 |                          |                                        |                   |                                 |                   |
| FLAPS           | ₩T<br>1000 L                               | в        | ۷1                                            | VR                              | ٧ <sub>2</sub>                  | V1                                                          |                                  | ٧ <sub>2</sub>           | ۷1                              |                                 | V2                                                   | V <sub>1</sub>             | ۷                                                    | 'R V                                               | 2                    | ۷1                              | VR                       | ٧ <sub>2</sub>                         | V1                | VR                              | v <sub>2</sub>    |
| 1               | 130<br>120<br>110<br>100<br>90<br>80<br>70 |          | 157<br>150<br>143<br>136<br>128<br>119<br>111 | 153<br>145<br>137<br>129<br>120 | 158<br>151<br>144<br>136<br>128 | 158 1<br>150 1<br>144 1<br>137 1<br>129 1<br>120 1<br>111 1 | 53<br>46<br>38<br>30<br>21<br>11 | 144<br>136<br>128<br>120 | 151<br>145<br>138<br>129<br>121 | 154<br>147<br>139<br>130<br>127 | 165<br>158<br>151<br>144<br>136<br>136<br>128<br>120 | 15<br>14<br>13<br>13<br>12 | 5 14<br>8 13<br>0 13<br>1 13                         | 55 15<br>47 15<br>39 14<br>31 13<br>22 12<br>13 12 | 51<br>44<br>36<br>28 | 145<br>138<br>131<br>122        | 147<br>140<br>132<br>123 | 158<br>151<br>144<br>136<br>128<br>120 | 138<br>131<br>122 | 148<br>140<br>132<br>123<br>114 | 144<br>136<br>128 |
| 2               | 130<br>120<br>110<br>100<br>90<br>80<br>70 |          | 145                                           | 148<br>141<br>133<br>125<br>116 | 132<br>124                      | 152 1<br>145 1<br>139 1<br>133 1<br>124 1<br>116 1<br>107 1 | 48<br>41<br>34<br>25<br>17       | 146<br>139<br>132        | 140<br>133<br>125<br>116        | 142<br>134<br>120<br>117        | 9 153<br>2 146<br>4 139<br>5 132<br>7 124<br>3 116   | 14<br>13<br>12<br>11       | 0 14<br>4 13<br>5 13<br>7 1                          | 50 15<br>42 14<br>35 13<br>26 13<br>18 12<br>09 11 | 46<br>39<br>32<br>24 | 126<br>118                      | 135<br>127<br>119        | 139<br>132                             | 126<br>118        | 135<br>127<br>119<br>110        | 132<br>124        |
| 5               | 130<br>120<br>110<br>100<br>90<br>80<br>70 |          | 149<br>143<br>135<br>129<br>121<br>113<br>105 | 145<br>138<br>130<br>122<br>114 | 143<br>136                      | 149 1<br>143 1<br>136 1<br>130 1<br>122 1<br>114 1<br>105 1 | 45<br>38<br>31<br>23<br>15       | 143<br>136<br>129        | 137<br>130<br>122<br>114        | 139<br>137<br>123<br>119        | 5 150<br>9 143<br>1 136<br>3 129<br>5 122<br>5 114   | 13<br>13<br>12<br>11       | 1 1:<br>3 1:<br>5 1:                                 | 39 14<br>32 13<br>24 12<br>16 12<br>07 11          | 36<br>29<br>22       | 131<br>123<br>115               | 132<br>124               | 143<br>136<br>129<br>122<br>114        | 124<br>116        | 133<br>125<br>117<br>108        | 129<br>122        |
| 10              | 120<br>110<br>100<br>90<br>80<br>70        |          | 139<br>131<br>123<br>116<br>107<br>105        | 132<br>124                      | 131<br>124<br>117               | 140 1<br>132 1<br>124 1<br>117 1<br>109 1<br>105 1          | 33<br>25<br>18<br>10             |                          | 132<br>125<br>117               | 133<br>120<br>118<br>110        | 146<br>3138<br>5131<br>3124<br>0117<br>5110          | 13<br>12<br>11<br>11       | 3 1:<br>5 1:<br>8 1 <sup>-</sup><br>0 1 <sup>-</sup> | 42 14<br>34 13<br>26 13<br>19 12<br>11 11<br>05 11 | 38<br>31<br>24<br>17 | 125<br>118<br><u>110</u><br>105 | 119<br>111               |                                        | 111               | 119<br><u>112</u><br>105        |                   |
| 15              | 110<br>100<br>90<br>80<br>70               |          | 120<br>112<br>105<br>105                      | 121<br><u>113</u><br>105<br>105 | 121<br>113<br>110               | 128 1<br>121 1<br>113 1<br>105 1<br>105 1                   | 22<br>14<br>05<br>05             | 127<br>121<br>113<br>110 | 121<br>114<br>106<br>105        | 122<br>115<br>107               | 0 134<br>2 127<br>5 121<br>7 113<br>5 110            | 12<br>11<br>10             | 2 1;<br>4 1 <sup>;</sup><br>6 1(                     | 30 13<br>23 12<br>15 12<br>07 11<br>05 11          | 27<br>21<br>13       | 122<br>115                      | 123<br>116<br>108        |                                        | 107               | 116<br>108<br>105               |                   |
| 25              | 110<br>100<br>90<br>80<br>70               |          | 105                                           | 119<br><u>111</u><br>105        | 118                             | 125 1<br>119 1<br>111 1<br>105 1<br>105 1                   | 20<br>12<br>05                   |                          | 119<br>111<br>105               | 120<br>112<br>105               | 7 131<br>0 125<br>2 118<br>5 110<br>5 110            | 11<br>10                   | 2 1 <sup>.</sup><br>5 10                             | 21 12<br>1 <u>3 11</u><br>05 11<br>05 11           | 18<br>10             | 112<br>105<br>105               | 106                      |                                        |                   | 106<br>105                      | 111<br>110        |
|                 | AREA                                       |          |                                               |                                 |                                 | ERFO<br>OR L                                                |                                  |                          |                                 |                                 |                                                      |                            |                                                      |                                                    |                      |                                 |                          |                                        | SPE<br>REQ        |                                 |                   |
| REDUCE<br>V2 BY |                                            |          |                                               |                                 |                                 |                                                             |                                  |                          |                                 |                                 |                                                      |                            |                                                      | V1                                                 | A                    | DJU                             | STM                      | ENT                                    | S                 |                                 |                   |
| LIMIT.          |                                            | . 3      | WI                                            | i n                             | <u>%</u> ر،                     | WD                                                          | ι.                               |                          | ļ                               |                                 |                                                      | WI                         |                                                      |                                                    |                      | L                               |                          |                                        | OPE               |                                 |                   |
|                 |                                            |          |                                               |                                 |                                 |                                                             |                                  |                          |                                 |                                 |                                                      | ACT<br>TAI                 |                                                      |                                                    | PEF                  |                                 |                          |                                        | T 1<br>SLO        |                                 | PER               |

**Chapter PI** Section 10

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. **October 9, 2008** D6-27370-200A-TBC PI.10.1 VMCG

# **DO NOT USE FOR FLIGHT**

### 737 Flight Crew Operations Manual

| OAT  | PRESSURE ALTITUDE (FT) |      |      |      |      |       |  |  |  |  |
|------|------------------------|------|------|------|------|-------|--|--|--|--|
| (°C) | 0                      | 2000 | 4000 | 6000 | 8000 | 10000 |  |  |  |  |
| 50   | 95                     | 91   | 88   |      |      |       |  |  |  |  |
| 40   | 99                     | 95   | 92   | 89   | 85   |       |  |  |  |  |
| 30   | 103                    | 99   | 95   | 92   | 88   | 85    |  |  |  |  |
| 20   | 103                    | 101  | 97   | 94   | 90   | 87    |  |  |  |  |
| 10   | 103                    | 101  | 97   | 94   | 90   | 87    |  |  |  |  |
| 0    | 103                    | 104  | 99   | 96   | 92   | 89    |  |  |  |  |
| -10  | 103                    | 104  | 101  | 98   | 94   | 90    |  |  |  |  |
| -20  | 103                    | 104  | 103  | 99   | 96   | 92    |  |  |  |  |
| -30  | 103                    | 104  | 103  | 99   | 96   | 92    |  |  |  |  |
| -40  | 103                    | 104  | 103  | 99   | 96   | 92    |  |  |  |  |

#### **Clearway and Stopway V1 Adjustments**

| CLEARWAY MINUS | NORMAL V1 (KIAS) |     |     |     |  |  |  |  |  |
|----------------|------------------|-----|-----|-----|--|--|--|--|--|
| STOPWAY (FT)   | 100              | 120 | 140 | 160 |  |  |  |  |  |
| 900            | -3               | -3  | -3  | -3  |  |  |  |  |  |
| 600            | -2               | -2  | -2  | -2  |  |  |  |  |  |
| 300            | -1               | -1  | -1  | -1  |  |  |  |  |  |
| 0              | 0                | 0   | 0   | 0   |  |  |  |  |  |
| -300           | 1                | 1   | 1   | 1   |  |  |  |  |  |
| -600           | 2                | 2   | 2   | 2   |  |  |  |  |  |
| -900           | 3                | 3   | 3   | 3   |  |  |  |  |  |

#### Maximum Allowable Clearway

| FIELD LENGTH<br>(FT) | MAX ALLOWABLE<br>CLEARWAY FOR V1<br>REDUCTION (FT) |
|----------------------|----------------------------------------------------|
| 4000                 | 450                                                |
| 6000                 | 600                                                |
| 8000                 | 700                                                |
| 10000                | 800                                                |

#### Stab Trim Setting Max Takeoff Thrust

| C.G. %MAC             | 6     | 10    | 14    | 18    | 22    | 26 | 30    | 32    |
|-----------------------|-------|-------|-------|-------|-------|----|-------|-------|
| FLAPS 1 THRU FLAPS 10 | 7 3/4 | 7     | 6 1/4 | 5 1/2 | 4 3/4 | 4  | 3 1/4 | 2 3/4 |
| FLAPS 15 & FLAPS 25   | 8 3/4 | 7 3/4 | 7     | 6     | 5     | 4  | 3 1/4 | 2 3/4 |

### 737 Flight Crew Operations Manual

#### VREF (KIAS)

| ( )       |     |       |     |
|-----------|-----|-------|-----|
| WEIGHT    |     | FLAPS |     |
| (1000 LB) | 40  | 30    | 15  |
| 130       | 149 | 154   | 161 |
| 125       | 146 | 150   | 158 |
| 120       | 142 | 146   | 154 |
| 115       | 139 | 142   | 150 |
| 110       | 135 | 139   | 146 |
| 105       | 132 | 135   | 142 |
| 100       | 128 | 131   | 138 |
| 95        | 124 | 127   | 134 |
| 90        | 121 | 124   | 131 |
| 85        | 117 | 120   | 127 |
| 80        | 113 | 116   | 123 |
| 75        | 110 | 112   | 119 |
| 70        | 106 | 109   | 115 |

For approach speed add wind factor of 1/2 headwind component + gust (max 20 knots).

### 737 Flight Crew Operations Manual

### **Flap Maneuver Speeds**

|          |                       | MANEUVER SPEED (KIAS)                        |                 |
|----------|-----------------------|----------------------------------------------|-----------------|
| FLAP     |                       | WEIGHT                                       |                 |
| POSITION | AT OR BELOW 117000 LB | ABOVE 117000 LB AND<br>AT OR BELOW 138500 LB | ABOVE 138500 LB |
| UP       | 210                   | 220                                          | 230             |
| 1        | 190                   | 200                                          | 210             |
| 5        | 170                   | 180                                          | 190             |
| 10       | 160                   | 170                                          | 180             |
| 15       | 150                   | 160                                          | 170             |
| 25       | 140                   | 150                                          | 160             |

737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Slush/Standing Water Takeoff Weight Adjustment (1000 LB)

| DRY FIELD/   |        |           | SLU   | USH/STANDING WATER DEPTH |                     |       |       |                       |       |  |
|--------------|--------|-----------|-------|--------------------------|---------------------|-------|-------|-----------------------|-------|--|
| OBSTACLE     | 0.12 I | NCHES (3  | 3 mm) | *0.25                    | *0.25 INCHES (6 mm) |       |       | **0.50 INCHES (13 mm) |       |  |
| LIMIT WEIGHT | PRI    | ESS ALT ( | FT)   | PR                       | ESS ALT (           | FT)   | PR    | ESS ALT (             | FT)   |  |
| (1000 LB)    | S.L.   | 4000      | 8000  | S.L.                     | 4000                | 8000  | S.L.  | 4000                  | 8000  |  |
| 140          | -18.2  | -18.7     | -18.6 | -23.0                    | -23.5               | -23.0 | -31.5 | -32.9                 | -32.5 |  |
| 130          | -16.2  | -17.2     | -17.9 | -21.0                    | -22.0               | -23.0 | -29.4 | -30.9                 | -31.5 |  |
| 120          | -14.3  | -15.7     | -16.9 | -18.8                    | -20.6               | -22.3 | -26.8 | -28.3                 | -30.0 |  |
| 110          | -12.2  | -13.7     | -15.3 | -15.4                    | -18.2               | -20.0 | -23.0 | -25.8                 | -27.2 |  |
| 100          | -10.6  | -12.1     | -13.6 | -13.2                    | -15.6               | -18.2 | -18.9 | -23.0                 | -24.2 |  |
| 90           | -8.8   | -9.9      | -11.4 | -10.9                    | -12.3               | -15.0 | -14.1 | -19.8                 | -20.8 |  |
| 80           | -6.9   | -7.4      | -9.1  | -8.7                     | -8.7                | -11.6 | -9.7  | -16.6                 | -17.4 |  |
| 70           | -5.0   | -4.9      | -6.7  | -6.5                     | -5.1                | -8.2  | -5.3  | -13.4                 | -14.0 |  |

\*For flaps 10, 15 and 25, increase slush/standing water limited weight by 1000 lb.

\*\*For flaps 10, 15 and 25, increase slush/standing water limited weight by 2500 lb.

#### VMCG Limit Weight (1000 LB)

| ADJUSTED |        | SLUSH/STANDING WATER DEPTH |       |       |                |       |                     |           |       |
|----------|--------|----------------------------|-------|-------|----------------|-------|---------------------|-----------|-------|
| FIELD    | 0.12 I | 0.12 INCHES (3 mm)         |       |       | NCHES (6       | ó mm) | 0.50 INCHES (13 mm) |           |       |
| LENGTH   | PRI    | ESS ALT (                  | FT)   | PR    | PRESS ALT (FT) |       |                     | ESS ALT ( | FT)   |
| (FT)     | S.L.   | 4000                       | 8000  | S.L.  | 4000           | 8000  | S.L.                | 4000      | 8000  |
| 3800     |        |                            |       | 51.9  |                |       | 55.0                |           |       |
| 4200     | 59.3   |                            |       | 64.8  | 52.2           |       | 69.3                | 59.5      |       |
| 4600     | 72.5   | 57.0                       |       | 77.7  | 63.3           | 52.3  | 83.6                | 69.7      | 58.0  |
| 5000     | 85.8   | 68.6                       | 59.8  | 90.6  | 74.4           | 62.6  | 98.8                | 80.0      | 67.8  |
| 5400     | 99.0   | 80.2                       | 69.7  | 103.5 | 85.6           | 72.8  | 112.9               | 90.3      | 77.6  |
| 5800     | 111.8  | 91.8                       | 79.6  | 116.7 | 96.9           | 83.1  | 127.1               | 101.6     | 87.3  |
| 6200     | 125.1  | 103.2                      | 89.5  | 130.0 | 107.6          | 93.5  | 141.4               | 112.1     | 96.7  |
| 6600     | 138.4  | 114.5                      | 99.4  | 143.3 | 118.9          | 104.0 | 155.7               | 122.6     | 106.0 |
| 7000     | 151.8  | 126.2                      | 109.5 | 156.7 | 130.3          | 114.3 |                     | 133.2     | 115.3 |
| 7400     |        | 137.9                      | 119.6 |       | 141.7          | 125.1 |                     | 143.7     | 124.7 |
| 7800     |        | 149.5                      | 129.6 |       | 153.1          | 135.9 |                     | 154.2     | 134.0 |
| 8200     |        |                            | 139.6 |       |                | 146.8 |                     |           | 143.3 |
| 8600     |        |                            | 149.7 |       |                | 157.6 |                     |           | 152.6 |
| 9000     |        |                            | 159.7 |       |                |       |                     |           |       |

1. Enter Weight Adjustment table with slush/standing water depth and dry field/obstacle limit weight to obtain slush/standing water weight adjustment.

2. Adjust field length available -110 ft/+110 ft for every 10°F above/below 40°F.

3. Find VMCG limit weight for adjusted field length and pressure altitude.

4. Max allowable slush/standing water limited weight is lesser of weights from 1 and 3.

#### 737 Flight Crew Operations Manual

#### V1 Adjustment (KIAS)

|           |        | SLUSH/STANDING WATER DEPTH |       |        |                    |      |      |                     |      |  |
|-----------|--------|----------------------------|-------|--------|--------------------|------|------|---------------------|------|--|
| WEIGHT    | 0.12 I | NCHES (3                   | 3 mm) | 0.25 I | 0.25 INCHES (6 mm) |      |      | 0.50 INCHES (13 mm) |      |  |
| (1000 LB) | PR     | ESS ALT (                  | FT)   | PR     | ESS ALT (          | FT)  | PR   | ESS ALT (           | FT)  |  |
|           | S.L.   | 4000                       | 8000  | S.L.   | 4000               | 8000 | S.L. | 4000                | 8000 |  |
| 130       | -12    | -10                        | -8    | -5     | -5                 | -5   | 1    | 1                   | 1    |  |
| 120       | -14    | -12                        | -9    | -6     | -5                 | -4   | 1    | 1                   | 1    |  |
| 110       | -16    | -13                        | -10   | -9     | -5                 | -3   | 1    | 1                   | 1    |  |
| 100       | -18    | -15                        | -11   | -12    | -8                 | -3   | 1    | 1                   | 1    |  |
| 90        | -20    | -18                        | -13   | -15    | -11                | -5   | -3   | 0                   | 1    |  |
| 80        | -22    | -20                        | -15   | -18    | -14                | -8   | -9   | -2                  | 1    |  |
| 70        | -23    | -22                        | -18   | -20    | -17                | -11  | -16  | -4                  | 1    |  |
| 60        | -24    | -24                        | -20   | -23    | -21                | -15  | -23  | -6                  | 1    |  |

1. 2.

Obtain V1, VR and V2 for the actual weight. If VMCG limited, set V1 = VMCG. If not VMCG limited, enter V1 Adjustment table with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than VMCG, set V1 = VMCG.

#### **Slippery Runway Takeoff** Weight Adjustment (1000 LB)

| DRY FIELD/   |      |           | R    | REPORTED BRAKING ACTION |                |      |       |           |       |  |
|--------------|------|-----------|------|-------------------------|----------------|------|-------|-----------|-------|--|
| OBSTACLE     |      | GOOD      |      |                         | MEDIUM         |      |       | POOR      |       |  |
| LIMIT WEIGHT | PRI  | ESS ALT ( | FT)  | PR                      | PRESS ALT (FT) |      |       | ESS ALT ( | FT)   |  |
| (1000 LB)    | S.L. | 4000      | 8000 | S.L.                    | 4000           | 8000 | S.L.  | 4000      | 8000  |  |
| 140          | -0.6 | -0.6      | -0.6 | -7.9                    | -7.9           | -7.9 | -14.2 | -14.2     | -14.2 |  |
| 130          | -1.4 | -1.4      | -1.4 | -7.9                    | -7.9           | -7.9 | -13.5 | -13.5     | -13.5 |  |
| 120          | -1.8 | -1.8      | -1.8 | -7.8                    | -7.8           | -7.8 | -12.9 | -12.9     | -12.9 |  |
| 110          | -2.0 | -2.0      | -2.0 | -7.3                    | -7.3           | -7.3 | -12.1 | -12.1     | -12.1 |  |
| 100          | -2.0 | -2.0      | -2.0 | -7.0                    | -7.0           | -7.0 | -11.2 | -11.2     | -11.2 |  |
| 90           | -1.5 | -1.5      | -1.5 | -6.5                    | -6.5           | -6.5 | -9.8  | -9.8      | -9.8  |  |
| 80           | -1.5 | -1.5      | -1.5 | -5.5                    | -5.5           | -5.5 | -7.9  | -7.9      | -7.9  |  |
| 70           | -1.5 | -1.5      | -1.5 | -4.5                    | -4.5           | -4.5 | -5.6  | -5.6      | -5.6  |  |

#### 737-200ADV/JT8D-15A FAA

# **DO NOT USE FOR FLIGHT**

#### 737 Flight Crew Operations Manual

| ADJUSTED |       |           | R     | EPORTEE | ) BRAKIN       | IG ACTIO | N     |           |       |  |
|----------|-------|-----------|-------|---------|----------------|----------|-------|-----------|-------|--|
| FIELD    |       | GOOD      |       |         | MEDIUM         |          |       | POOR      |       |  |
| LENGTH   | PR    | ESS ALT ( | FT)   | PR      | PRESS ALT (FT) |          |       | ESS ALT ( | FT)   |  |
| (FT)     | S.L.  | 4000      | 8000  | S.L.    | 4000           | 8000     | S.L.  | 4000      | 8000  |  |
| 3000     | 52.5  |           |       |         |                |          |       |           |       |  |
| 3400     | 72.5  |           |       |         |                |          |       |           |       |  |
| 3800     | 92.6  | 67.5      |       | 54.3    |                |          |       |           |       |  |
| 4200     | 113.0 | 87.5      | 62.5  | 68.6    | 50.7           |          |       |           |       |  |
| 4600     | 133.0 | 108.0     | 82.5  | 82.9    | 65.0           |          | 56.7  |           |       |  |
| 5000     | 153.0 | 128.0     | 103.0 | 98.0    | 79.3           | 61.4     | 67.1  |           |       |  |
| 5400     |       | 148.0     | 123.0 | 113.1   | 94.0           | 75.7     | 77.5  | 59.3      |       |  |
| 5800     |       |           | 143.0 | 126.9   | 109.6          | 90.0     | 87.9  | 69.7      | 51.5  |  |
| 6200     |       |           |       | 140.7   | 123.4          | 105.8    | 98.8  | 80.0      | 61.9  |  |
| 6600     |       |           |       | 154.5   | 137.2          | 120.0    | 110.2 | 90.6      | 72.3  |  |
| 7000     |       |           |       |         | 151.0          | 133.8    | 121.9 | 101.6     | 82.7  |  |
| 7400     |       |           |       |         |                | 147.6    | 134.0 | 113.1     | 93.3  |  |
| 7800     |       |           |       |         |                |          | 146.3 | 124.9     | 104.4 |  |
| 8200     |       |           |       |         |                |          | 158.7 | 137.1     | 116.0 |  |
| 8600     |       |           |       |         |                |          |       | 149.4     | 127.9 |  |
| 9000     |       |           |       |         |                |          |       |           | 140.2 |  |
| 9400     |       |           |       |         |                |          |       |           | 152.5 |  |

#### VMCG Limit Weight (1000 LB)

1. Enter Weight Adjustment table with reported braking action and dry field/obstacle limit weight to obtain slippery runway weight adjustment.

Adjust "Good" field length available by -100 ft/+100 ft for every 10°F above/below 40°F. Adjust "Medium" field length available by -100 ft/+100 ft for every 10°F above/below 40°F. Adjust "Poor" field length available by -120 ft/+120 ft for every 10°F above/below 40°F.
Afjust "Poor" field length available by -120 ft/+120 ft for every 10°F above/below 40°F.
Find V1(MCG) limit weight for adjusted field length and pressure altitude.
Max allowable slippery runway limited weight is lesser of weights from 1 and 3.

#### V1 Adjustment (KIAS)

|           |      | REPORTED BRAKING ACTION |      |      |           |      |      |           |      |  |
|-----------|------|-------------------------|------|------|-----------|------|------|-----------|------|--|
| WEIGHT    |      | GOOD                    |      |      | MEDIUM    |      |      | POOR      |      |  |
| (1000 LB) | PR   | ESS ALT (               | FT)  | PR   | ESS ALT ( | FT)  | PR   | ESS ALT ( | FT)  |  |
|           | S.L. | 4000                    | 8000 | S.L. | 4000      | 8000 | S.L. | 4000      | 8000 |  |
| 130       | -6   | -3                      | 1    | -14  | -11       | -8   | -24  | -20       | -16  |  |
| 120       | -7   | -4                      | -1   | -16  | -13       | -10  | -26  | -22       | -18  |  |
| 110       | -9   | -6                      | -3   | -18  | -15       | -12  | -28  | -24       | -20  |  |
| 100       | -10  | -7                      | -4   | -20  | -17       | -14  | -30  | -26       | -22  |  |
| 90        | -12  | -9                      | -6   | -22  | -19       | -16  | -31  | -27       | -23  |  |
| 80        | -13  | -10                     | -7   | -23  | -20       | -17  | -32  | -28       | -24  |  |
| 70        | -14  | -11                     | -8   | -25  | -22       | -19  | -33  | -29       | -25  |  |
| 60        | -15  | -12                     | -9   | -26  | -23       | -20  | -34  | -30       | -26  |  |

1. Obtain V1, VR and V2 for the actual weight.

2. If VMCG limited, set V1 = VMCG. If not VMCG limited, enter V1 Adjustment table with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than VMCG, set V1 = VMCG.

737 Flight Crew Operations Manual

#### **Takeoff EPR**

#### Based on engine bleed for packs on and anti-ice on or off

| AIRPO      | RT OAT     | -     | AIRP | ORT PRESSU | RE ALTITUDE | E (FT) |                 |
|------------|------------|-------|------|------------|-------------|--------|-----------------|
| °F         | °C         | -1000 | 0    | 1000       | 2000        | 3000   | 3856 &<br>ABOVE |
| 130        | 55         | 1.84  | 1.84 | 1.84       | 1.84        | 1.84   | 1.84            |
| 122        | 50         | 1.90  | 1.90 | 1.90       | 1.90        | 1.90   | 1.90            |
| 113        | 45         | 1.94  | 1.94 | 1.94       | 1.94        | 1.94   | 1.94            |
| 104        | 40         | 1.99  | 1.99 | 1.99       | 1.99        | 1.99   | 1.99            |
| 95         | 35         | 2.04  | 2.04 | 2.04       | 2.04        | 2.04   | 2.04            |
| 86         | 30         | 2.05  | 2.09 | 2.09       | 2.09        | 2.09   | 2.09            |
| 77         | 25         | 2.05  | 2.10 | 2.13       | 2.12        | 2.12   | 2.12            |
| 68         | 20         | 2.05  | 2.10 | 2.13       | 2.14        | 2.14   | 2.14            |
| 59         | 15         | 2.05  | 2.10 | 2.13       | 2.14        | 2.14   | 2.14            |
| 50         | 10         | 2.05  | 2.10 | 2.14       | 2.14        | 2.14   | 2.14            |
| 41         | 5          | 2.05  | 2.10 | 2.16       | 2.17        | 2.17   | 2.17            |
| 32         | 0          | 2.05  | 2.10 | 2.16       | 2.20        | 2.21   | 2.21            |
| 23         | -5         | 2.05  | 2.10 | 2.16       | 2.21        | 2.23   | 2.23            |
| 14         | -10        | 2.05  | 2.10 | 2.16       | 2.21        | 2.26   | 2.26            |
| 5          | -15        | 2.05  | 2.10 | 2.16       | 2.21        | 2.27   | 2.28            |
| -4         | -20        | 2.05  | 2.10 | 2.16       | 2.21        | 2.27   | 2.30            |
| -13 to -65 | -25 to -54 | 2.05  | 2.10 | 2.16       | 2.21        | 2.27   | 2.31            |

When operating in shaded area with engine anti-ice on, decrease EPR limit by 0.03.

#### **EPR Adjustments for Engine Bleeds**

| BLEED         | AIRPORT PRESSURE ALTITUDE (FT) |              |  |  |  |  |
|---------------|--------------------------------|--------------|--|--|--|--|
| CONFIGURATION | -1000                          | 3856 & ABOVE |  |  |  |  |
| PACKS OFF     | 0.03                           | 0.03         |  |  |  |  |

With Gravel Protect switch in "ON" position, decrease EPR by 0.01.

## %N1 vs EPR Crosscheck

### (Takeoff and Go-around)

| AIRF           | PORT |      |      | 1    | ARGET %N | 1    |      |      |  |  |  |
|----------------|------|------|------|------|----------|------|------|------|--|--|--|
| O <sub>4</sub> | AT   | EPR  |      |      |          |      |      |      |  |  |  |
| °F             | °C   | 1.70 | 1.80 | 1.90 | 2.00     | 2.10 | 2.20 | 2.30 |  |  |  |
| 130            | 54   | 90   | 93   | 96   | 99       | 102  | 107  | 111  |  |  |  |
| 122            | 50   | 89   | 92   | 95   | 98       | 102  | 106  | 110  |  |  |  |
| 104            | 40   | 88   | 91   | 94   | 97       | 100  | 104  | 108  |  |  |  |
| 86             | 30   | 87   | 90   | 92   | 95       | 99   | 102  | 106  |  |  |  |
| 68             | 20   | 85   | 88   | 91   | 94       | 97   | 101  | 105  |  |  |  |
| 50             | 10   | 84   | 87   | 89   | 92       | 95   | 99   | 103  |  |  |  |
| 32             | 0    | 82   | 85   | 88   | 90       | 94   | 97   | 101  |  |  |  |
| 14             | -10  | 81   | 84   | 86   | 89       | 92   | 95   | 99   |  |  |  |
| -4             | -20  | 79   | 82   | 84   | 87       | 90   | 94   | 97   |  |  |  |
| -22            | -30  | 78   | 80   | 83   | 85       | 88   | 92   | 95   |  |  |  |
| -40            | -40  | 76   | 78   | 81   | 84       | 87   | 90   | 94   |  |  |  |
| -58            | -50  | 75   | 77   | 79   | 82       | 85   | 88   | 92   |  |  |  |
| -65            | -54  | 74   | 76   | 78   | 81       | 84   | 87   | 91   |  |  |  |

Use scheduled Takeoff or Go-around EPR.

Use actual OAT only.

%N1 operating tolerance ±2%

%N1 limit 102.45%

A/C on or off

For engine anti-icing on, increase %N1 by 1%.

### 737 Flight Crew Operations Manual

#### Reduced Takeoff EPR Based on engine bleed for packs on or off 1000 FT Pressure Altitude and Below Takeoff EPR Reduction

|                 |    |      |      | 1    | FIELD | LENG | TH LIN | MITED | 1    |      |        |                |
|-----------------|----|------|------|------|-------|------|--------|-------|------|------|--------|----------------|
|                 |    |      |      |      |       | 0A   | ΑT     |       |      |      |        |                |
|                 |    | -10  | -5   | 0    | 5     | 10   | 15     | 20    | 25   | 30   | 34 AND | CLIMB          |
| SURPLUS         | °C | TO   | TO   | TO   | TO    | TO   | TO     | TO    | TO   | TO   | ABOVE  | LIMITED        |
| WEIGHT          |    | -6   | -1   | 4    | 9     | 14   | 19     | 24    | 29   | 33   | ADOVE  | (ALL TEMPS)    |
| (LB)            |    | 14   | 23   | 32   | 41    | 50   | 59     | 68    | 77   | 86   | 93 AND | (1122 12011 5) |
|                 | °F | TO   | TO   | TO   | TO    | TO   | TO     | TO    | TO   | TO   | ABOVE  |                |
| 1000 TO 1000    |    | 22   | 31   | 40   | 49    | 58   | 67     | 76    | 85   | 92   |        | 0.01           |
| 1000 TO 1999    |    |      |      |      |       |      |        |       |      |      | 0.01   | 0.01           |
| 2000 TO 2989    |    |      |      |      |       |      |        |       |      | 0.01 | 0.02   | 0.02           |
| 3000 TO 3999    |    |      |      |      |       |      |        |       | 0.04 | 0.01 | 0.04   | 0.03           |
| 4000 TO 4999    |    |      |      |      |       |      |        |       | 0.01 | 0.03 | 0.05   | 0.04           |
| 5000 TO 5999    |    |      |      |      |       |      |        | 0.01  | 0.03 | 0.04 | 0.06   | 0.05           |
| 6000 TO 6999    |    |      |      |      |       |      | 0.01   | 0.03  | 0.04 | 0.06 | 0.08   | 0.06           |
| 7000 TO 7999    |    |      |      |      |       | 0.01 | 0.03   | 0.04  | 0.06 | 0.07 | 0.09   | 0.07           |
| 8000 TO 8999    |    |      |      |      | 0.02  | 0.03 | 0.04   | 0.06  | 0.07 | 0.08 | 0.10   | 0.08           |
| 9000 TO 9999    |    |      | 0.01 | 0.02 | 0.03  | 0.04 | 0.06   | 0.07  | 0.08 | 0.10 | 0.12   | 0.09           |
| 10000 TO 10999  | 0  | .01  | 0.02 | 0.03 | 0.04  | 0.06 | 0.07   | 0.08  | 0.10 | 0.11 | 0.13   | 0.10           |
| 11000 TO 11999  | 0  | .02  | 0.03 | 0.05 | 0.06  | 0.07 | 0.08   | 0.10  | 0.11 | 0.12 | 0.15   | 0.11           |
| 12000 TO 12999  | 0  | .04  | 0.05 | 0.06 | 0.07  | 0.08 | 0.10   | 0.11  | 0.13 | 0.14 | 0.17   | 0.12           |
| 13000 TO 13999  | 0  | .05  | 0.06 | 0.07 | 0.08  | 0.10 | 0.11   | 0.13  | 0.14 | 0.16 | 0.18   | 0.13           |
| 14000 TO 14999  | 0  | .06  | 0.07 | 0.09 | 0.10  | 0.11 | 0.13   | 0.14  | 0.16 | 0.17 | 0.20   | 0.14           |
| 15000 TO 15999  | 0  | .08  | 0.09 | 0.10 | 0.11  | 0.13 | 0.14   | 0.16  | 0.17 | 0.19 | 0.21   | 0.15           |
| 16000 TO 16999  | 0  | .09  | 0.10 | 0.11 | 0.13  | 0.14 | 0.16   | 0.17  | 0.19 | 0.20 | 0.23   | 0.16           |
| 17000 TO 17999  | 0  | .10  | 0.12 | 0.13 | 0.14  | 0.16 | 0.17   | 0.19  | 0.20 | 0.22 | 0.24   | 0.17           |
| 18000 TO 18999  | 0  | .12  | 0.13 | 0.14 | 0.16  | 0.17 | 0.19   | 0.20  | 0.22 | 0.23 | 0.26   | 0.18           |
| 19000 TO 19999  | 0  | .13  | 0.15 | 0.16 | 0.17  | 0.19 | 0.20   | 0.22  | 0.23 | 0.25 | 0.27   | 0.19           |
| 20000 TO 20999  | 0  | .15  | 0.16 | 0.17 | 0.19  | 0.20 | 0.22   | 0.23  | 0.25 | 0.26 | 0.29   | 0.20           |
| 21000 TO 21999  | 0  | .16  | 0.18 | 0.19 | 0.20  | 0.22 | 0.23   | 0.25  | 0.26 | 0.28 | 0.30   | 0.21           |
| 22000 TO 22999  | 0  | .18  | 0.19 | 0.20 | 0.22  | 0.23 | 0.25   | 0.26  | 0.28 | 0.29 | 0.32   | 0.22           |
| 23000 TO 23999  | 0  | .19  | 0.21 | 0.22 | 0.23  | 0.25 | 0.26   | 0.28  | 0.29 | 0.31 | 0.33   | 0.23           |
| 24000 TO 24999  | 0  | .21  | 0.22 | 0.23 | 0.25  | 0.26 | 0.28   | 0.29  | 0.31 | 0.32 | 0.35   | 0.24           |
| 25000 TO 25999  | 0  | .22  | 0.24 | 0.25 | 0.26  | 0.28 | 0.29   | 0.31  | 0.32 | 0.34 | 0.36   | 0.25           |
| 26000 TO 26999  | 0  | .24  | 0.25 | 0.27 | 0.28  | 0.29 | 0.31   | 0.32  | 0.34 | 0.35 | 0.36   | 0.26           |
| 27000 TO 27999  | 0  | .25  | 0.27 | 0.28 | 0.29  | 0.31 | 0.32   | 0.34  | 0.35 | 0.36 | 0.36   | 0.27           |
| 28000 TO 28999  | 0  | .27  | 0.28 | 0.30 | 0.31  | 0.32 | 0.34   | 0.35  | 0.36 | 0.36 | 0.36   | 0.28           |
| 29000 TO 29999  |    | .28  | 0.30 | 0.31 | 0.32  | 0.34 | 0.35   | 0.36  | 0.36 | 0.36 | 0.36   | 0.29           |
| 30000 TO 30999  |    | .30  | 0.31 | 0.33 | 0.34  | 0.35 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.30           |
| 31000 TO 31999  | 0  | .31  | 0.33 | 0.34 | 0.35  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.31           |
| 32000 TO 32999  |    | .33  | 0.34 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.32           |
| 33000 TO 33999  | 0  | .34  | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.33           |
| 34000 TO 34189  |    | 0.36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.34           |
| 34190 TO 35159  |    | .36  | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.35           |
| 35160 AND ABOVE |    | .36  | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.36           |

#### 737 Flight Crew Operations Manual

#### Minimum EPR

|      | PRESSURE ALTITUDE (1000 FT)                                                                                                            |      |      |                                                              |   |   |   |   |   |   |    |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------------------------------------------------------|---|---|---|---|---|---|----|--|
| -1   | 0                                                                                                                                      | 1    | 2    | 3                                                            | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| 1.91 | 1.91         1.91         1.91         1.92         1.94         1.96         1.98         1.99         2.01         2.07         2.10 |      |      |                                                              |   |   |   |   |   |   |    |  |
| 1.85 | 1.85                                                                                                                                   | 1.87 | 1.89 | MINIMUM EPR WHEN TAKEOFF ABOVE 49°C (120°F)<br>IS PERMITTED. |   |   |   |   |   |   |    |  |

Increase Minimum EPR by 0.03 for bleeds off.

Use actual weight and OAT to determine takeoff speeds. Increase V1 and VR by 1 kt for each 0.12 EPR reduction, except when speeds are found in shaded area of the Takeoff Speeds chart.

If V1 prior to adjustment is found in the shaded area of the Takeoff Speeds chart, find the lightest weight above the shaded area and using the weight as the actual weight recalculate the surplus weight and the Takeoff EPR reduction.

### 737 Flight Crew Operations Manual

#### Based on engine bleed for packs on or off Above 1000 FT Pressure Altitude Takeoff EPR Reduction

|                 |    |      |      | 1    | FIELD | LENG | TH LIN | MITED | 1    |      |                 |              |
|-----------------|----|------|------|------|-------|------|--------|-------|------|------|-----------------|--------------|
|                 |    |      |      |      |       | 0/   |        |       |      |      |                 |              |
|                 |    | -10  | -5   | 0    | 5     | 10   | 15     | 20    | 25   | 30   | 24 AND          | CLIMB        |
| SURPLUS         | °C | TO   | TO   | TO   | TO    | TO   | TO     | TO    | ТО   | TO   | 34 AND<br>ABOVE | LIMITED      |
| WEIGHT          |    | -6   | -1   | 4    | 9     | 14   | 19     | 24    | 29   | 33   | ABOVE           | (ALL TEMPS)  |
| (LB)            |    | 14   | 23   | 32   | 41    | 50   | 59     | 68    | 77   | 86   | 93 AND          | (TEE TEMI 5) |
|                 | °F | TO   | TO   | TO   | TO    | TO   | TO     | TO    | TO   | TO   | ABOVE           |              |
|                 |    | 22   | 31   | 40   | 49    | 58   | 67     | 76    | 85   | 92   |                 |              |
| 1000 TO 1999    |    |      |      |      |       | 0.01 |        |       | 0.01 | 0.01 | 0.01            | 0.01         |
| 2000 TO 2989    |    |      |      |      | 0.01  | 0.01 |        | 0.01  | 0.02 | 0.03 | 0.03            | 0.02         |
| 3000 TO 3999    |    |      |      | 0.01 | 0.03  | 0.01 | 0.01   | 0.02  | 0.03 | 0.04 | 0.04            | 0.03         |
| 4000 TO 4999    |    |      | 0.01 | 0.03 | 0.03  | 0.02 | 0.02   | 0.03  | 0.05 | 0.06 | 0.06            | 0.04         |
| 5000 TO 5999    |    | 0.01 | 0.03 | 0.03 | 0.03  | 0.03 | 0.03   | 0.05  | 0.06 | 0.07 | 0.07            | 0.05         |
| 6000 TO 6999    |    | 0.03 | 0.03 | 0.03 | 0.03  | 0.04 | 0.05   | 0.06  | 0.08 | 0.09 | 0.09            | 0.06         |
| 7000 TO 7999    |    | 0.03 | 0.03 | 0.03 | 0.04  | 0.06 | 0.06   | 0.08  | 0.10 | 0.10 | 0.10            | 0.07         |
| 8000 TO 8999    |    | 0.03 | 0.03 | 0.04 | 0.06  | 0.08 | 0.08   | 0.10  | 0.11 | 0.12 | 0.12            | 0.08         |
| 9000 TO 9999    |    | 0.03 | 0.05 | 0.06 | 0.07  | 0.09 | 0.09   | 0.11  | 0.13 | 0.13 | 0.13            | 0.09         |
| 10000 TO 10999  |    | 0.05 | 0.06 | 0.07 | 0.08  | 0.11 | 0.11   | 0.13  | 0.14 | 0.15 | 0.15            | 0.10         |
| 11000 TO 11999  |    | 0.06 | 0.07 | 0.08 | 0.10  | 0.12 | 0.13   | 0.14  | 0.16 | 0.17 | 0.16            | 0.11         |
| 12000 TO 12999  |    | 0.07 | 0.09 | 0.10 | 0.12  | 0.14 | 0.14   | 0.16  | 0.17 | 0.18 | 0.18            | 0.12         |
| 13000 TO 13999  |    | 0.09 | 0.10 | 0.12 | 0.13  | 0.15 | 0.16   | 0.17  | 0.19 | 0.20 | 0.19            | 0.13         |
| 14000 TO 14999  |    | 0.10 | 0.12 | 0.13 | 0.15  | 0.17 | 0.17   | 0.19  | 0.20 | 0.21 | 0.21            | 0.14         |
| 15000 TO 15999  |    | 0.12 | 0.13 | 0.15 | 0.16  | 0.18 | 0.19   | 0.20  | 0.22 | 0.23 | 0.23            | 0.15         |
| 16000 TO 16999  |    | 0.14 | 0.15 | 0.16 | 0.18  | 0.20 | 0.20   | 0.22  | 0.23 | 0.24 | 0.24            | 0.16         |
| 17000 TO 17999  |    | ).15 | 0.16 | 0.18 | 0.20  | 0.22 | 0.22   | 0.23  | 0.25 | 0.26 | 0.26            | 0.17         |
| 18000 TO 18999  |    | 0.17 | 0.18 | 0.19 | 0.21  | 0.23 | 0.23   | 0.25  | 0.26 | 0.27 | 0.27            | 0.18         |
| 19000 TO 19999  |    | ).18 | 0.20 | 0.21 | 0.22  | 0.25 | 0.25   | 0.26  | 0.28 | 0.29 | 0.29            | 0.19         |
| 20000 TO 20999  |    | 0.20 | 0.21 | 0.22 | 0.24  | 0.26 | 0.26   | 0.28  | 0.29 | 0.30 | 0.30            | 0.20         |
| 21000 TO 21999  |    | ).21 | 0.23 | 0.24 | 0.25  | 0.28 | 0.28   | 0.30  | 0.31 | 0.32 | 0.32            | 0.22         |
| 22000 TO 22999  |    | ).23 | 0.24 | 0.25 | 0.27  | 0.29 | 0.29   | 0.31  | 0.33 | 0.33 | 0.33            | 0.23         |
| 23000 TO 23999  |    | 0.24 | 0.26 | 0.27 | 0.28  | 0.31 | 0.31   | 0.33  | 0.34 | 0.35 | 0.35            | 0.24         |
| 24000 TO 24999  |    | 0.26 | 0.27 | 0.28 | 0.30  | 0.32 | 0.32   | 0.34  | 0.36 | 0.36 | 0.36            | 0.25         |
| 25000 TO 25999  |    | ).27 | 0.29 | 0.30 | 0.32  | 0.34 | 0.34   | 0.36  | 0.36 | 0.36 | 0.36            | 0.26         |
| 26000 TO 26999  |    | 0.29 | 0.30 | 0.32 | 0.33  | 0.35 | 0.35   | 0.36  | 0.36 | 0.36 | 0.36            | 0.27         |
| 27000 TO 27999  |    | 0.30 | 0.32 | 0.33 | 0.35  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.28         |
| 28000 TO 28999  |    | 0.32 | 0.33 | 0.35 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.29         |
| 29000 TO 29999  |    | ).33 | 0.35 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.30         |
| 30000 TO 30999  |    | ).35 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.31         |
| 31000 TO 31429  |    | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.32         |
| 31430 TO 32379  | 0  | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.33         |
| 32380 TO 33329  |    | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.34         |
| 33330 TO 34279  |    | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.35         |
| 34280 AND ABOVE | 0  | 0.36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36            | 0.36         |

#### 737 Flight Crew Operations Manual

#### Minimum EPR

|                                                             | PRESSURE ALTITUDE (1000 FT)                           |   |   |   |   |   |   |   |   |   |    |  |
|-------------------------------------------------------------|-------------------------------------------------------|---|---|---|---|---|---|---|---|---|----|--|
| -1                                                          | 0                                                     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| 1.91 1.91 1.91 1.91 1.92 1.94 1.96 1.98 1.99 2.01 2.07 2.10 |                                                       |   |   |   |   |   |   |   |   |   |    |  |
| 1.85                                                        | MINIMUM EPR WHEN TAKEOFE ABOVE $49^{\circ}$ C (120°E) |   |   |   |   |   |   |   |   |   |    |  |

Increase Minimum EPR by 0.03 for bleeds off.

Use actual weight and OAT to determine takeoff speeds. Increase V1 and VR by 1 kt for each 0.12 EPR reduction, except when speeds are found in shaded area of the Takeoff Speeds chart.

If V1 prior to adjustment is found in the shaded area of the Takeoff Speeds chart, find the lightest weight above the shaded area and using the weight as the actual weight recalculate the surplus weight and the Takeoff EPR reduction.

737 Flight Crew Operations Manual

### Max Climb EPR

#### Based on engine bleed for packs on and anti-ice off

| 1          | PRESSURE ALTITUDE (FT) |      |       |             |         |                  |       |  |  |  |  |  |
|------------|------------------------|------|-------|-------------|---------|------------------|-------|--|--|--|--|--|
| TAT        |                        |      | PRESS | URE ALITTUI | JE (FT) |                  |       |  |  |  |  |  |
| (°C)       | 0                      | 1000 | 1500  | 2000        | 3000    | 3900 TO<br>10000 | 37000 |  |  |  |  |  |
| 50         | 1.65                   | 1.65 | 1.65  | 1.65        | 1.65    | 1.65             | 1.63  |  |  |  |  |  |
| 45         | 1.68                   | 1.68 | 1.68  | 1.68        | 1.68    | 1.68             | 1.65  |  |  |  |  |  |
| 40         | 1.72                   | 1.72 | 1.72  | 1.72        | 1.72    | 1.72             | 1.69  |  |  |  |  |  |
| 35         | 1.76                   | 1.76 | 1.76  | 1.76        | 1.76    | 1.76             | 1.73  |  |  |  |  |  |
| 30         | 1.80                   | 1.80 | 1.80  | 1.80        | 1.80    | 1.80             | 1.77  |  |  |  |  |  |
| 25         | 1.84                   | 1.84 | 1.84  | 1.84        | 1.84    | 1.84             | 1.81  |  |  |  |  |  |
| 20         | 1.88                   | 1.88 | 1.88  | 1.88        | 1.88    | 1.88             | 1.85  |  |  |  |  |  |
| 15         | 1.93                   | 1.93 | 1.93  | 1.93        | 1.93    | 1.93             | 1.91  |  |  |  |  |  |
| 10         | 1.98                   | 1.98 | 1.98  | 1.98        | 1.98    | 1.98             | 1.95  |  |  |  |  |  |
| 5          | 2.03                   | 2.03 | 2.03  | 2.03        | 2.03    | 2.03             | 2.00  |  |  |  |  |  |
| 0          | 2.07                   | 2.09 | 2.09  | 2.09        | 2.09    | 2.09             | 2.07  |  |  |  |  |  |
| -5         | 2.07                   | 2.13 | 2.14  | 2.14        | 2.14    | 2.14             | 2.12  |  |  |  |  |  |
| -10        | 2.07                   | 2.13 | 2.16  | 2.18        | 2.18    | 2.18             | 2.16  |  |  |  |  |  |
| -15        | 2.07                   | 2.13 | 2.16  | 2.19        | 2.21    | 2.21             | 2.19  |  |  |  |  |  |
| -20        | 2.07                   | 2.13 | 2.16  | 2.19        | 2.24    | 2.24             | 2.22  |  |  |  |  |  |
| -25        | 2.07                   | 2.13 | 2.16  | 2.19        | 2.25    | 2.26             | 2.24  |  |  |  |  |  |
| -30        | 2.07                   | 2.13 | 2.16  | 2.19        | 2.25    | 2.28             | 2.25  |  |  |  |  |  |
| -35        | 2.07                   | 2.13 | 2.16  | 2.19        | 2.25    | 2.29             | 2.27  |  |  |  |  |  |
| -40 TO -50 | 2.07                   | 2.13 | 2.16  | 2.19        | 2.25    | 2.30             | 2.28  |  |  |  |  |  |

#### **EPR Adjustments for Engine Bleeds**

| BLEED                         | PRESSURE A | LTITUDE (FT) |
|-------------------------------|------------|--------------|
| CONFIGURATION                 | 0          | 37000        |
| PACKS OFF                     | 0.03       | 0.03         |
| ENGINE ANTI-ICE ON            | -0.08      | -0.08        |
| ENGINE AND WING ANTI-ICE ON*  | -0.12      | -0.12        |
| ENGINE AND WING ANTI-ICE ON** | -0.15      | -0.15        |

\*Dual Bleed Source

\*\*Single Bleed Source

With Gravel Protect switch in "Anti-Ice/Test" position and up to 15000 ft, decrease EPR by 0.01. With Gravel Protect switch in "Anti-Ice/Test" position and above 15000 ft, decrease EPR by 0.02.

#### 737 Flight Crew Operations Manual

### **Go-around EPR**

#### Based on engine bleed for packs on, wing anti-ice off

| Dused on engine bieed for packs on, wing and rec on |            |            |       |       |           |            |         |                  |  |  |
|-----------------------------------------------------|------------|------------|-------|-------|-----------|------------|---------|------------------|--|--|
| REPORT                                              | ED OAT     | TAT        |       | AIRPO | RT PRESSU | RE ALTITUE | DE (FT) |                  |  |  |
| °F                                                  | °C         | °C         | -1000 | 0     | 1000      | 2000       | 3000    | 3900 TO<br>10000 |  |  |
| 131                                                 | 55         | 57         | 1.81  | 1.81  | 1.81      | 1.81       | 1.81    | 1.81             |  |  |
| 127                                                 | 53         | 55         | 1.83  | 1.83  | 1.83      | 1.83       | 1.83    | 1.83             |  |  |
| 118                                                 | 48         | 50         | 1.89  | 1.89  | 1.89      | 1.89       | 1.89    | 1.89             |  |  |
| 109                                                 | 43         | 45         | 1.94  | 1.94  | 1.94      | 1.94       | 1.94    | 1.94             |  |  |
| 100                                                 | 38         | 40         | 1.99  | 1.99  | 1.99      | 1.99       | 1.99    | 1.99             |  |  |
| 91                                                  | 33         | 35         | 2.02  | 2.04  | 2.04      | 2.04       | 2.04    | 2.04             |  |  |
| 82                                                  | 28         | 30         | 2.02  | 2.07  | 2.07      | 2.07       | 2.07    | 2.07             |  |  |
| 73                                                  | 23         | 25         | 2.02  | 2.07  | 2.10      | 2.10       | 2.10    | 2.10             |  |  |
| 64                                                  | 18         | 20         | 2.02  | 2.07  | 2.10      | 2.13       | 2.13    | 2.13             |  |  |
| 55                                                  | 13         | 15         | 2.02  | 2.07  | 2.10      | 2.13       | 2.13    | 2.13             |  |  |
| 46                                                  | 8          | 10         | 2.02  | 2.07  | 2.13      | 2.13       | 2.13    | 2.13             |  |  |
| 37                                                  | 3          | 5          | 2.02  | 2.07  | 2.13      | 2.17       | 2.17    | 2.17             |  |  |
| 27                                                  | -3         | 0          | 2.02  | 2.07  | 2.13      | 2.19       | 2.21    | 2.21             |  |  |
| 18                                                  | -8         | -5         | 2.02  | 2.07  | 2.13      | 2.19       | 2.24    | 2.24             |  |  |
| 9                                                   | -13        | -10        | 2.02  | 2.07  | 2.13      | 2.19       | 2.24    | 2.26             |  |  |
| 0                                                   | -18        | -15        | 2.02  | 2.07  | 2.13      | 2.19       | 2.24    | 2.28             |  |  |
| -10 TO -61                                          | -23 TO -52 | -20 TO -50 | 2.02  | 2.07  | 2.13      | 2.19       | 2.24    | 2.30             |  |  |

When operating in shaded area with engine anti-ice on, decrease EPR limit by 0.03.

#### **EPR Adjustments for Engine Bleeds**

| BLEED                         | AIRPORT PRESSU | RE ALTITUDE (FT) |
|-------------------------------|----------------|------------------|
| CONFIGURATION                 | -1000          | 10000            |
| PACKS OFF                     | 0.03           | 0.03             |
| ENGINE AND WING ANTI-ICE ON*  | -0.04          | -0.04            |
| ENGINE AND WING ANTI-ICE ON** | -0.07          | -0.07            |

\*Dual bleed source

\*\*Single bleed source

With Gravel Protect switch in "ON" position, decrease limit EPR by 0.01.

737 Flight Crew Operations Manual

### Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Climb (280/.70)

#### Flaps Up, Set Max Climb Thrust

| PRES      | SURE         |      | WEIGHT | (1000 LB) |      |
|-----------|--------------|------|--------|-----------|------|
| ALTITU    | DE (FT)      | 80   | 100    | 120       | 130  |
| 37000     | PITCH ATT    | 6.0  | 6.0    |           |      |
| 37000     | V/S (FT/MIN) | 1200 | 400    |           |      |
| 35000     | PITCH ATT    | 6.0  | 6.0    | 6.0       |      |
| 35000     | V/S (FT/MIN) | 1600 | 800    | 100       |      |
| 30000     | PITCH ATT    | 6.0  | 6.0    | 6.0       | 6.0  |
| 30000     | V/S (FT/MIN) | 2400 | 1600   | 900       | 600  |
| 27000     | PITCH ATT    | 6.0  | 5.0    | 5.0       | 5.0  |
| 27000     | V/S (FT/MIN) | 2700 | 1900   | 1300      | 1000 |
| 25000     | PITCH ATT    | 5.0  | 5.0    | 5.0       | 5.0  |
| 23000     | V/S (FT/MIN) | 2300 | 1700   | 1200      | 900  |
| 20000     | PITCH ATT    | 6.0  | 6.0    | 6.0       | 6.0  |
| 20000     | V/S (FT/MIN) | 2900 | 2100   | 1600      | 1300 |
| 15000     | PITCH ATT    | 8.0  | 7.0    | 7.0       | 7.0  |
| 13000     | V/S (FT/MIN) | 3400 | 2500   | 1900      | 1700 |
| 5000      | PITCH ATT    | 9.0  | 8.0    | 8.0       | 8.0  |
| 5000      | V/S (FT/MIN) | 4300 | 3300   | 2600      | 2300 |
| SEA LEVEL | PITCH ATT    | 12.0 | 10.0   | 9.0       | 9.0  |
| SEA LEVEL | V/S (FT/MIN) | 4700 | 3600   | 2900      | 2600 |

#### Cruise (.70/280) Flaps Up, EPR for Level Flight

| PRES          | SURE      | WEIGHT (1000 LB) |      |      |      |      |      |  |  |
|---------------|-----------|------------------|------|------|------|------|------|--|--|
| ALTITUDE (FT) |           | 80               | 90   | 100  | 110  | 120  | 130  |  |  |
| 37000         | PITCH ATT | 3.8              | 4.5  | 5.2  |      |      |      |  |  |
| 37000         | EPR       | 1.83             | 1.95 | 2.09 |      |      |      |  |  |
| 30000         | PITCH ATT | 2.5              | 2.9  | 3.3  | 3.8  | 4.3  | 5.2  |  |  |
| 30000         | EPR       | 1.68             | 1.72 | 1.78 | 1.84 | 1.91 | 2.00 |  |  |
| 10000         | PITCH ATT | 2.0              | 2.3  | 2.7  | 3.1  | 3.5  | 3.7  |  |  |
| 10000         | EPR       | 1.31             | 1.33 | 1.34 | 1.36 | 1.39 | 1.42 |  |  |

#### Descent (.70/280) Flaps Up, Set Idle Thrust

| PRES   | SURE          |       | WEIGHT | (1000 LB) |       |
|--------|---------------|-------|--------|-----------|-------|
| ALTITU | ALTITUDE (FT) |       | 90     | 100       | 110   |
| 37000  | PITCH ATT     | 0.8   | 1.5    | 2.1       | 2.4   |
| 57000  | V/S (FT/MIN)  | -2100 | -2100  | -2200     | -2400 |
| 30000  | PITCH ATT     | -1.5  | -0.9   | -0.3      | 0.2   |
| 30000  | V/S (FT/MIN)  | -2900 | -2700  | -2700     | -2600 |
| 10000  | PITCH ATT     | -1.5  | -0.9   | -0.3      | 0.2   |
| 10000  | V/S (FT/MIN)  | -2000 | -1800  | -1700     | -1700 |

#### Holding Flaps Up, EPR for Level Flight

| PRES   | SURE              |    | WEIGHT (1000 LB) |      |      |      |  |  |  |  |
|--------|-------------------|----|------------------|------|------|------|--|--|--|--|
| ALTITU | DE (FT)           | 80 | 90               | 100  | 110  | 120  |  |  |  |  |
|        | PITCH ATT         |    | 5.9              | 6.4  | 6.3  | 6.4  |  |  |  |  |
| 10000  | 10000 EPR<br>KIAS |    | 1.26             | 1.30 | 1.33 | 1.36 |  |  |  |  |
|        |                   |    | 210              | 210  | 220  | 230  |  |  |  |  |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 3, 2015 D6-27370-200A-TBC PI.10.15

### 737 Flight Crew Operations Manual

#### Terminal Area (0 to 10000 FT) EPR for Level Flight

| FLAP POSITIO         | N         |      | WE   | EIGHT (1000 I | LB)  |      |
|----------------------|-----------|------|------|---------------|------|------|
| (SPEED)              | 70        | 80   | 90   | 100           | 110  |      |
| FLAPS UP (GEAR UP)   | PITCH ATT | 4.0  | 4.8  | 5.5           | 6.3  | 7.1  |
| (210 KIAS)           | EPR       | 1.21 | 1.23 | 1.26          | 1.30 | 1.33 |
| FLAPS 1 (GEAR UP)    | PITCH ATT | 4.1  | 4.8  | 5.6           | 6.4  | 7.2  |
| (190 KIAS)           | EPR       | 1.27 | 1.30 | 1.33          | 1.36 | 1.40 |
| FLAPS 5 (GEAR UP)    | PITCH ATT | 4.2  | 5.1  | 6.1           | 7.0  | 7.9  |
| (170 KIAS)           | EPR       | 1.28 | 1.31 | 1.35          | 1.40 | 1.44 |
| FLAPS 15 (GEAR DOWN) | PITCH ATT | 3.8  | 4.9  | 6.1           | 7.2  | 8.4  |
| (150 KIAS)           | EPR       | 1.43 | 1.48 | 1.52          | 1.58 | 1.64 |
| FLAPS 25 (GEAR DOWN) | PITCH ATT | 3.3  | 4.7  | 6.0           | 7.3  | 8.6  |
| (140 KIAS)           | EPR       | 1.45 | 1.50 | 1.56          | 1.63 | 1.70 |

### Final Approach (0 to 10000 FT) Gear Down, EPR for 3° Glideslope

|          | OSITION   |      | W    | EIGHT (1000 L | .B)  |      |
|----------|-----------|------|------|---------------|------|------|
| FLAP PO  | JSITION   | 70   | 80   | 90            | 100  | 110  |
|          | PITCH ATT | 0.0  | 0.0  | 0.0           | 0.0  | 0.0  |
| FLAPS 40 | EPR       | 1.25 | 1.29 | 1.33          | 1.38 | 1.41 |
|          | KIAS      | 115  | 123  | 130           | 137  | 145  |
|          | PITCH ATT | 2.6  | 2.6  | 2.6           | 2.6  | 2.6  |
| FLAPS 30 | EPR       | 1.17 | 1.20 | 1.23          | 1.26 | 1.28 |
|          | KIAS      | 118  | 125  | 133           | 141  | 149  |
|          | PITCH ATT | 4.5  | 4.5  | 4.5           | 4.5  | 4.5  |
| FLAPS 15 | EPR       | 1.13 | 1.15 | 1.17          | 1.18 | 1.20 |
|          | KIAS      | 125  | 133  | 140           | 148  | 156  |

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight All Engines**

**Chapter PI** Section 11

### Long Range Cruise Maximum Operating Altitude

#### Max Cruise Thrust 1000 1.0.1

|   | $1SA + 10^{\circ}C$ | and Below |             |           |
|---|---------------------|-----------|-------------|-----------|
| 1 | WEIGHT              | OPTIMUM   | TAT         | Ν         |
|   | (1000 I D)          | ALT (ET)  | $(\circ C)$ | 1.00 (22) |

| WEIGHT    | OPTIMUM  | TAT  | MAR        | RGIN TO INITI | IAL BUFFET ' | G' (BANK AN | GLE)       |
|-----------|----------|------|------------|---------------|--------------|-------------|------------|
| (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)    | 1.30 (39°)   | 1.40 (44°)  | 1.50 (48°) |
| 130       | 28700    | -6   | 30600*     | 30600*        | 30600*       | 30000       | 28500      |
| 120       | 30400    | -10  | 32900*     | 32900*        | 32900*       | 31800       | 30300      |
| 110       | 32300    | -14  | 35000*     | 35000*        | 35000*       | 33600       | 32100      |
| 100       | 34400    | -19  | 37000      | 37000         | 37000        | 35600       | 34200      |
| 90        | 36600    | -22  | 37000      | 37000         | 37000        | 37000       | 36400      |
| 80        | 37000    | -22  | 37000      | 37000         | 37000        | 37000       | 37000      |
| 70        | 37000    | -22  | 37000      | 37000         | 37000        | 37000       | 37000      |
| 60        | 37000    | -19  | 37000      | 37000         | 37000        | 37000       | 37000      |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

#### ISA + 15°C

| WEIGHT    | OPTIMUM  | TAT  | MAF        | RGIN TO INIT | IAL BUFFET ' | G' (BANK AN | GLE)       |
|-----------|----------|------|------------|--------------|--------------|-------------|------------|
| (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)   | 1.30 (39°)   | 1.40 (44°)  | 1.50 (48°) |
| 130       | 28700    | -1   | 28800*     | 28800*       | 28800*       | 28800*      | 28500      |
| 120       | 30400    | -5   | 31800*     | 31800*       | 31800*       | 31800       | 30300      |
| 110       | 32300    | -9   | 34300*     | 34300*       | 34300*       | 33600       | 32100      |
| 100       | 34400    | -13  | 36600*     | 36600*       | 36600*       | 35600       | 34200      |
| 90        | 36600    | -17  | 37000      | 37000        | 37000        | 37000       | 36400      |
| 80        | 37000    | -17  | 37000      | 37000        | 37000        | 37000       | 37000      |
| 70        | 37000    | -17  | 37000      | 37000        | 37000        | 37000       | 37000      |
| 60        | 37000    | -13  | 37000      | 37000        | 37000        | 37000       | 37000      |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

#### ISA + 20°C

| WEIGHT    | OPTIMUM  | TAT  | MAF        | RGIN TO INIT | IAL BUFFET ' | G' (BANK AN | GLE)       |
|-----------|----------|------|------------|--------------|--------------|-------------|------------|
| (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)   | 1.30 (39°)   | 1.40 (44°)  | 1.50 (48°) |
| 130       | 28700    | 5    | 22900*     | 22900*       | 22900*       | 22900*      | 22900*     |
| 120       | 30400    | 1    | 29600*     | 29600*       | 29600*       | 29600*      | 29600*     |
| 110       | 32300    | -3   | 33400*     | 33400*       | 33400*       | 33400*      | 32100      |
| 100       | 34400    | -8   | 36000*     | 36000*       | 36000*       | 35600       | 34200      |
| 90        | 36600    | -11  | 37000      | 37000        | 37000        | 37000       | 36400      |
| 80        | 37000    | -11  | 37000      | 37000        | 37000        | 37000       | 37000      |
| 70        | 37000    | -11  | 37000      | 37000        | 37000        | 37000       | 37000      |
| 60        | 37000    | -8   | 37000      | 37000        | 37000        | 37000       | 37000      |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

### 737 Flight Crew Operations Manual

#### Long Range Cruise Control

| WE   | IGHT   |      |      | P    | RESSURE | ALTITUD | E (1000 F | Г)   |      |      |
|------|--------|------|------|------|---------|---------|-----------|------|------|------|
| (100 | 00 LB) | 21   | 23   | 25   | 27      | 29      | 31        | 33   | 35   | 37   |
|      | EPR    | 1.70 | 1.75 | 1.81 | 1.88    | 1.96    | 2.07      |      |      |      |
| 120  | MACH   | .692 | .713 | .724 | .729    | .728    | .728      |      |      |      |
| 130  | KIAS   | 313  | 311  | 303  | 293     | 280     | 268       |      |      |      |
|      | FF/ENG | 3421 | 3391 | 3313 | 3235    | 3176    | 3222      |      |      |      |
|      | EPR    | 1.65 | 1.70 | 1.76 | 1.82    | 1.89    | 1.97      | 2.09 |      |      |
| 120  | MACH   | .674 | .693 | .714 | .725    | .729    | .728      | .728 |      |      |
| 120  | KIAS   | 305  | 302  | 299  | 291     | 281     | 268       | 257  |      |      |
|      | FF/ENG | 3176 | 3141 | 3110 | 3040    | 2967    | 2918      | 2976 |      |      |
|      | EPR    | 1.60 | 1.65 | 1.70 | 1.76    | 1.82    | 1.89      | 1.98 | 2.10 |      |
| 110  | MACH   | .658 | .673 | .693 | .715    | .725    | .729      | .728 | .728 |      |
| 110  | KIAS   | 297  | 292  | 289  | 287     | 279     | 269       | 257  | 245  |      |
|      | FF/ENG | 2964 | 2897 | 2863 | 2839    | 2773    | 2705      | 2663 | 2726 |      |
|      | EPR    | 1.56 | 1.60 | 1.64 | 1.69    | 1.75    | 1.82      | 1.89 | 1.98 | 2.10 |
| 100  | MACH   | .639 | .656 | .672 | .691    | .714    | .724      | .729 | .728 | .728 |
| 100  | KIAS   | 288  | 284  | 280  | 277     | 274     | 267       | 257  | 245  | 234  |
|      | FF/ENG | 2754 | 2686 | 2624 | 2592    | 2572    | 2512      | 2450 | 2412 | 2474 |
|      | EPR    | 1.51 | 1.55 | 1.59 | 1.63    | 1.68    | 1.75      | 1.81 | 1.88 | 1.97 |
| 90   | MACH   | .613 | .635 | .652 | .668    | .687    | .711      | .724 | .729 | .728 |
| 90   | KIAS   | 276  | 275  | 271  | 267     | 263     | 261       | 255  | 245  | 234  |
|      | FF/ENG | 2522 | 2475 | 2415 | 2359    | 2321    | 2307      | 2258 | 2203 | 2168 |
|      | EPR    | 1.45 | 1.49 | 1.53 | 1.57    | 1.62    | 1.67      | 1.73 | 1.79 | 1.86 |
| 80   | MACH   | .579 | .604 | .627 | .647    | .663    | .681      | .705 | .721 | .728 |
| 80   | KIAS   | 260  | 261  | 260  | 258     | 253     | 249       | 248  | 243  | 234  |
|      | FF/ENG | 2257 | 2234 | 2202 | 2151    | 2100    | 2058      | 2045 | 2012 | 1966 |
|      | EPR    | 1.39 | 1.42 | 1.47 | 1.51    | 1.55    | 1.60      | 1.64 | 1.70 | 1.77 |
| 70   | MACH   | .546 | .566 | .589 | .616    | .637    | .656      | .672 | .694 | .717 |
| ,0   | KIAS   | 245  | 244  | 244  | 245     | 243     | 240       | 235  | 233  | 230  |
|      | FF/ENG | 2022 | 1983 | 1951 | 1936    | 1894    | 1847      | 1804 | 1786 | 1773 |
|      | EPR    | 1.33 | 1.36 | 1.40 | 1.43    | 1.48    | 1.52      | 1.57 | 1.61 | 1.66 |
| 60   | MACH   | .511 | .530 | .550 | .571    | .596    | .623      | .644 | .661 | .680 |
| 00   | KIAS   | 228  | 228  | 227  | 226     | 226     | 227       | 225  | 221  | 217  |
|      | FF/ENG | 1790 | 1763 | 1725 | 1698    | 1676    | 1652      | 1614 | 1574 | 1550 |

Shaded area approximates optimum altitude.

#### Long Range Cruise Enroute Fuel and Time - Low Altitudes Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | E (NM)  |      | GROUND   |      | AIR DISTANCE (NM) |        |          |      |  |
|------|--------|---------|---------|------|----------|------|-------------------|--------|----------|------|--|
| HE.  | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND            | COMPON | VENT (KI | ſS)  |  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40                | 60     | 80       | 100  |  |
| 290  | 266    | 245     | 228     | 213  | 200      | 190  | 181               | 173    | 166      | 159  |  |
| 583  | 535    | 493     | 458     | 427  | 400      | 381  | 363               | 347    | 332      | 319  |  |
| 879  | 806    | 742     | 688     | 641  | 600      | 572  | 545               | 521    | 499      | 479  |  |
| 1178 | 1079   | 992     | 919     | 856  | 800      | 762  | 726               | 694    | 665      | 639  |  |
| 1480 | 1354   | 1243    | 1150    | 1071 | 1000     | 952  | 908               | 867    | 831      | 798  |  |
| 1785 | 1631   | 1496    | 1383    | 1286 | 1200     | 1143 | 1090              | 1041   | 997      | 957  |  |
| 2094 | 1911   | 1750    | 1616    | 1502 | 1400     | 1333 | 1271              | 1214   | 1163     | 1116 |  |
| 2407 | 2193   | 2006    | 1850    | 1718 | 1600     | 1523 | 1451              | 1386   | 1327     | 1274 |  |
| 2725 | 2479   | 2263    | 2085    | 1934 | 1800     | 1713 | 1633              | 1559   | 1492     | 1432 |  |

#### 737-200ADV/JT8D-15A FAA

# **DO NOT USE FOR FLIGHT**

### 737 Flight Crew Operations Manual

#### **Reference Fuel and Time Required at Check Point**

| AIR    |           |          |           | PRESS    | SURE ALT  | ITUDE (10 | 00 FT)    |          |           |          |
|--------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|----------|
| DIST   | 1         | 0        | 14        |          | 2         | 20        |           | 24       |           | 8        |
| (NM)   | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME      | FUEL      | TIME     | FUEL      | TIME     |
| (1111) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN)  | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |
| 200    | 3.4       | 0:41     | 3.0       | 0:40     | 2.6       | 0:38      | 2.3       | 0:37     | 2.1       | 0:36     |
| 400    | 6.8       | 1:20     | 6.1       | 1:16     | 5.3       | 1:11      | 4.8       | 1:08     | 4.4       | 1:06     |
| 600    | 10.1      | 1:59     | 9.2       | 1:53     | 7.9       | 1:45      | 7.2       | 1:39     | 6.7       | 1:36     |
| 800    | 13.4      | 2:38     | 12.2      | 2:30     | 10.6      | 2:19      | 9.7       | 2:11     | 8.9       | 2:07     |
| 1000   | 16.7      | 3:19     | 15.1      | 3:08     | 13.2      | 2:53      | 12.1      | 2:43     | 11.1      | 2:38     |
| 1200   | 19.9      | 4:00     | 18.0      | 3:47     | 15.7      | 3:28      | 14.4      | 3:16     | 13.3      | 3:08     |
| 1400   | 23.0      | 4:43     | 20.9      | 4:26     | 18.3      | 4:04      | 16.7      | 3:49     | 15.4      | 3:40     |
| 1600   | 26.1      | 5:26     | 23.8      | 5:06     | 20.8      | 4:40      | 19.0      | 4:23     | 17.5      | 4:11     |
| 1800   | 29.2      | 6:11     | 26.6      | 5:47     | 23.2      | 5:17      | 21.3      | 4:57     | 19.6      | 4:43     |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED | WEIGHT AT CHECK POINT (1000 LB) |      |     |     |     |     |  |  |  |
|-------------------------|---------------------------------|------|-----|-----|-----|-----|--|--|--|
| (1000 LB)               | 70                              | 80   | 90  | 100 | 110 | 120 |  |  |  |
| 5                       | -0.4                            | -0.2 | 0.0 | 0.2 | 0.5 | 0.7 |  |  |  |
| 10                      | -0.8                            | -0.4 | 0.0 | 0.5 | 1.1 | 1.7 |  |  |  |
| 15                      | -1.2                            | -0.6 | 0.0 | 0.8 | 1.7 | 2.6 |  |  |  |
| 20                      | -1.6                            | -0.8 | 0.0 | 1.1 | 2.3 | 3.5 |  |  |  |
| 25                      | -2.0                            | -1.0 | 0.0 | 1.4 | 2.9 | 4.4 |  |  |  |
| 30                      | -2.3                            | -1.2 | 0.0 | 1.7 | 3.4 | 5.3 |  |  |  |
| 35                      | -2.6                            | -1.4 | 0.0 | 1.9 | 3.9 | 6.1 |  |  |  |

#### Long Range Cruise Enroute Fuel and Time - High Altitudes Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | E (NM)  |      | GROUND   |      | AIR D  | ISTANCE | E (NM)   |      |
|------|--------|---------|---------|------|----------|------|--------|---------|----------|------|
| HE.  | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPO   | NENT (KT | ſS)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80       | 100  |
| 271  | 253    | 237     | 223     | 211  | 200      | 191  | 182    | 174     | 167      | 160  |
| 537  | 503    | 473     | 446     | 422  | 400      | 382  | 365    | 349     | 334      | 322  |
| 804  | 754    | 708     | 668     | 632  | 600      | 572  | 547    | 524     | 502      | 483  |
| 1071 | 1004   | 944     | 891     | 843  | 800      | 763  | 729    | 698     | 670      | 645  |
| 1339 | 1256   | 1180    | 1113    | 1054 | 1000     | 954  | 912    | 873     | 838      | 806  |
| 1608 | 1507   | 1416    | 1336    | 1265 | 1200     | 1145 | 1094   | 1048    | 1005     | 967  |
| 1877 | 1759   | 1652    | 1559    | 1476 | 1400     | 1336 | 1277   | 1222    | 1173     | 1128 |
| 2147 | 2012   | 1889    | 1782    | 1687 | 1600     | 1527 | 1459   | 1397    | 1341     | 1290 |
| 2418 | 2265   | 2127    | 2006    | 1898 | 1800     | 1718 | 1642   | 1572    | 1508     | 1451 |
| 2689 | 2519   | 2364    | 2229    | 2109 | 2000     | 1909 | 1824   | 1747    | 1676     | 1612 |
| 2962 | 2773   | 2602    | 2453    | 2321 | 2200     | 2100 | 2007   | 1921    | 1843     | 1773 |
| 3236 | 3029   | 2841    | 2678    | 2532 | 2400     | 2291 | 2189   | 2096    | 2011     | 1934 |
| 3511 | 3285   | 3081    | 2902    | 2744 | 2600     | 2482 | 2372   | 2270    | 2178     | 2094 |
| 3788 | 3542   | 3321    | 3128    | 2956 | 2800     | 2672 | 2554   | 2445    | 2345     | 2255 |
| 4066 | 3801   | 3562    | 3353    | 3168 | 3000     | 2863 | 2736   | 2619    | 2512     | 2415 |
| 4346 | 4060   | 3803    | 3579    | 3381 | 3200     | 3053 | 2918   | 2792    | 2678     | 2575 |
| 4627 | 4321   | 4045    | 3806    | 3593 | 3400     | 3244 | 3099   | 2966    | 2844     | 2734 |
| 4911 | 4584   | 4289    | 4033    | 3806 | 3600     | 3434 | 3280   | 3139    | 3010     | 2893 |
| 5196 | 4847   | 4533    | 4260    | 4019 | 3800     | 3624 | 3461   | 3312    | 3175     | 3052 |
| 5482 | 5112   | 4778    | 4488    | 4232 | 4000     | 3814 | 3643   | 3485    | 3341     | 3211 |

#### 737 Flight Crew Operations Manual

#### **Reference Fuel and Time Required at Check Point**

| AIR    |           |          |           | PRESS    | SURE ALT  | ITUDE (10 | 00 FT)    |          |           |          |
|--------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|----------|
| DIST   | 2         | 9        | 3         | 1        | 3         | 3         | 3         | 5        | 3         | 7        |
| (NM)   | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME      | FUEL      | TIME     | FUEL      | TIME     |
| (1111) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN)  | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |
| 200    | 2.1       | 0:36     | 2.0       | 0:36     | 1.9       | 0:35      | 1.8       | 0:35     | 1.8       | 0:36     |
| 400    | 4.3       | 1:06     | 4.1       | 1:05     | 4.0       | 1:04      | 3.9       | 1:04     | 3.8       | 1:04     |
| 600    | 6.5       | 1:36     | 6.3       | 1:34     | 6.1       | 1:33      | 5.9       | 1:33     | 5.8       | 1:33     |
| 800    | 8.7       | 2:06     | 8.4       | 2:03     | 8.2       | 2:02      | 7.9       | 2:01     | 7.8       | 2:02     |
| 1000   | 10.9      | 2:36     | 10.5      | 2:33     | 10.2      | 2:30      | 9.9       | 2:30     | 9.7       | 2:30     |
| 1200   | 13.0      | 3:07     | 12.6      | 3:03     | 12.2      | 3:00      | 11.8      | 2:59     | 11.6      | 2:59     |
| 1400   | 15.1      | 3:38     | 14.6      | 3:34     | 14.2      | 3:29      | 13.8      | 3:28     | 13.5      | 3:28     |
| 1600   | 17.2      | 4:09     | 16.6      | 4:04     | 16.1      | 3:59      | 15.6      | 3:57     | 15.3      | 3:57     |
| 1800   | 19.2      | 4:40     | 18.6      | 4:35     | 18.0      | 4:29      | 17.5      | 4:26     | 17.1      | 4:25     |
| 2000   | 21.3      | 5:12     | 20.5      | 5:06     | 19.9      | 5:00      | 19.3      | 4:56     | 18.9      | 4:54     |
| 2200   | 23.3      | 5:44     | 22.4      | 5:37     | 21.7      | 5:30      | 21.1      | 5:26     | 20.6      | 5:23     |
| 2400   | 25.2      | 6:17     | 24.3      | 6:09     | 23.6      | 6:01      | 22.9      | 5:56     | 22.3      | 5:53     |
| 2600   | 27.2      | 6:49     | 26.2      | 6:40     | 25.4      | 6:32      | 24.7      | 6:26     | 24.0      | 6:22     |
| 2800   | 29.1      | 7:23     | 28.1      | 7:13     | 27.1      | 7:04      | 26.4      | 6:57     | 25.7      | 6:52     |
| 3000   | 31.0      | 7:56     | 29.9      | 7:45     | 28.9      | 7:35      | 28.1      | 7:28     | 27.4      | 7:22     |
| 3200   | 32.9      | 8:31     | 31.7      | 8:18     | 30.6      | 8:07      | 29.7      | 7:59     | 29.0      | 7:52     |
| 3400   | 34.8      | 9:05     | 33.5      | 8:51     | 32.4      | 8:39      | 31.4      | 8:30     | 30.6      | 8:23     |
| 3600   | 36.6      | 9:41     | 35.3      | 9:25     | 34.1      | 9:12      | 33.0      | 9:02     | 32.2      | 8:54     |
| 3800   | 38.5      | 10:17    | 37.0      | 9:59     | 35.8      | 9:45      | 34.7      | 9:34     | 33.8      | 9:24     |
| 4000   | 40.3      | 10:53    | 38.7      | 10:34    | 37.4      | 10:18     | 36.3      | 10:06    | 35.3      | 9:56     |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED |      | WEIGH | IT AT CHEC | K POINT (10 | 000 LB) |      |
|-------------------------|------|-------|------------|-------------|---------|------|
| (1000 LB)               | 70   | 80    | 90         | 100         | 110     | 120  |
| 5                       | -0.4 | -0.2  | 0.0        | 0.5         | 1.3     | 2.7  |
| 10                      | -1.0 | -0.5  | 0.0        | 1.0         | 2.4     | 4.8  |
| 15                      | -1.5 | -0.8  | 0.0        | 1.4         | 3.4     | 6.6  |
| 20                      | -2.1 | -1.1  | 0.0        | 1.8         | 4.3     | 8.1  |
| 25                      | -2.6 | -1.3  | 0.0        | 2.2         | 5.1     | 9.4  |
| 30                      | -3.0 | -1.6  | 0.0        | 2.5         | 5.8     | 10.5 |
| 35                      | -3.5 | -1.8  | 0.0        | 2.8         | 6.4     | 11.2 |
| 40                      | -3.9 | -2.1  | 0.0        | 3.1         | 6.8     | 11.8 |

#### Long Range Cruise Wind-Altitude Trade

| PRESSURE              |     | _   | _   | C   | RUISE V | VEIGHT | (1000 LH | 3) | -  |     |     |
|-----------------------|-----|-----|-----|-----|---------|--------|----------|----|----|-----|-----|
| ALTITUDE<br>(1000 FT) | 130 | 125 | 120 | 115 | 110     | 105    | 100      | 95 | 90 | 85  | 80  |
| 37                    |     |     |     |     |         |        | 15       | 4  | 0  | 1   | 6   |
| 35                    |     |     |     |     | 15      | 5      | 1        | 1  | 4  | 10  | 18  |
| 33                    |     |     | 13  | 4   | 1       | 0      | 3        | 8  | 15 | 23  | 32  |
| 31                    | 10  | 3   | 0   | 0   | 3       | 7      | 13       | 20 | 28 | 37  | 47  |
| 29                    | 0   | 1   | 3   | 7   | 12      | 19     | 26       | 34 | 43 | 52  | 62  |
| 27                    | 4   | 8   | 13  | 19  | 25      | 32     | 40       | 48 | 57 | 67  | 78  |
| 25                    | 14  | 19  | 25  | 32  | 39      | 46     | 54       | 63 | 73 | 83  | 95  |
| 23                    | 26  | 32  | 38  | 46  | 53      | 61     | 70       | 79 | 89 | 100 | 112 |

The above wind factor tables are for calculation of wind required to maintain present range capability at new pressure altitude, i.e., break-even wind.

Method:

- 1. Read wind factors for present and new altitudes from table.
- 2. Determine difference (new altitude wind factor minus present altitude wind factor); This difference may be negative or positive.
- 3. Break-even wind at new altitude is present altitude wind plus difference from step 2.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

D6-27370-200A-TBC

### 737 Flight Crew Operations Manual

#### Descent at .70/280/250

| PRESSURE ALT (1000 FT) | 5  | 10 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29  | 31  | 33  | 35  | 37  |
|------------------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| DISTANCE (NM)          | 24 | 44 | 60 | 66 | 72 | 79 | 85 | 92 | 98 | 103 | 109 | 114 | 119 | 125 |
| TIME (MINUTES)         | 7  | 11 | 14 | 15 | 16 | 17 | 18 | 19 | 19 | 20  | 21  | 22  | 22  | 23  |

#### Holding

Flaps Up

| W   | EIGHT   |      |      |       | PRESSU | RE ALTIT | UDE (FT) |       |       |       |
|-----|---------|------|------|-------|--------|----------|----------|-------|-------|-------|
| (10 | 000 LB) | 1500 | 5000 | 10000 | 15000  | 20000    | 25000    | 30000 | 35000 | 37000 |
|     | EPR     | 1.28 | 1.32 | 1.40  | 1.50   | 1.62     | 1.78     | 2.00  |       |       |
| 130 | KIAS    | 243  | 246  | 246   | 247    | 250      | 253      | 246   |       |       |
|     | FF/ENG  | 3380 | 3300 | 3180  | 3090   | 3030     | 3030     | 3110  |       |       |
|     | EPR     | 1.25 | 1.29 | 1.37  | 1.46   | 1.57     | 1.72     | 1.91  |       |       |
| 120 | KIAS    | 232  | 236  | 236   | 237    | 239      | 243      | 241   |       |       |
|     | FF/ENG  | 3140 | 3070 | 2960  | 2870   | 2800     | 2770     | 2820  |       |       |
|     | EPR     | 1.23 | 1.27 | 1.33  | 1.41   | 1.52     | 1.66     | 1.82  | 2.09  |       |
| 110 | KIAS    | 220  | 223  | 227   | 227    | 228      | 232      | 233   | 222   |       |
|     | FF/ENG  | 2910 | 2840 | 2730  | 2640   | 2570     | 2530     | 2560  | 2680  |       |
|     | EPR     | 1.21 | 1.24 | 1.30  | 1.37   | 1.47     | 1.59     | 1.75  | 1.97  | 2.09  |
| 100 | KIAS    | 210  | 211  | 216   | 216    | 217      | 219      | 223   | 218   | 211   |
|     | FF/ENG  | 2690 | 2610 | 2510  | 2420   | 2350     | 2310     | 2290  | 2350  | 2430  |
|     | EPR     | 1.18 | 1.21 | 1.26  | 1.33   | 1.42     | 1.53     | 1.67  | 1.85  | 1.95  |
| 90  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 211   | 210   |
|     | FF/ENG  | 2500 | 2420 | 2310  | 2220   | 2150     | 2090     | 2050  | 2080  | 2120  |
|     | EPR     | 1.16 | 1.18 | 1.23  | 1.29   | 1.37     | 1.46     | 1.59  | 1.75  | 1.83  |
| 80  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2350 | 2260 | 2160  | 2070   | 1990     | 1930     | 1880  | 1860  | 1880  |
|     | EPR     | 1.14 | 1.16 | 1.21  | 1.26   | 1.32     | 1.41     | 1.52  | 1.66  | 1.73  |
| 70  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2220 | 2130 | 2030  | 1950   | 1860     | 1800     | 1740  | 1700  | 1710  |
|     | EPR     | 1.13 | 1.15 | 1.18  | 1.23   | 1.29     | 1.37     | 1.47  | 1.59  | 1.65  |
| 60  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2120 | 2010 | 1930  | 1850   | 1740     | 1680     | 1620  | 1580  | 1580  |

This table includes 5% additional fuel for holding in a racetrack pattern.



Intentionally Blank 737-200ADV/JT8D-15A FAA

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Performance Inflight Advisory Information

Chapter PI Section 12

### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Autobrake System Flaps 15 Dry Runway

|                          |                                | L          | ANDING       | DISTA               | NCE A          | ND AD        | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|------------|--------------|---------------------|----------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ  | ALT<br>ADJ   | WINI<br>PER 1       | O ADJ<br>0 KTS | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVI<br>THR<br>Al | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | 1 5000 L B | ABOVE<br>SEA | $H \vdash \Delta I$ |                | DOWN<br>HILL | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF15 | REV               |      |
| MAX MANUAL               | 2820                           | 180/-110   | 90           | -140                | 510            | 30           | -30        | 50   | -50           | 330                              | 90                | 200  |
| MAX AUTO                 | 3730                           | 150/-140   | 90           | -150                | 520            | 0            | 0          | 50   | -50           | 400                              | 0                 | 0    |
| MED AUTO                 | 4730                           | 210/-190   | 120          | -210                | 720            | 0            | 0          | 70   | -70           | 550                              | 0                 | 0    |
| MIN AUTO                 | 6090                           | 350/-300   | 220          | -300                | 1050           | 160          | -180       | 90   | -90           | 500                              | 920               | 1010 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3600 | 150/-130 | 90  | -150 | 550  | 70  | -70  | 40 | -40 | 270 | 280 | 710  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3770 | 160/-140 | 90  | -160 | 570  | 40  | -10  | 50 | -50 | 400 | 130 | 550  |
| MED AUTO   | 4730 | 210/-190 | 120 | -210 | 730  | 0   | 0    | 70 | -70 | 550 | 0   | 80   |
| MIN AUTO   | 6090 | 350/-300 | 220 | -300 | 1050 | 160 | -180 | 90 | -90 | 500 | 920 | 1010 |

#### **Medium Reported Braking Action**

|   | -          |      | -        |     |      |      |     |      |    |     |     |     |      |
|---|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| Г | MAX MANUAL | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760 | 2260 |
| Γ | MAX AUTO   | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760 | 2260 |
| Γ | MED AUTO   | 4930 | 220/-200 | 140 | -240 | 890  | 100 | -60  | 70 | -70 | 500 | 470 | 1960 |
| L | MIN AUTO   | 6090 | 350/-300 | 220 | -300 | 1090 | 170 | -180 | 90 | -90 | 500 | 960 | 1570 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 | 5700 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 | 5700 |
| MED AUTO   | 5650 | 300/-260 | 190 | -300 | 1250 | 250 | -180 | 80 | -80 | 470 | 1430 | 5640 |
| MIN AUTO   | 6220 | 360/-310 | 230 | -330 | 1340 | 260 | -220 | 90 | -90 | 500 | 1400 | 5130 |

Reference distance is for sea level, standard day, no wind or slope, VREF15 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).



737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Autobrake System Flaps 30 Dry Runway

|                          |                                | L                                      | ANDING     | DISTA | NCE A          | ND AD        | JUSTI | MENT | (FT)          |                                  |                   |     |
|--------------------------|--------------------------------|----------------------------------------|------------|-------|----------------|--------------|-------|------|---------------|----------------------------------|-------------------|-----|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ | 1     | O ADJ<br>0 KTS | SLOPE<br>PER |       |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE      | HEAD  | TAIL<br>WIND   | DOWN<br>HILL |       |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF30 | REV               |     |
| MAX MANUAL               | 2560                           | 170/-80                                | 80         | -100  | 520            | 30           | -30   | 40   | -40           | 330                              | 60                | 140 |
| MAX AUTO                 | 3410                           | 140/-120                               | 80         | -140  | 490            | 0            | 0     | 40   | -40           | 370                              | 0                 | 0   |
| MED AUTO                 | 4290                           | 200/-170                               | 110        | -200  | 680            | 0            | 0     | 60   | -60           | 510                              | 0                 | 0   |
| MIN AUTO                 | 5430                           | 300/-260                               | 190        | -280  | 980            | 150          | -160  | 70   | -80           | 420                              | 800               | 930 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3350 | 140/-120 | 80  | -150 | 530 | 70  | -60  | 40 | -40 | 270 | 250 | 620 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|-----|
| MAX AUTO   | 3450 | 140/-120 | 80  | -150 | 540 | 50  | -20  | 40 | -40 | 360 | 140 | 520 |
| MED AUTO   | 4290 | 200/-170 | 110 | -200 | 680 | 0   | 0    | 60 | -60 | 510 | 0   | 70  |
| MIN AUTO   | 5430 | 300/-260 | 190 | -280 | 980 | 150 | -160 | 70 | -80 | 420 | 800 | 930 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
| MED AUTO   | 4460 | 210/-180 | 120 | -220 | 840  | 100 | -50  | 60 | -70 | 470 | 410 | 1670 |
| MIN AUTO   | 5440 | 300/-260 | 190 | -280 | 1020 | 160 | -160 | 70 | -80 | 420 | 840 | 1410 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
| MED AUTO   | 5080 | 270/-230 | 170 | -280 | 1190 | 220 | -160 | 70 | -70 | 420 | 1190 | 4600 |
| MIN AUTO   | 5560 | 320/-270 | 200 | -310 | 1270 | 230 | -200 | 80 | -80 | 420 | 1230 | 4240 |

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).



#### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Autobrake System Flaps 40 Dry Runway

|                          |                                | L                                      | ANDING       | DISTA | NCE A          | ND AD        | JUSTI | MENT | (FT)          |                                  |                   |     |
|--------------------------|--------------------------------|----------------------------------------|--------------|-------|----------------|--------------|-------|------|---------------|----------------------------------|-------------------|-----|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ   |       | D ADJ<br>0 KTS | SLOPE<br>PER |       |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE<br>SEA | HEAD  |                | DOWN<br>HILL |       |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF40 | REV               |     |
| MAX MANUAL               | 2480                           | 160/-70                                | 80           | -90   | 510            | 30           | -20   | 40   | -30           | 320                              | 50                | 120 |
| MAX AUTO                 | 3300                           | 130/-120                               | 80           | -140  | 480            | 0            | 0     | 40   | -40           | 370                              | 0                 | 0   |
| MED AUTO                 | 4140                           | 180/-160                               | 100          | -190  | 660            | 0            | 0     | 60   | -60           | 490                              | 0                 | 0   |
| MIN AUTO                 | 5120                           | 270/-240                               | 170          | -270  | 950            | 150          | -150  | 70   | -70           | 370                              | 750               | 970 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3250 | 130/-110 | 80  | -140 | 520 | 70  | -60  | 40 | -40 | 260 | 230 | 580 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|-----|
| MAX AUTO   | 3350 | 130/-120 | 80  | -150 | 530 | 50  | -20  | 40 | -40 | 350 | 140 | 490 |
| MED AUTO   | 4140 | 180/-160 | 100 | -190 | 670 | 0   | 0    | 60 | -60 | 490 | 0   | 70  |
| MIN AUTO   | 5120 | 270/-240 | 170 | -270 | 950 | 150 | -150 | 70 | -70 | 370 | 750 | 970 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4050 | 190/-170 | 120 | -200 | 790 | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4050 | 190/-160 | 120 | -200 | 790 | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
| MED AUTO   | 4280 | 190/-170 | 110 | -220 | 830 | 90  | -40  | 60 | -60 | 470 | 370 | 1510 |
| MIN AUTO   | 5130 | 270/-240 | 170 | -270 | 990 | 160 | -160 | 70 | -70 | 370 | 780 | 1400 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 4100 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----------|
| MAX AUTO   | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 4100 |
| MED AUTO   | 4830 | 240/-210 | 150 | -270 | 1160 | 200 | -150 | 70 | -70 | 380 | 1060 4040 |
| MIN AUTO   | 5240 | 280/-250 | 180 | -300 | 1230 | 230 | -190 | 70 | -80 | 370 | 1140 3810 |

Reference distance is for sea level, standard day, no wind or slope, VREF40 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



#### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Digital Autobrake System Flaps 15 Dry Runway

LANDING DISTANCE AND ADJUSTMENT (FT) REVERSE WIND ADJ REF WT ALT SLOPE ADJ TEMP ADJ VREF THRUST DIST ADJ PER 10 KTS **PER 1%** PER 10°F ADJ ADJ ADJ PER PER PER 100000 LB 1000 FT BRAKING 5000 LB ABOVE WIND WIND HILL HILL ABV BLW 10 KTS ONE NO LANDING CONFIGURATION ABV/BLW ISA ISA ABOVE REV REV WEIGHT SEA 100000 LB VREF15 LEVEL 2820 MAX MANUAL 180/-110 90 -140 510 30 -30 50 -50 330 90 200 MAX AUTO 3840 150/-140 90 -150 520 10 -10 50 -50 380 0 0 250/-240 150 -250 840 40 -70 -80 530 50 50 MED AUTO 5380 80 230 -310 1080 200 -200 90 -90 470 1070 1250 MIN AUTO 6170 350/-310

#### **Good Reported Braking Action**

| MAX MANUAL | 3600 | 150/-130 | 90  | -150 | 550  | 70  | -70  | 40 | -40 | 270 | 280  | 710  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 3890 | 160/-140 | 90  | -160 | 580  | 40  | -20  | 50 | -50 | 380 | 170  | 630  |
| MED AUTO   | 5380 | 250/-240 | 150 | -250 | 840  | 40  | -70  | 80 | -80 | 530 | 50   | 50   |
| MIN AUTO   | 6170 | 350/-310 | 230 | -310 | 1080 | 200 | -200 | 90 | -90 | 470 | 1070 | 1250 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760  | 2260 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 4680 | 230/-200 | 150 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 770  | 2290 |
| MED AUTO   | 5450 | 260/-250 | 160 | -260 | 960  | 80  | -90  | 80 | -80 | 530 | 280  | 1610 |
| MIN AUTO   | 6170 | 350/-310 | 230 | -310 | 1110 | 210 | -210 | 90 | -90 | 470 | 1100 | 1710 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 5700 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----------|
| MAX AUTO   | 5590 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 5710 |
| MED AUTO   | 5830 | 310/-280 | 200 | -310 | 1270 | 240 | -180 | 80 | -90 | 470 | 1270 5490 |
| MIN AUTO   | 6280 | 360/-320 | 240 | -330 | 1350 | 280 | -240 | 90 | -90 | 470 | 1500 5160 |

Reference distance is for sea level, standard day, no wind or slope, VREF15 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



#### **ADVISORY INFORMATION**

## Normal Configuration Landing Distance - Digital Autobrake System Flaps 30

Dry Runway

|                          |                                | L                                      | ANDING     | DISTA | NCE A          | NDAD         | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|----------------------------------------|------------|-------|----------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ |       | D ADJ<br>0 KTS | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB |            | HEAD  | TAIL<br>WIND   | DOWN<br>HILL | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF30 | REV               |      |
| MAX MANUAL               | 2560                           | 170/-80                                | 80         | -100  | 520            | 30           | -30        | 40   | -40           | 330                              | 60                | 140  |
| MAX AUTO                 | 3500                           | 140/-120                               | 80         | -140  | 490            | 10           | -10        | 40   | -40           | 350                              | 0                 | 0    |
| MED AUTO                 | 4830                           | 230/-210                               | 130        | -230  | 790            | 40           | -60        | 70   | -70           | 480                              | 50                | 50   |
| MIN AUTO                 | 5480                           | 310/-260                               | 190        | -290  | 1010           | 180          | -170       | 80   | -80           | 410                              | 910               | 1130 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3350 | 140/-120 | 80  | -150 | 530  | 70  | -60  | 40 | -40 | 270 | 250 | 620  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3560 | 140/-130 | 80  | -150 | 550  | 50  | -30  | 40 | -40 | 340 | 180 | 580  |
| MED AUTO   | 4830 | 230/-210 | 130 | -230 | 790  | 40  | -60  | 70 | -70 | 480 | 50  | 60   |
| MIN AUTO   | 5480 | 310/-260 | 190 | -290 | 1010 | 180 | -170 | 80 | -80 | 410 | 910 | 1130 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4260 | 210/-180 | 130 | -210 | 810  | 140 | -110 | 60 | -60 | 330 | 650 | 1930 |
| MED AUTO   | 4890 | 240/-210 | 140 | -240 | 910  | 80  | -80  | 70 | -70 | 480 | 260 | 1380 |
| MIN AUTO   | 5480 | 310/-260 | 190 | -290 | 1040 | 190 | -170 | 80 | -80 | 410 | 940 | 1530 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4660 |
| MED AUTO   | 5230 | 270/-240 | 170 | -290 | 1210 | 220 | -160 | 70 | -80 | 420 | 1070 | 4480 |
| MIN AUTO   | 5590 | 320/-270 | 200 | -310 | 1270 | 250 | -210 | 80 | -80 | 410 | 1290 | 4270 |

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



#### ADVISORY INFORMATION

## Normal Configuration Landing Distance - Digital Autobrake System Flaps 40

Dry Runway

|                          |                                | L                                      | ANDING     | DISTA         | NCE A          | ND AD        | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|----------------------------------------|------------|---------------|----------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ | WINI<br>PER 1 | O ADJ<br>0 KTS | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVI<br>THR<br>AI | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE      | HFΔD          |                | DOWN<br>HILL | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF40 | REV               |      |
| MAX MANUAL               | 2480                           | 160/-70                                | 80         | -90           | 510            | 30           | -20        | 40   | -30           | 320                              | 50                | 120  |
| MAX AUTO                 | 3370                           | 130/-120                               | 70         | -140          | 480            | 10           | -10        | 40   | -40           | 340                              | 0                 | 0    |
| MED AUTO                 | 4600                           | 210/-200                               | 130        | -220          | 760            | 50           | -60        | 70   | -70           | 440                              | 70                | 70   |
| MIN AUTO                 | 5160                           | 270/-240                               | 180        | -270          | 970            | 160          | -160       | 70   | -70           | 370                              | 820               | 1140 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3250 | 130/-110 | 80  | -140 | 520 | 70  | -60  | 40 | -40 | 260 | 230 | 580  |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3430 | 140/-120 | 80  | -150 | 540 | 50  | -30  | 40 | -40 | 330 | 180 | 550  |
| MED AUTO   | 4600 | 210/-200 | 130 | -220 | 760 | 50  | -60  | 70 | -70 | 440 | 70  | 70   |
| MIN AUTO   | 5160 | 270/-240 | 180 | -270 | 970 | 160 | -160 | 70 | -70 | 370 | 820 | 1140 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4050 | 190/-170 | 120 | -200 | 790  | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4080 | 190/-170 | 120 | -210 | 790  | 130 | -110 | 50 | -60 | 310 | 590 | 1740 |
| MED AUTO   | 4670 | 220/-200 | 130 | -240 | 880  | 80  | -80  | 70 | -70 | 440 | 270 | 1250 |
| MIN AUTO   | 5160 | 270/-240 | 180 | -270 | 1000 | 170 | -160 | 70 | -70 | 370 | 840 | 1500 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 | 4100 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 | 4100 |
| MED AUTO   | 4950 | 250/-220 | 160 | -280 | 1180 | 200 | -150 | 70 | -70 | 420 | 960  | 3940 |
| MIN AUTO   | 5260 | 280/-250 | 180 | -300 | 1240 | 240 | -190 | 70 | -80 | 370 | 1170 | 3850 |

Reference distance is for sea level, standard day, no wind or slope, VREF40 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Non-Normal Configuration Landing Distance Dry Runway

|                                                                      |           |                                | LANDING                         | DISTANCE A                    | AND A         | DJUST | MENT         | (FT) |                             |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------------------------|-------------------------------|---------------|-------|--------------|------|-----------------------------|
|                                                                      | -         | REF DIST<br>FOR                | WT ADJ<br>PER                   | ALT ADJ<br>PER                | WINI<br>PER 1 |       | SLOPE<br>PER |      | APPROACH<br>SPEED           |
| LANDING<br>CONFIGURATION                                             | VREF      | 100000 LB<br>LANDING<br>WEIGHT | 5000 LB<br>ABV/BLW<br>100000 LB | 1000 FT<br>ABOVE<br>SEA LEVEL |               |       | DOWN<br>HILL |      | PER 10 KTS<br>ABOVE<br>VREF |
| ALL FLAPS UP                                                         | VREF40+55 | 4400                           | 370 / -210                      | 440                           | -200          | 810   | 60           | -60  | 420                         |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 3640                           | 135 / -120                      | 75                            | -160          | 560   | 60           | -55  | 275                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 3400                           | 220 / -150                      | 190                           | -170          | 620   | 60           | -50  | 440                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 3100                           | 190 / -130                      | 130                           | -150          | 570   | 40           | -40  | 360                         |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 3850                           | 260 / -170                      | 230                           | -200          | 710   | 80           | -70  | 530                         |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 2800                           | 170 / -110                      | 150                           | -140          | 500   | 30           | -30  | 310                         |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 2800                           | 170 / -110                      | 150                           | -140          | 500   | 30           | -30  | 310                         |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 3050                           | 190 / -130                      | 180                           | -160          | 520   | 40           | -40  | 320                         |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 2850                           | 190 / -120                      | 160                           | -150          | 540   | 40           | -30  | 350                         |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 3700                           | 260 / -180                      | 290                           | -160          | 640   | 50           | -40  | 330                         |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 3400                           | 220 / -170                      | 230                           | -150          | 570   | 40           | -40  | 300                         |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

#### 737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Non-Normal Configuration Landing Distance Good Reported Braking Action

|                                                                      |           |                                | LANDING       | DISTANCE                      | AND A         | DJUST | MENT         | (FT) |                             |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------|-------------------------------|---------------|-------|--------------|------|-----------------------------|
|                                                                      |           | REF DIST<br>FOR                | WT ADJ<br>PER | ALT ADJ<br>PER                | WINE<br>PER 1 |       | SLOPE<br>PER |      | APPROACH<br>SPEED           |
| LANDING<br>CONFIGURATION                                             |           | 100000 LB<br>LANDING<br>WEIGHT |               | 1000 FT<br>ABOVE<br>SEA LEVEL | WIND          | WIND  | DOWN<br>HILL |      | PER 10 KTS<br>ABOVE<br>VREF |
| ALL FLAPS UP                                                         | VREF40+55 | 4900                           | 170 / -170    | 410                           | -180          | 630   | 80           | -80  | 280                         |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 4270                           | 180 / -155    | 105                           | -215          | 800   | 115          | -90  | 305                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 4000                           | 160 / -150    | 210                           | -170          | 590   | 90           | -80  | 350                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 3620                           | 150 / -130    | 150                           | -150          | 540   | 70           | -60  | 280                         |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 4200                           | 190 / -160    | 230                           | -170          | 610   | 100          | -90  | 400                         |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 3500                           | 140 / -120    | 170                           | -150          | 530   | 60           | -60  | 250                         |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 3500                           | 140 / -120    | 170                           | -150          | 530   | 60           | -60  | 250                         |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 3750                           | 160 / -130    | 200                           | -160          | 550   | 70           | -70  | 290                         |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 3750                           | 150 / -140    | 190                           | -160          | 580   | 80           | -80  | 290                         |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 4300                           | 160 / -150    | 290                           | -160          | 580   | 70           | -70  | 250                         |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 4050                           | 150 / -100    | 250                           | -160          | 560   | 70           | -60  | 250                         |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Non-Normal Configuration Landing Distance Medium Reported Braking Action

|                                                                      |           |                                | LANDING                         | DISTANCE A                    | AND A         | DJUST | MENT         | (FT) |                             |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------------------------|-------------------------------|---------------|-------|--------------|------|-----------------------------|
|                                                                      |           | REF DIST<br>FOR                | WT ADJ<br>PER                   | ALT ADJ<br>PER                | WINI<br>PER 1 |       | SLOPE<br>PER |      | APPROACH<br>SPEED           |
| LANDING<br>CONFIGURATION                                             | VREF      | 100000 LB<br>LANDING<br>WEIGHT | 5000 LB<br>ABV/BLW<br>100000 LB | 1000 FT<br>ABOVE<br>SEA LEVEL |               |       | DOWN<br>HILL |      | PER 10 KTS<br>ABOVE<br>VREF |
| ALL FLAPS UP                                                         | VREF40+55 | 6200                           | 280 / -240                      | 530                           | -260          | 940   | 160          | -150 | 360                         |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 4880                           | 225 / -195                      | 135                           | -280          | 1135  | 265          | -145 | 330                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 4950                           | 230 / -210                      | 260                           | -230          | 870   | 150          | -140 | 400                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 4510                           | 210 / -190                      | 190                           | -220          | 820   | 130          | -110 | 340                         |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 5150                           | 250 / -220                      | 290                           | -240          | 890   | 170          | -150 | 450                         |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 4400                           | 200 / -180                      | 220                           | -210          | 800   | 120          | -110 | 310                         |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 4400                           | 200 / -180                      | 220                           | -210          | 800   | 120          | -110 | 310                         |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 4730                           | 230 / -190                      | 260                           | -220          | 840   | 140          | -120 | 350                         |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 5000                           | 240 / -210                      | 270                           | -250          | 940   | 190          | -160 | 390                         |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 5450                           | 240 / -210                      | 380                           | -230          | 870   | 140          | -120 | 320                         |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 5100                           | 230 / -200                      | 320                           | -230          | 850   | 130          | -120 | 320                         |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

#### 737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Non-Normal Configuration Landing Distance Poor Reported Braking Action

|                                                                      |           |                                | LANDING       | DISTANCE                      | AND A         | DJUST | MENT         | (FT) |                   |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------|-------------------------------|---------------|-------|--------------|------|-------------------|
|                                                                      |           | REF DIST<br>FOR                | WT ADJ<br>PER | ALT ADJ<br>PER                | WINI<br>PER 1 |       | SLOPE<br>PER |      | APPROACH<br>SPEED |
| LANDING<br>CONFIGURATION                                             |           | 100000 LB<br>LANDING<br>WEIGHT |               | 1000 FT<br>ABOVE<br>SEA LEVEL | WIND          | WIND  | DOWN<br>HILL | HILL | VREF              |
| ALL FLAPS UP                                                         | VREF40+55 | 7400                           | 360 / -330    | 650                           | -340          | 1330  | 270          | -230 | 410               |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 5630                           | 280 / -245    | 170                           | -390          | 1865  | 1140         | -265 | 350               |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 5700                           | 310 / -250    | 310                           | -300          | 1230  | 250          | -210 | 430               |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 5290                           | 280 / -240    | 220                           | -290          | 1180  | 220          | -180 | 380               |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 5950                           | 320 / -280    | 340                           | -310          | 1250  | 260          | -220 | 470               |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 5150                           | 270 / -230    | 260                           | -280          | 1160  | 210          | -170 | 350               |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 5150                           | 270 / -230    | 260                           | -280          | 1160  | 210          | -170 | 350               |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 5570                           | 300 / -250    | 310                           | -300          | 1200  | 230          | -190 | 400               |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 6300                           | 330 / -300    | 340                           | -360          | 1430  | 380          | -300 | 460               |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 6450                           | 310 / -280    | 460                           | -310          | 1250  | 240          | -200 | 370               |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 6080                           | 300 / -260    | 390                           | -300          | 1220  | 230          | -190 | 370               |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

#### ADVISORY INFORMATION

#### Brake Cooling Schedule Reference Brake Energy (Millions of Foot Pounds)

|           |      |     |       |     |     |       | BRA  | KES O | N SPE | EED (k | (IAS) |       |      |      |       |      |
|-----------|------|-----|-------|-----|-----|-------|------|-------|-------|--------|-------|-------|------|------|-------|------|
|           |      |     | 60    |     |     | 80    |      |       | 100   |        |       | 120   |      |      | 140   |      |
| WEIGHT    | OAT  | PR  | ESS A | LT  | PR  | ESS A | LT   | PR    | ESS A | LT     | PR    | ESS A | LT.  | PR   | ESS A | LT.  |
| (1000 LB) | (°F) | 0   | 2     | 4   | 0   | 2     | 4    | 0     | 2     | 4      | 0     | 2     | 4    | 0    | 2     | 4    |
|           | 40   | 4.8 | 5.2   | 5.7 | 8.5 | 9.2   | 9.9  | 13.0  | 14.1  | 15.3   | 18.3  | 19.9  | 21.5 | 22.2 | 24.0  | 25.9 |
| 130       | 80   | 5.2 | 5.7   | 6.1 | 9.2 | 10.0  | 10.7 | 14.1  | 15.3  | 16.5   | 19.8  | 21.4  | 23.2 | 23.9 | 25.9  | 27.9 |
|           | 120  | 5.6 | 6.1   | 6.6 | 9.9 | 10.7  | 11.5 | 15.1  | 16.4  | 17.7   | 21.2  | 23.0  | 24.9 | 25.7 | 27.8  | 30.0 |
|           | 40   | 4.5 | 4.9   | 5.3 | 7.9 | 8.6   | 9.2  | 12.0  | 13.0  | 14.0   | 15.8  | 17.2  | 18.6 | 20.4 | 22.2  | 24.0 |
| 120       | 80   | 4.9 | 5.3   | 5.8 | 8.6 | 9.3   | 10.0 | 12.9  | 14.0  | 15.2   | 17.0  | 18.6  | 20.0 | 22.0 | 24.0  | 25.9 |
|           | 120  | 5.2 | 5.7   | 6.2 | 9.2 | 10.0  | 10.8 | 13.8  | 15.1  | 16.3   | 18.3  | 19.9  | 21.5 | 23.6 | 25.7  | 27.8 |
|           | 40   | 4.2 | 4.5   | 4.9 | 7.2 | 7.8   | 8.5  | 11.1  | 12.1  | 13.0   | 15.1  | 16.5  | 17.8 | 18.5 | 20.1  | 21.7 |
| 110       | 80   | 4.5 | 4.9   | 5.3 | 7.8 | 8.5   | 9.2  | 12.0  | 13.0  | 14.1   | 16.3  | 17.8  | 19.2 | 20.0 | 21.7  | 23.4 |
|           | 120  | 4.8 | 5.2   | 5.6 | 8.4 | 9.1   | 9.9  | 12.8  | 14.0  | 15.2   | 17.5  | 19.0  | 20.6 | 21.4 | 23.3  | 25.2 |
|           | 40   | 3.9 | 4.2   | 4.5 | 6.6 | 7.1   | 7.7  | 10.0  | 10.9  | 11.8   | 13.5  | 14.7  | 15.8 | 16.8 | 18.2  | 19.7 |
| 100       | 80   | 4.2 | 4.5   | 4.9 | 7.1 | 7.7   | 8.3  | 10.8  | 11.8  | 12.7   | 14.6  | 15.8  | 17.0 | 18.1 | 19.6  | 21.2 |
|           | 120  | 4.5 | 4.9   | 5.2 | 7.6 | 8.3   | 9.0  | 11.6  | 12.6  | 13.6   | 15.7  | 17.0  | 18.3 | 19.4 | 21.1  | 22.7 |
|           | 40   | 3.4 | 3.7   | 4.0 | 6.0 | 6.5   | 7.1  | 9.0   | 9.7   | 10.5   | 11.8  | 12.8  | 13.8 | 14.8 | 16.1  | 17.4 |
| 90        | 80   | 3.6 | 4.0   | 4.3 | 6.5 | 7.0   | 7.6  | 9.7   | 10.5  | 11.4   | 12.7  | 13.8  | 14.9 | 16.0 | 17.4  | 18.8 |
|           | 120  | 3.9 | 4.2   | 4.6 | 6.9 | 7.5   | 8.2  | 10.4  | 11.3  | 12.2   | 13.6  | 14.9  | 16.1 | 17.2 | 18.7  | 20.2 |
|           | 40   | 3.1 | 3.4   | 3.7 | 5.2 | 5.7   | 6.2  | 7.9   | 8.6   | 9.2    | 10.0  | 10.9  | 11.8 | 13.0 | 14.1  | 15.3 |
| 80        | 80   | 3.3 | 3.6   | 3.9 | 5.6 | 6.1   | 6.6  | 8.5   | 9.3   | 10.0   | 10.8  | 11.8  | 12.7 | 14.1 | 15.3  | 16.5 |
|           | 120  | 3.6 | 3.9   | 4.2 | 6.0 | 6.6   | 7.1  | 9.2   | 10.0  | 10.8   | 11.6  | 12.6  | 13.6 | 15.1 | 16.4  | 17.7 |

To correct for wind, enter table with the brakes on speed minus one half the headwind or plus 1.5 times the tailwind.

If ground speed is used for brakes on speed, ignore wind, altitude, and OAT effects.

#### Adjusted Brake Energy per Brake (Millions of Foot Pounds)

|             | REF | FERENCE | E BRAKE | ENERG | Y PER B | RAKE (N | <b>IILLION</b> | S OF FOC | DT POUN | DS)  |
|-------------|-----|---------|---------|-------|---------|---------|----------------|----------|---------|------|
| EVENT       | 2   | 4       | 6       | 8     | 10      | 12      | 14             | 16       | 18      | 20   |
| RTO MAX MAN | 2   | 4       | 6       | 8     | 10      | 12      | 14             | 16       | 18      | 20   |
| MAX AUTO    | 1.8 | 3.5     | 5.3     | 7.1   | 8.7     | 10.2    | 11.7           | 13.1     | 14.4    | 15.7 |
| MED AUTO    | 1.5 | 3.2     | 4.8     | 6.3   | 7.6     | 8.8     | 10.0           | 10.8     | 11.7    | 12.5 |
| MIN AUTO    | 1.4 | 3.0     | 4.0     | 4.9   | 5.8     | 6.2     | 6.6            | 7.5      | 7.5     | 7.6  |

#### **Cooling Time (Minutes)**

|                       | ADJUSTED                | BRAK | E ENER | GY PER | BRAKE | E (MILL | JONS OF FOO | T POUNDS)              |
|-----------------------|-------------------------|------|--------|--------|-------|---------|-------------|------------------------|
|                       | 6 & BELOW               | 8    | 10     | 12     | 14    | 15.9    | 16 TO 20    | 20 & ABOVE             |
| INFLIGHT<br>GEAR DOWN | NO SPECIAL<br>PROCEDURE | 1.0  | 2.9    | 4.9    | 7.0   | 8.8     | CAUTION     | FUSE PLUG<br>MELT ZONE |
| GROUND                | REQUIRED                | 15   | 28     | 38     | 48    | 56      |             | MELI ZONE              |

Observe maximum quick turnaround limit.

Table does not consider the benefit of reverse thrust.

Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added.

Add 1.0 million foot pounds for each taxi mile.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after 30 minutes. If overheat occurs after takeoff, extend gear soon for at least 9 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not approach gear or attempt to taxi for 50 minutes. Alert fire equipment.



Intentionally Blank

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. PI.12.12 D6-27370-200A-TBC April 6, 2017

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Performance Inflight Engine Inoperative

## Chapter PI Section 13

# ENGINE INOP

## Max Continuous EPR

Based on engine bleed for packs on, engine and wing anti-ice off

| TAT        |      |      | PF   | RESSURE A | LTITUDE (F | T)   |                  |       |
|------------|------|------|------|-----------|------------|------|------------------|-------|
| (°C)       | 0    | 1000 | 1499 | 1500      | 2000       | 3000 | 3900 TO<br>10000 | 37000 |
| 60         | 1.64 | 1.64 | 1.64 | 1.64      | 1.64       | 1.64 | 1.64             | 1.62  |
| 55         | 1.70 | 1.70 | 1.70 | 1.70      | 1.70       | 1.70 | 1.70             | 1.67  |
| 50         | 1.75 | 1.75 | 1.75 | 1.75      | 1.75       | 1.75 | 1.75             | 1.73  |
| 45         | 1.80 | 1.80 | 1.80 | 1.80      | 1.80       | 1.80 | 1.80             | 1.78  |
| 40         | 1.84 | 1.84 | 1.84 | 1.85      | 1.85       | 1.85 | 1.85             | 1.84  |
| 35         | 1.84 | 1.84 | 1.84 | 1.91      | 1.91       | 1.91 | 1.91             | 1.88  |
| 30         | 1.84 | 1.84 | 1.84 | 1.96      | 1.96       | 1.96 | 1.96             | 1.93  |
| 25         | 1.84 | 1.84 | 1.84 | 2.00      | 2.00       | 2.00 | 2.00             | 1.98  |
| 20         | 1.88 | 1.88 | 1.88 | 2.05      | 2.05       | 2.05 | 2.05             | 2.03  |
| 15         | 1.93 | 1.93 | 1.93 | 2.09      | 2.09       | 2.09 | 2.09             | 2.07  |
| 10         | 1.98 | 1.98 | 1.98 | 2.13      | 2.13       | 2.13 | 2.13             | 2.11  |
| 5          | 2.03 | 2.03 | 2.03 | 2.16      | 2.16       | 2.17 | 2.17             | 2.16  |
| 0          | 2.07 | 2.09 | 2.09 | 2.16      | 2.19       | 2.21 | 2.21             | 2.18  |
| -5         | 2.07 | 2.13 | 2.14 | 2.16      | 2.19       | 2.23 | 2.23             | 2.22  |
| -10        | 2.07 | 2.13 | 2.16 | 2.16      | 2.19       | 2.25 | 2.26             | 2.24  |
| -15        | 2.07 | 2.13 | 2.16 | 2.16      | 2.19       | 2.25 | 2.28             | 2.26  |
| -20        | 2.07 | 2.13 | 2.16 | 2.16      | 2.19       | 2.25 | 2.30             | 2.28  |
| -25        | 2.07 | 2.13 | 2.16 | 2.16      | 2.19       | 2.25 | 2.30             | 2.28  |
| -30 TO -50 | 2.07 | 2.13 | 2.16 | 2.16      | 2.19       | 2.25 | 2.30             | 2.28  |

## EPR Adjustments for Engine Bleeds

| BLEED                       | PRESSURE A | LTITUDE (FT) |
|-----------------------------|------------|--------------|
| CONFIGURATION               | 0          | 37000        |
| PACKS OFF                   | 0.03       | 0.03         |
| ENGINE ANTI-ICE ON          | -0.08      | -0.08        |
| ENGINE AND WING ANTI-ICE ON | -0.15      | -0.15        |

With Gravel Protect switch in "Anti-Ice/Test" position and up to 15000 ft, decrease limit EPR by 0.01. With Gravel Protect switch in "Anti-Ice/Test" position and above 15000 ft, decrease limit EPR by 0.02.

737 Flight Crew Operations Manual

## ENGINE INOP

#### MAX CONTINUOUS THRUST

#### Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

| WEIGHT                 | (1000 LB)    | OPTIMUM                      | LEVI                  | EL OFF ALTITUDI | E (FT)     |
|------------------------|--------------|------------------------------|-----------------------|-----------------|------------|
| START<br>DRIFT<br>DOWN | LEVEL<br>OFF | DRIFTDOWN<br>SPEED<br>(KIAS) | ISA + 10°C<br>& BELOW | ISA + 15°C      | ISA + 20°C |
| 130                    | 123          | 231                          | 13400                 | 12300           | 11000      |
| 120                    | 113          | 222                          | 16000                 | 15100           | 14100      |
| 110                    | 104          | 213                          | 18800                 | 17900           | 17000      |
| 100                    | 95           | 204                          | 21500                 | 20900           | 20100      |
| 90                     | 85           | 194                          | 24400                 | 23900           | 23300      |
| 80                     | 76           | 183                          | 27400                 | 27000           | 26600      |
| 70                     | 67           | 171                          | 30500                 | 30300           | 30000      |
| 60                     | 57           | 158                          | 33900                 | 33700           | 33600      |

For A/C pack off below 17000 ft, increase level off altitude by 800 ft.

#### Driftdown/LRC Cruise Range Capability Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | E (NM)  |      | GROUND   |      | AIR D  | ISTANCE | E (NM)   |      |
|------|--------|---------|---------|------|----------|------|--------|---------|----------|------|
| HE.  | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | VENT (KI | (S)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80       | 100  |
| 293  | 268    | 247     | 229     | 214  | 200      | 188  | 177    | 168     | 159      | 152  |
| 581  | 533    | 492     | 457     | 427  | 400      | 377  | 356    | 337     | 320      | 305  |
| 865  | 795    | 735     | 684     | 639  | 600      | 565  | 535    | 507     | 482      | 459  |
| 1146 | 1055   | 977     | 910     | 851  | 800      | 754  | 714    | 677     | 644      | 615  |
| 1426 | 1314   | 1218    | 1136    | 1064 | 1000     | 944  | 893    | 848     | 807      | 770  |
| 1706 | 1574   | 1460    | 1362    | 1276 | 1200     | 1133 | 1073   | 1019    | 970      | 925  |
| 1988 | 1834   | 1702    | 1588    | 1488 | 1400     | 1322 | 1252   | 1189    | 1132     | 1080 |
| 2273 | 2097   | 1946    | 1815    | 1701 | 1600     | 1511 | 1430   | 1359    | 1293     | 1234 |
| 2563 | 2363   | 2191    | 2043    | 1914 | 1800     | 1699 | 1608   | 1527    | 1454     | 1387 |

#### Driftdown/Cruise Fuel and Time

| AIR  |      |                       | FUEL R     | EQUIRED (1 | 000 LB)  |        |      | TIME     |  |  |
|------|------|-----------------------|------------|------------|----------|--------|------|----------|--|--|
| DIST |      | WEIG                  | HT AT STAF | T OF DRIFT | DOWN (10 | 00 LB) |      | (HR:MIN) |  |  |
| (NM) | 70   | 80 90 100 110 120 130 |            |            |          |        |      |          |  |  |
| 200  | 2.0  | 2.1                   | 2.3        | 2.6        | 2.9      | 3.1    | 3.3  | 0:38     |  |  |
| 400  | 4.1  | 4.6                   | 5.1        | 5.8        | 6.5      | 7.1    | 7.7  | 1:15     |  |  |
| 600  | 6.1  | 6.9                   | 7.7        | 8.7        | 9.7      | 10.6   | 11.4 | 1:50     |  |  |
| 800  | 8.1  | 9.1                   | 10.2       | 11.5       | 12.8     | 13.9   | 15.1 | 2:25     |  |  |
| 1000 | 10.0 | 11.3                  | 12.7       | 14.2       | 15.7     | 17.2   | 18.6 | 2:59     |  |  |
| 1200 | 11.9 | 13.5                  | 15.1       | 16.9       | 18.7     | 20.3   | 22.1 | 3:34     |  |  |
| 1400 | 13.8 | 15.5                  | 17.4       | 19.4       | 21.5     | 23.5   | 25.5 | 4:09     |  |  |
| 1600 | 15.6 | 17.6                  | 19.7       | 22.0       | 24.3     | 26.5   | 28.8 | 4:44     |  |  |
| 1800 | 17.4 | 19.6                  | 21.9       | 24.5       | 27.0     | 29.5   | 32.1 | 5:22     |  |  |

Includes APU fuel burn. Driftdown at optimum driftdown speed and cruise at LRC speed.

737 Flight Crew Operations Manual

#### Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

| WEIGHT    |                       | PRESS ALT (FT) |            |
|-----------|-----------------------|----------------|------------|
| (1000 LB) | ISA + 10°C<br>& BELOW | ISA+15°C       | ISA + 20°C |
| 130       | 7500                  | 3600           |            |
| 120       | 10800                 | 9000           | 5100       |
| 110       | 14100                 | 12700          | 10900      |
| 100       | 17700                 | 16300          | 15100      |
| 90        | 21300                 | 20000          | 18700      |
| 80        | 24800                 | 24000          | 23000      |
| 70        | 28500                 | 27800          | 27200      |
| 60        | 31700                 | 31300          | 30800      |

With engine anti-ice on, decrease altitude capability by 2000 ft.

With engine and wing anti-ice on, decrease altitude capability by 4400 ft.

#### Long Range Cruise Control

| WE   | IGHT   |      |      |      | PRESSU | JRE ALT | ITUDE (1 | 000 FT) |      |      |      |
|------|--------|------|------|------|--------|---------|----------|---------|------|------|------|
| (100 | 00 LB) | 10   | 13   | 15   | 17     | 19      | 21       | 23      | 25   | 27   | 29   |
|      | EPR    | 2.04 |      |      |        |         |          |         |      |      |      |
| 120  | MACH   | .541 |      |      |        |         |          |         |      |      |      |
| 130  | KIAS   | 300  |      |      |        |         |          |         |      |      |      |
|      | FF/ENG | 6933 |      |      |        |         |          |         |      |      |      |
|      | EPR    | 1.96 | 2.08 | 2.16 |        |         |          |         |      |      |      |
| 120  | MACH   | .519 | .549 | .566 |        |         |          |         |      |      |      |
| 120  | KIAS   | 288  | 288  | 286  |        |         |          |         |      |      |      |
|      | FF/ENG | 6251 | 6363 | 6398 |        |         |          |         |      |      |      |
|      | EPR    | 1.88 | 1.99 | 2.07 | 2.15   |         |          |         |      |      |      |
| 110  | MACH   | .501 | .527 | .548 | .564   |         |          |         |      |      |      |
| 110  | KIAS   | 277  | 276  | 276  | 274    |         |          |         |      |      |      |
|      | FF/ENG | 5664 | 5706 | 5778 | 5809   |         |          |         |      |      |      |
|      | EPR    | 1.81 | 1.90 | 1.97 | 2.06   | 2.14    | 2.23     |         |      |      |      |
| 100  | MACH   | .487 | .505 | .523 | .544   | .562    | .579     |         |      |      |      |
| 100  | KIAS   | 269  | 264  | 264  | 264    | 262     | 260      |         |      |      |      |
|      | FF/ENG | 5190 | 5097 | 5123 | 5196   | 5224    | 5294     |         |      |      |      |
|      | EPR    | 1.73 | 1.82 | 1.88 | 1.95   | 2.04    | 2.12     | 2.20    |      |      |      |
| 90   | MACH   | .469 | .489 | .500 | .517   | .539    | .557     | .575    |      |      |      |
| 90   | KIAS   | 259  | 256  | 252  | 251    | 251     | 250      | 248     |      |      |      |
|      | FF/ENG | 4722 | 4622 | 4550 | 4550   | 4619    | 4651     | 4709    |      |      |      |
|      | EPR    | 1.65 | 1.73 | 1.79 | 1.85   | 1.92    | 2.00     | 2.09    | 2.17 | 2.27 |      |
| 80   | MACH   | .447 | .469 | .482 | .495   | .509    | .530     | .551    | .569 | .593 |      |
| 80   | KIAS   | 247  | 245  | 242  | 240    | 237     | 237      | 237     | 235  | 235  |      |
|      | FF/ENG | 4245 | 4159 | 4086 | 4030   | 3995    | 4040     | 4090    | 4132 | 4246 |      |
|      | EPR    | 1.57 | 1.64 | 1.70 | 1.75   | 1.81    | 1.88     | 1.95    | 2.04 | 2.13 | 2.22 |
| 70   | MACH   | .423 | .444 | .460 | .473   | .487    | .500     | .517    | .540 | .559 | .578 |
| /0   | KIAS   | 234  | 232  | 231  | 228    | 227     | 223      | 222     | 223  | 221  | 219  |
|      | FF/ENG | 3779 | 3692 | 3642 | 3576   | 3527    | 3474     | 3477    | 3537 | 3565 | 3614 |
|      | EPR    | 1.48 | 1.55 | 1.59 | 1.65   | 1.70    | 1.76     | 1.83    | 1.90 | 1.99 | 2.08 |
| 60   | MACH   | .395 | .417 | .431 | .446   | .461    | .475     | .491    | .511 | .532 | .555 |
| 00   | KIAS   | 218  | 217  | 216  | 215    | 214     | 212      | 210     | 210  | 210  | 210  |
|      | FF/ENG | 3301 | 3230 | 3178 | 3126   | 3085    | 3027     | 2999    | 3011 | 3045 | 3082 |

#### 737 Flight Crew Operations Manual

#### Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | E (NM)  |      | GROUND   |      | AIR D  | ISTANCE | E (NM)   |      |
|------|--------|---------|---------|------|----------|------|--------|---------|----------|------|
| HE   | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | VENT (KI | TS)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80       | 100  |
| 297  | 272    | 249     | 230     | 214  | 200      | 190  | 181    | 173     | 166      | 159  |
| 600  | 547    | 501     | 462     | 429  | 400      | 380  | 362    | 345     | 330      | 317  |
| 906  | 824    | 753     | 694     | 644  | 600      | 570  | 542    | 517     | 494      | 474  |
| 1214 | 1104   | 1007    | 927     | 860  | 800      | 759  | 722    | 689     | 658      | 631  |
| 1526 | 1385   | 1262    | 1161    | 1076 | 1000     | 949  | 902    | 860     | 821      | 787  |
| 1840 | 1668   | 1519    | 1396    | 1292 | 1200     | 1139 | 1082   | 1031    | 984      | 943  |
| 2157 | 1953   | 1776    | 1630    | 1508 | 1400     | 1328 | 1262   | 1202    | 1147     | 1099 |
| 2478 | 2242   | 2036    | 1867    | 1725 | 1600     | 1517 | 1441   | 1371    | 1309     | 1253 |
| 2802 | 2531   | 2296    | 2103    | 1942 | 1800     | 1706 | 1620   | 1542    | 1471     | 1408 |

#### **Reference Fuel and Time Required at Check Point**

| AIR    |           |          |           | PRESS    | SURE ALT  | ITUDE (10 | 00 FT)    |          |           |          |
|--------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|----------|
| DIST   | 1         | 0        | 1         | 6        | 2         | .0        | 2         | 4        | 28        |          |
| (NM)   | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME      | FUEL      | TIME     | FUEL      | TIME     |
| (1111) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN)  | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |
| 200    | 3.2       | 0:43     | 2.8       | 0:41     | 2.5       | 0:40      | 2.4       | 0:38     | 2.2       | 0:37     |
| 400    | 6.5       | 1:24     | 5.7       | 1:20     | 5.3       | 1:16      | 5.1       | 1:13     | 4.9       | 1:09     |
| 600    | 9.7       | 2:06     | 8.5       | 1:59     | 8.0       | 1:53      | 7.7       | 1:48     | 7.4       | 1:41     |
| 800    | 12.9      | 2:48     | 11.4      | 2:38     | 10.7      | 2:30      | 10.3      | 2:23     | 10.0      | 2:14     |
| 1000   | 15.9      | 3:31     | 14.1      | 3:18     | 13.3      | 3:08      | 12.7      | 2:58     | 12.4      | 2:48     |
| 1200   | 19.0      | 4:14     | 16.8      | 3:58     | 15.8      | 3:46      | 15.2      | 3:34     | 14.8      | 3:21     |
| 1400   | 22.0      | 4:59     | 19.5      | 4:39     | 18.3      | 4:25      | 17.6      | 4:11     | 17.2      | 3:56     |
| 1600   | 25.0      | 5:44     | 22.1      | 5:20     | 20.8      | 5:05      | 19.9      | 4:48     | 19.4      | 4:31     |
| 1800   | 27.9      | 6:30     | 24.7      | 6:02     | 23.2      | 5:45      | 22.2      | 5:26     | 21.6      | 5:07     |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED | WEIGHT AT CHECK POINT (1000 LB) |      |     |     |     |     |  |  |  |
|-------------------------|---------------------------------|------|-----|-----|-----|-----|--|--|--|
| (1000 LB)               | 70                              | 80   | 90  | 100 | 110 | 120 |  |  |  |
| 5                       | -0.4                            | -0.2 | 0.0 | 0.4 | 0.8 | 1.6 |  |  |  |
| 10                      | -0.9                            | -0.5 | 0.0 | 0.9 | 1.8 | 3.3 |  |  |  |
| 15                      | -1.4                            | -0.7 | 0.0 | 1.4 | 2.8 | 4.8 |  |  |  |
| 20                      | -1.9                            | -1.0 | 0.0 | 1.8 | 3.7 | 6.2 |  |  |  |
| 25                      | -2.4                            | -1.2 | 0.0 | 2.3 | 4.7 | 7.5 |  |  |  |
| 30                      | -2.9                            | -1.5 | 0.0 | 2.8 | 5.6 | 8.6 |  |  |  |

### 737 Flight Crew Operations Manual

Holding Flaps Up

| W   | EIGHT   |      |      | PRESSU | JRE ALTITU | DE (FT) |       |       |
|-----|---------|------|------|--------|------------|---------|-------|-------|
| (10 | 000 LB) | 1500 | 5000 | 10000  | 15000      | 20000   | 25000 | 30000 |
|     | EPR     | 1.66 | 1.77 | 1.95   | 2.18       |         |       |       |
| 130 | KIAS    | 243  | 246  | 246    | 247        |         |       |       |
|     | FF/ENG  | 6090 | 6080 | 6130   | 6460       |         |       |       |
|     | EPR     | 1.60 | 1.70 | 1.87   | 2.08       |         |       |       |
| 120 | KIAS    | 232  | 236  | 236    | 237        |         |       |       |
|     | FF/ENG  | 5610 | 5570 | 5560   | 5780       |         |       |       |
|     | EPR     | 1.54 | 1.63 | 1.79   | 1.98       | 2.22    |       |       |
| 110 | KIAS    | 220  | 223  | 227    | 227        | 228     |       |       |
|     | FF/ENG  | 5150 | 5090 | 5060   | 5140       | 5440    |       |       |
|     | EPR     | 1.49 | 1.57 | 1.71   | 1.89       | 2.11    |       |       |
| 100 | KIAS    | 210  | 211  | 216    | 216        | 217     |       |       |
|     | FF/ENG  | 4700 | 4630 | 4570   | 4570       | 4760    |       |       |
|     | EPR     | 1.43 | 1.50 | 1.63   | 1.79       | 1.99    | 2.24  |       |
| 90  | KIAS    | 210  | 210  | 210    | 210        | 210     | 210   |       |
|     | FF/ENG  | 4330 | 4250 | 4150   | 4100       | 4170    | 4440  |       |
|     | EPR     | 1.39 | 1.45 | 1.56   | 1.70       | 1.88    | 2.11  |       |
| 80  | KIAS    | 210  | 210  | 210    | 210        | 210     | 210   |       |
|     | FF/ENG  | 4010 | 3930 | 3820   | 3750       | 3740    | 3890  |       |
|     | EPR     | 1.35 | 1.41 | 1.51   | 1.63       | 1.79    | 2.00  | 2.24  |
| 70  | KIAS    | 210  | 210  | 210    | 210        | 210     | 210   | 210   |
|     | FF/ENG  | 3740 | 3660 | 3550   | 3460       | 3420    | 3480  | 3680  |
|     | EPR     | 1.32 | 1.37 | 1.46   | 1.57       | 1.72    | 1.90  | 2.13  |
| 60  | KIAS    | 210  | 210  | 210    | 210        | 210     | 210   | 210   |
|     | FF/ENG  | 3500 | 3420 | 3310   | 3230       | 3160    | 3160  | 3270  |

This table includes 5% additional fuel for holding in a racetrack pattern.



Intentionally Blank

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight**

## Gear Down

Chapter PI Section 14

# GEAR DOWN

#### 220 KIAS Cruise Altitude Capability Max Cruise Thrust, 100 ft/min residual rate of climb

| WEIGHT    |                       | PRESSURE ALTITUDE (FT | )          |
|-----------|-----------------------|-----------------------|------------|
| (1000 LB) | ISA + 10°C<br>& BELOW | ISA + 15°C            | ISA + 20°C |
| 130       | 13700                 | 9700                  |            |
| 120       | 16200                 | 13000                 | 7700       |
| 110       | 18400                 | 15800                 | 11800      |
| 100       | 20400                 | 18100                 | 14900      |
| 90        | 22200                 | 20000                 | 17200      |
| 80        | 23600                 | 21800                 | 19100      |
| 70        | 24800                 | 23200                 | 21000      |
| 60        | 25800                 | 24300                 | 22400      |

#### 220 KIAS Cruise Control

| WE   | IGHT   | LB)         10         13         15         17         19         21           EPR         1.73         1.83         1.91         2.00         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.03         4ACH         .399         .422         .438         .456         .474         KIAS         2.00         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2. |      |      |      |      |      |      |
|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|
| (100 | 00 LB) | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13   | 15   | 17   | 19   | 21   | 23   |
|      | EPR    | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.83 | 1.91 | 2.00 |      |      |      |
| 120  | MACH   | .399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .422 | .438 | .456 |      |      |      |
| 130  | KIAS   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220  | 220  | 220  |      |      |      |
|      | FF/ENG | 4482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4474 | 4496 | 4562 |      |      |      |
|      | EPR    | 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.78 | 1.86 | 1.94 | 2.03 |      |      |
| 120  | MACH   | .399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .422 | .438 | .456 | .474 |      |      |
| 120  | KIAS   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220  | 220  | 220  | 220  |      |      |
|      | FF/ENG | 4263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4247 | 4247 | 4280 | 4352 |      |      |
|      | EPR    | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.74 | 1.81 | 1.88 | 1.97 | 2.06 |      |
| 110  | MACH   | .399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .422 | .438 | .456 | .474 | .493 |      |
| 110  | KIAS   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220  | 220  | 220  | 220  | 220  |      |
|      | FF/ENG | 4071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4043 | 4033 | 4044 | 4086 | 4165 |      |
|      | EPR    | 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.70 | 1.76 | 1.83 | 1.91 | 2.00 | 2.09 |
| 100  | MACH   | .399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .422 | .438 | .456 | .474 | .493 | .513 |
| 100  | KIAS   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220  | 220  | 220  | 220  | 220  | 220  |
|      | FF/ENG | 3905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3866 | 3850 | 3846 | 3866 | 3922 | 4012 |
|      | EPR    | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.66 | 1.72 | 1.79 | 1.87 | 1.95 | 2.04 |
| 90   | MACH   | .399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .422 | .438 | .456 | .474 | .493 | .513 |
| 90   | KIAS   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220  | 220  | 220  | 220  | 220  | 220  |
|      | FF/ENG | 3765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3720 | 3699 | 3689 | 3692 | 3725 | 3805 |
|      | EPR    | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.63 | 1.69 | 1.76 | 1.83 | 1.91 | 2.00 |
| 80   | MACH   | .399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .422 | .438 | .456 | .474 | .493 | .513 |
| 80   | KIAS   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220  | 220  | 220  | 220  | 220  | 220  |
|      | FF/ENG | 3649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3601 | 3575 | 3559 | 3553 | 3572 | 3635 |
|      | EPR    | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.61 | 1.67 | 1.73 | 1.80 | 1.87 | 1.96 |
| 70   | MACH   | .399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .422 | .438 | .456 | .474 | .493 | .513 |
| 70   | KIAS   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220  | 220  | 220  | 220  | 220  | 220  |
|      | FF/ENG | 3550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3500 | 3470 | 3449 | 3438 | 3447 | 3493 |
|      | EPR    | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.59 | 1.64 | 1.71 | 1.77 | 1.85 | 1.93 |
| 60   | MACH   | .399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .422 | .438 | .456 | .474 | .493 | .513 |
| 00   | KIAS   | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220  | 220  | 220  | 220  | 220  | 220  |
|      | FF/ENG | 3472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3419 | 3388 | 3364 | 3349 | 3351 | 3387 |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 3, 2015 D6-27370-200A-TBC PI.14.1

#### 737 Flight Crew Operations Manual

#### **220 KIAS Enroute Fuel and Time** Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | E (NM)  |      | GROUND   |      | AIR D  | ISTANCE | E (NM)   |      |
|------|--------|---------|---------|------|----------|------|--------|---------|----------|------|
| HE   | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | VENT (KI | TS)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80       | 100  |
| 335  | 297    | 264     | 239     | 218  | 200      | 189  | 179    | 170     | 161      | 154  |
| 678  | 599    | 531     | 479     | 437  | 400      | 378  | 357    | 339     | 323      | 308  |
| 1021 | 901    | 799     | 720     | 656  | 600      | 566  | 535    | 507     | 483      | 461  |
| 1364 | 1204   | 1067    | 961     | 875  | 800      | 755  | 714    | 677     | 644      | 614  |
| 1707 | 1506   | 1334    | 1201    | 1093 | 1000     | 943  | 892    | 845     | 804      | 767  |
| 2050 | 1808   | 1602    | 1442    | 1312 | 1200     | 1132 | 1071   | 1015    | 964      | 920  |
| 2393 | 2111   | 1871    | 1683    | 1531 | 1400     | 1321 | 1248   | 1183    | 1125     | 1074 |
| 2736 | 2413   | 2138    | 1923    | 1750 | 1600     | 1510 | 1427   | 1353    | 1286     | 1227 |
| 3079 | 2715   | 2406    | 2164    | 1969 | 1800     | 1698 | 1605   | 1521    | 1446     | 1380 |

#### **Reference Fuel and Time Required at Check Point**

| AIR    |           |          |           | PRESS    | SURE ALT  | ITUDE (10 | 00 FT)    |          |           |          |  |
|--------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|----------|--|
| DIST   | 1         | 0        | 1         | 4        | 1         | 8         | 2         | 2        | 26        |          |  |
| (NM)   | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME      | FUEL      | TIME     | FUEL      | TIME     |  |
| (1111) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN)  | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |  |
| 200    | 5.6       | 0:50     | 5.1       | 0:47     | 4.7       | 0:45      | 4.4       | 0:43     | 4.2       | 0:41     |  |
| 400    | 11.4      | 1:37     | 10.5      | 1:32     | 9.7       | 1:27      | 9.2       | 1:22     | 9.0       | 1:18     |  |
| 600    | 17.1      | 2:24     | 15.8      | 2:16     | 14.7      | 2:08      | 13.9      | 2:01     | 13.6      | 1:54     |  |
| 800    | 22.7      | 3:11     | 21.0      | 3:00     | 19.5      | 2:50      | 18.5      | 2:40     | 18.1      | 2:31     |  |
| 1000   | 28.2      | 3:58     | 26.1      | 3:45     | 24.3      | 3:32      | 23.0      | 3:19     | 22.6      | 3:08     |  |
| 1200   | 33.7      | 4:45     | 31.2      | 4:29     | 29.0      | 4:13      | 27.5      | 3:59     | 27.0      | 3:44     |  |
| 1400   | 39.1      | 5:32     | 36.2      | 5:13     | 33.7      | 4:55      | 31.9      | 4:38     | 31.3      | 4:21     |  |
| 1600   | 44.5      | 6:20     | 41.2      | 5:58     | 38.4      | 5:37      | 36.3      | 5:17     | 35.6      | 4:58     |  |
| 1800   | 49.8      | 7:07     | 46.1      | 6:42     | 43.0      | 6:18      | 40.7      | 5:56     | 39.8      | 5:34     |  |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED |      | WEIGH | IT AT CHEC | K POINT (10 | 000 LB) |     |
|-------------------------|------|-------|------------|-------------|---------|-----|
| (1000 LB)               | 70   | 80    | 90         | 100         | 110     | 120 |
| 5                       | -0.2 | -0.1  | 0.0        | 0.2         | 0.5     | 0.8 |
| 10                      | -0.5 | -0.3  | 0.0        | 0.5         | 1.1     | 1.7 |
| 15                      | -0.7 | -0.4  | 0.0        | 0.7         | 1.6     | 2.6 |
| 20                      | -0.9 | -0.5  | 0.0        | 0.9         | 2.1     | 3.4 |
| 25                      | -1.1 | -0.6  | 0.0        | 1.1         | 2.5     | 4.1 |
| 30                      | -1.2 | -0.7  | 0.0        | 1.3         | 2.8     | 4.7 |
| 35                      | -1.3 | -0.7  | 0.0        | 1.4         | 3.2     | 5.2 |
| 40                      | -1.4 | -0.8  | 0.0        | 1.5         | 3.4     | 5.6 |
| 45                      | -1.5 | -0.9  | 0.0        | 1.6         | 3.6     | 5.9 |

#### **Descent at 220 KIAS**

| PRESSURE ALT (1000 FT) | 5  | 10 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 |
|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| DISTANCE (NM)          | 19 | 28 | 43 | 47 | 51 | 54 | 58 | 62 | 66 | 70 | 74 | 78 |
| TIME (MINUTES)         | 7  | 9  | 13 | 14 | 15 | 16 | 17 | 17 | 18 | 19 | 19 | 20 |

## 737 Flight Crew Operations Manual

| Holding  |   |
|----------|---|
| Flaps Up | , |

| W   | EIGHT   |      |      | PRESSURE A | LTITUDE (FT) |       |       |
|-----|---------|------|------|------------|--------------|-------|-------|
| (10 | 000 LB) | 1500 | 5000 | 10000      | 15000        | 20000 | 25000 |
|     | EPR     | 1.55 | 1.65 | 1.80       |              |       |       |
| 130 | KIAS    | 243  | 246  | 246        |              |       |       |
|     | FF/ENG  | 5310 | 5310 | 5250       |              |       |       |
|     | EPR     | 1.50 | 1.59 | 1.73       | 1.92         |       |       |
| 120 | KIAS    | 232  | 236  | 236        | 237          |       |       |
|     | FF/ENG  | 4870 | 4880 | 4820       | 4850         |       |       |
|     | EPR     | 1.45 | 1.52 | 1.67       | 1.83         | 2.05  |       |
| 110 | KIAS    | 220  | 223  | 227        | 227          | 228   |       |
|     | FF/ENG  | 4460 | 4440 | 4410       | 4380         | 4540  |       |
|     | EPR     | 1.40 | 1.46 | 1.59       | 1.75         | 1.94  |       |
| 100 | KIAS    | 210  | 211  | 216        | 216          | 217   |       |
|     | FF/ENG  | 4090 | 4020 | 4010       | 3960         | 4000  |       |
|     | EPR     | 1.38 | 1.44 | 1.54       | 1.68         | 1.86  | 2.08  |
| 90  | KIAS    | 210  | 210  | 210        | 210          | 210   | 210   |
|     | FF/ENG  | 3920 | 3840 | 3730       | 3650         | 3630  | 3780  |
|     | EPR     | 1.36 | 1.41 | 1.51       | 1.64         | 1.81  | 2.02  |
| 80  | KIAS    | 210  | 210  | 210        | 210          | 210   | 210   |
|     | FF/ENG  | 3780 | 3700 | 3590       | 3510         | 3470  | 3570  |
|     | EPR     | 1.34 | 1.39 | 1.49       | 1.61         | 1.77  | 1.98  |
| 70  | KIAS    | 210  | 210  | 210        | 210          | 210   | 210   |
|     | FF/ENG  | 3670 | 3580 | 3470       | 3390         | 3340  | 3400  |
|     | EPR     | 1.33 | 1.38 | 1.47       | 1.59         | 1.74  | 1.94  |
| 60  | KIAS    | 210  | 210  | 210        | 210          | 210   | 210   |
|     | FF/ENG  | 3570 | 3480 | 3380       | 3290         | 3230  | 3270  |

This table includes 5% additional fuel for holding in a racetrack pattern.



Intentionally Blank

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. PI.14.4 D6-27370-200A-TBC April 3, 2015 737-200ADV/JT8D-15A FAA

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight**

Text

Chapter PI Section 15

## Introduction

This chapter contains information required to complete a normal flight. In the event of conflict between data presented in this chapter and that contained in the Approved Flight Manual, the Flight Manual shall always take precedence.

## General

## **Takeoff Speeds**

The speeds presented in the Takeoff Speeds table can be used for all performance conditions except where adjustments must be made to V1 for clearway, stopway, anti-skid inoperative, improved climb, contaminated runway situations or brake energy limitations. These speeds may be used for weights less than or equal to the performance limited weight.

Normal takeoff speeds, V1, VR and V2, with anti-skid on, are read from the table by entering with station pressure altitude and moving horizontally to the appropriate outside air temperature (OAT) column. Proceed down and read V1, VR and V2 for the anticipated takeoff weight and flap setting. Slope and wind adjustments to V1 are obtained by entering the V1 Adjustments chart. Adjusted V1 must not exceed VR.

## VMCG

Regulations prohibit scheduling takeoff with a V1 less than minimum V1 for control on the ground, VMCG. Therefore compare the adjusted V1 to the VMCG. To find VMCG, enter the VMCG table with the airport pressure altitude and actual OAT. If VR is less than VMCG, set VR equal to VMCG, and determine a new V2 by adding the difference between the normal VR and VMCG to the normal V2.

## **Clearway and Stopway V1 Adjustments**

Takeoff speed adjustments are to be applied to V1 speed when using takeoff weights based on the use of clearway and stopway.

Adjust V1 speed by the amount shown in the appropriate column. The adjusted V1 speed must not exceed VR.

Maximum allowable clearway limits are provided for guidance when more precise data is not available.

#### **Performance Inflight** Text

## Stab Trim

To find takeoff stabilizer trim setting, enter the Stab Trim Setting table with takeoff flap setting and center of gravity (C.G. % MAC) and read required stabilizer trim units.

## VREF

The Reference Speed table contains flaps 40, 30 and 15 landing speeds for a given weight. Apply wind adjustments shown as required.

## **Flap Maneuver Speeds**

This table provides the flap speed schedule for recommended maneuvering speed. The speed schedule is a function of weight and will provide adequate maneuver margin above stall at all weights.

During flap retraction/extension, movement of the flap to the next position should be initiated when reaching the maneuver speed for the existing flap.

## **Slush/Standing Water Takeoff**

Experience has shown that aircraft performance may deteriorate significantly on runways covered with snow, slush, standing water or ice. Therefore, reductions in runway/obstacle limited takeoff weight and revised takeoff speeds are necessary. The tables are intended for guidance in accordance with advisory material and assume an engine failure at the critical point during the takeoff.

The entire runway is assumed to be completely covered by a contaminant of uniform thickness and density. Therefore this information is conservative when operating under typical colder weather conditions where patches of slush exist and some degree of sanding is common. Takeoffs in slush/standing water depths greater than 0.50 inches (13 mm) are not recommended because of possible airplane damage as a result of slush/standing water impingement on the airplane structure. The use of assumed temperature method for reduced thrust is not allowed on contaminated runways. Interpolation for slush/standing water depths between the values shown is permitted.

Takeoff weight determination:

1. Enter the Weight Adjustment table with the dry field/obstacle limit weight to obtain the weight reduction for the slush/standing water depth and airport pressure altitude.

2. Adjust field length available for temperature by amount shown on chart.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

3. Enter the VMCG Limit Weight table with the adjusted field length and pressure altitude to obtain the slush/standing water limit weight with respect to minimum field length required for VMCG speed.

4. The maximum allowable takeoff weight in slush/standing water is the lesser of the limit weights found in steps 1 and 3.

Takeoff speed determination:

1. Determine takeoff speeds V1, VR and V2 for actual brake release weight using the Takeoff Speeds table in this section.

2. If VMCG limited, set V1=VMCG. If not limited by VMCG considerations, enter the V1 Adjustment table with actual brake release weight to determine the V1 reduction to apply to V1 speed. If the adjusted V1 is less than VMCG, set V1=VMCG.

## **Slippery Runway Takeoff**

Airplane braking action is reported as good, medium or poor, depending on existing runway conditions. If braking action is reported as good, conditions should not be expected to be as good as on clean dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when stopping. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate the "poor" data reflects a runway covered with wet ice. Performance is based on reversers operating and a 15 ft. screen height at the end of the runway. The tables provided are used in the same manner as the Slush/Standing Water tables.

## Anti-skid Inoperative

For anti-skid inoperative, the runway limited maximum gross weight at brake release and the V1 speed must be reduced to allow for the effect on accelerate-stop performance as detailed in the Approved Airplane Flight Manual. Obstacle clearance capability must also be considered since the reduced V1 speed will increase the distance required to achieve a given height above the runway following engine failure. A simplified method which conservatively accounts for the effects of anti-skid inoperative is shown below. Reduce the dry runway/obstacle limited weight at brake release obtained from the takeoff performance charts in this section or from the specific airport analysis and the associated V1 (i.e., V1 for the runway/obstacle limited weight at brake release) by the weight and V1 values shown in the table below. (Note that the resulting V1 must not be less than VMCG value.)

#### 737 Flight Crew Operations Manual

For takeoff below the anti-skid inoperative limited weight it is only necessary to ensure that the V1 speed set does not exceed the anti-skid limited V1 value.

| ANT            | I-SKID INOPERATIVE ADJUSTME | NTS           |  |  |
|----------------|-----------------------------|---------------|--|--|
| RUNWAY LENGTH  | WEIGHT ADJUSTMENT           | V1 ADJUSTMENT |  |  |
| (FT)           | (LB)                        | (KTS)         |  |  |
| LESS THAN 5000 | CHECK AFM                   |               |  |  |
| 5000           | -13000                      | -28           |  |  |
| 6000           | 13000                       | -25           |  |  |
| 7000           | -13000                      | -23           |  |  |
| 8000           | -13000                      | -22           |  |  |
| 9000           | -13000                      | -20           |  |  |
| 10000          | -13000                      | -19           |  |  |
| 11000          | -13000                      | -18           |  |  |
| 12000          | -13000                      | -17           |  |  |
| 13000          | -13000                      | -16           |  |  |

If the resulting V1 is less than minimum V1, takeoff is permitted with V1 set equal to VMCG.

Detailed analysis for the specific case from the AFM may yield a less restrictive penalty.

## **Takeoff EPR**

To find Takeoff EPR based on normal engine bleed for air conditioning packs on, enter Takeoff EPR table with airport pressure altitude and airport OAT and read EPR. For packs off operation, apply the EPR adjustment shown below the table. No takeoff EPR adjustment is required for wing anti-ice operation.

## **Reduced Takeoff EPR**

The tables present the allowable Takeoff EPR Reduction as a function of Actual OAT and Surplus Weight which is defined as the difference between the Performance Limited TOGW and the Actual TOGW. These tables are valid for engine A/C bleed on or off, any flap setting. They are not valid when the maximum takeoff weight is limited by obstacles, brake energy or tire speed. Since the tables are conservative, larger reductions in EPR may be achieved under some conditions by using the Assumed Temperature Method described in the AFM Appendix.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Enter the Field Length Limited section of the table appropriate for the airplane pressure altitude with the Surplus Weight based on the field length limit (i.e., Field length limited weight minus actual weight). Read the allowable Takeoff EPR Reduction. Then enter the Climb Limited section of the table with the Surplus Weight based on the climb limit and determine the allowable Takeoff EPR Reduction. Use the smaller of the two reductions. Enter the Minimum EPR table with the pressure altitude. The Takeoff EPR, after the reduction is applied, should not be less than this minimum. Apply the noted V1, VR and V2 adjustments.

Takeoff with assumed temperature reduced thrust is not permitted when: runway is contaminated with water, ice, slush or snow; anti-skid is inoperative. Use of this procedure is not recommended if potential windshear conditions exist.

## Max Climb EPR

This table shows Max Climb EPR based on normal engine bleed for packs on and anti-ice off. Enter the table with pressure altitude and TAT and read EPR. EPR adjustments are shown for anti-ice operation.

## **Go-around EPR**

To find Go-around EPR based on normal engine bleed for packs on and wing anti-ice off, enter the Go-around EPR table with airport pressure altitude and reported OAT or TAT and read EPR. For packs off, apply the EPR adjustment shown below the table. EPR adjustments are also shown for engine and wing anti-ice operations.

## Flight with Unreliable Airspeed / Turbulent Air Penetration

Pitch attitude and average EPR information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration.

Pitch attitude is shown in bold type for emphasis since altitude and/or vertical speed indications may also be unreliable.

## **All Engines**

## Long Range Cruise Maximum Operating Altitude

Maximum altitudes are shown for a given cruise weight and maneuver capability. This table considers both thrust and buffet limits, providing the more limiting of the two. Any data that is thrust limited is denoted by an asterisk and represents only a thrust limited condition in level flight with 100 ft/min residual rate of climb. Flying above these altitudes with sustained banks in excess of approximately 15° may cause the airplane to lose speed and/or altitude.

Note that the altitudes shown in the table are limited to the maximum certified altitude of 37000 ft.

## Long Range Cruise Control

These tables provide target EPR, Long Range Cruise Mach number, KIAS and standard day fuel flow per engine for the airplane weight and pressure altitude. As indicated by the shaded area, at optimum altitude .72M approximates the Long Range Cruise Mach schedule.

## Long Range Cruise Enroute Fuel and Time

Long Range Cruise Enroute Fuel and Time tables are provided to determine remaining time and fuel required to destination. The data is based on Long Range Cruise and .70/280/250 descent. Tables are presented for low altitudes and high altitudes.

To determine remaining fuel and time required, first enter the Ground to Air Miles Conversion table to convert ground distance and enroute wind to an equivalent still air distance for use with the Reference Fuel and Time tables. Next, enter the Reference Fuel and Time table with air distance from the Ground to Air Miles Conversion table and the desired altitude and read Reference Fuel and Time Required. Lastly, enter the Fuel Required Adjustment table with the Reference Fuel and the actual weight at checkpoint to obtain fuel required to destination.

## Long Range Cruise Wind-Altitude Trade

Wind is a factor which may justify operations considerably below optimum altitude. For example, a favorable wind component may have an effect on ground speed which more than compensates for the loss in air range.

737-200ADV/JT8D-15A FAA

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Using this table, it is possible to determine the break-even wind (advantage necessary or disadvantage that can be tolerated) to maintain the same range at another altitude and long range cruise speed. The tables make no allowance for climb or descent time, fuel or distance, and are based on comparing ground fuel mileage.

## Descent

Distance and time for descent are shown for a .70/280/250 descent speed schedule. Enter the table with top of descent pressure altitude and read distance in nautical miles and time in minutes. Data is based on flight idle thrust descent in zero wind. Allowances are included for a straight-in approach with gear down and landing flaps at the outer marker.

## Holding

Target EPR, indicated airspeed and fuel flow per engine information is tabulated for holding with flaps up based on the optimum holding speed schedule. This is the higher of the maximum endurance speed and the maneuvering speed. Small variations in airspeed will not appreciably affect the overall endurance time. Enter the table with weight and pressure altitude to read EPR, KIAS and fuel flow per engine.

## **Advisory Information**

## **Autobrake Landing Distance**

The Autobrake Landing Distance tables are provided as advisory information to assist in the selection of the most desirable autobrake setting for a given field length. It is not to be used to determine required field length. This data reflects actual landing distances on a dry runway for setting MINIMUM through MAXIMUM, from touchdown to full stop, with or without reverse thrust. The tables include typical flare distances from threshold.

To use the Autobrake Landing Distance table, determine the appropriate table to use. The Digital Autobrake Landing Distance table is only applicable if Autobrake Control Valve Module, Boeing part number 60800263 is installed. Enter the chart with the estimated approach speed and determine the actual stopping distance from touchdown for a given autobrake setting. If airspeed is used for approach speed, adjust landing distance for pressure altitude and tailwind effects.

Selection of an autobrake setting results in a constant rate of deceleration. Maximum effort manual braking should achieve shorter landing distance than the MAXIMUM setting.

737 Flight Crew Operations Manual

## Slippery Runway Landing Distance

Landing distances are the actual landing distances and do not include the 1.67% regulatory factor. Therefore they cannot be used to determine dispatch required landing field length. When landing on slippery runways or runways contaminated with ice, snow, slush or standing water, the reported braking action must be considered. If the surface is affected by water, snow or ice, and the braking action is reported as "good," conditions should not be expected to be as good as on clean dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when landing. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate the "informance level used to calculate the airplane weight, and then apply the adjustments for airport pressure altitude and approach speed as required.

## Non-normal Configuration Landing Distance

Advisory information is provided to support non-normal configurations that affect landing performance of the airplane. Landing distances are shown for dry runway and good, medium and poor reported braking action. Each non-normal configuration is listed with its recommended approach speed. Landing distance can be determined for the reference landing weight and then adjusted for actual weight and pressure altitude.

## **Brake Cooling Schedule**

Advisory information is provided to assist in avoiding the problems associated with hot brakes. For normal operation, most landings are at weights below the AFM quick turnaround limit weight.

Use of the recommended cooling schedule will help avoid brake overheat and fuse plug problems that could result from repeated landings at short time intervals or a rejected takeoff.

Enter the Brake Cooling Schedule table with the airplane weight and brakes on speed, adjusted for wind at the appropriate temperature and altitude condition. Instructions for applying wind adjustments are included below the table. Linear interpolation may be used to obtain intermediate values. The resulting number is the reference brake energy per brake in millions of foot-pounds, and represents the amount of energy absorbed by each brake during a rejected takeoff.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

To determine the energy per brake absorbed during landing, enter the Adjusted Brake Energy Per Brake table with the reference brake energy per brake and the type of braking used during landing (RTO Max Man, Max Auto, Med Auto or Min Auto). The resulting number is the adjusted brake energy per brake and represents the energy absorbed in each brake during the landing.

The recommended cooling time is found in the final table by entering with the adjusted brake energy per brake. Times are provided for ground cooling and inflight gear down cooling.

## **Engine Inoperative**

## Max Continuous EPR

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude and TAT to read EPR.

It is desirable to maintain engine thrust within the limits of the Max Cruise thrust rating. However, where thrust in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous thrust rating. The Max Continuous thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

## Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb.

The level off altitude is dependent on air temperature (ISA deviation).

## Driftdown/LRC Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to Long Range Cruise speed. Cruise is continued at level off altitude and Long Range Cruise speed.

737 Flight Crew Operations Manual

To determine fuel required, enter the Ground to Air Miles Conversion table with the desired ground distance and adjust for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude are used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Diversion Fuel and Time table.

## Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on Long Range Cruise speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

## Long Range Cruise Control

The table provides target EPR, engine inoperative Long Range Cruise Mach number, KIAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn. To conservatively account for APU fuel burn, add 115 kg/hr to fuel flow values.

## Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .70/280/250 descent. Enter with Air Distance as determined from the Ground to Air Miles Conversion table and read Fuel and Time required at the cruise pressure altitude. Adjust the fuel obtained for deviation from the reference weight at checkpoint as required by entering the Fuel Required Adjustment table with the fuel required for the reference weight and the actual weight at checkpoint.

## Holding

Single engine holding data is provided in the same format as the all engine holding data and is based on the same assumptions.

## Gear Down

This section contains performance data for airplane operation with the landing gear extended. The data include engine bleed effects for normal air conditioning operation; i.e., two packs on at normal flow with all engines operating, and one pack normal flow with engine inoperative.

737-200ADV/JT8D-15A FAA



737 Flight Crew Operations Manual

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.



Intentionally Blank

737 Flight Crew Operations Manual

# **Performance Inflight**

**Table of Contents** 

Chapter PI Section <u>20</u>

## 737-200ADV JT8D-17A LB FAA

| General PI.20.1                                                      |
|----------------------------------------------------------------------|
| Takeoff Speeds PI.20.1                                               |
| VMCG PI.20.2                                                         |
| Clearway and Stopway V1 Adjustments PI.20.2                          |
| Stab Trim Setting PI.20.2                                            |
| VREF (KIAS) PI.20.3                                                  |
| Flap Maneuver Speeds PI.20.4                                         |
| Slush/Standing Water Takeoff PI.20.5                                 |
| Takeoff EPR PI.20.6                                                  |
| %N1 vs EPR Crosscheck PI.20.6                                        |
| Reduced Takeoff EPR PI.20.7                                          |
| Max Climb EPR PI.20.10                                               |
| Go-around EPR PI.20.11                                               |
| Flight With Unreliable Airspeed / Turbulent Air Penetration PI.20.12 |
| All Engines                                                          |
| Long Range Cruise Maximum Operating Altitude PI.21.1                 |
| Long Range Cruise Control PI.21.2                                    |
| Long Range Cruise Enroute Fuel and Time - Low Altitudes . PI.21.2    |
| Long Range Cruise Enroute Fuel and Time - High Altitudes. PI.21.3    |
| Long Range Cruise Wind-Altitude Trade PI.21.4                        |
| Descent at .70/280/250 PI.21.5                                       |
| Holding PI.21.5                                                      |
| Normal Configuration Landing Distance - Autobrake System PI.22.1     |
| Normal Configuration Landing Distance - Digital                      |
| Autobrake System PI.22.4                                             |
| Non-Normal Configuration Landing Distance PI.22.7                    |
| Brake Cooling Schedule PI.22.11                                      |

737 Flight Crew Operations Manual

| Engine Inoperative                        | PI.23.1  |
|-------------------------------------------|----------|
| Max Continuous EPR                        | PI.23.1  |
| Driftdown Speed/Level Off Altitude        | PI.23.2  |
| Driftdown/LRC Cruise Range Capability     | PI.23.2  |
| Long Range Cruise Altitude Capability     | PI.23.3  |
| Long Range Cruise Control                 | PI.23.3  |
| Long Range Cruise Diversion Fuel and Time | PI.23.4  |
| Holding                                   | PI.23.5  |
| Gear Down                                 | PI.24.1  |
| 220 KIAS Cruise Altitude Capability       |          |
| 220 KIAS Cruise Control                   |          |
| 220 KIAS Enroute Fuel and Time            |          |
| Descent at 220 KIAS.                      |          |
| Holding                                   |          |
| Text                                      | PI.25.1  |
| Introduction                              | PI.25.1  |
| General                                   |          |
| All Engines                               |          |
| Advisory Information                      | PI.25.6  |
| Engine Inoperative                        | PI.25.8  |
| Gear Down                                 | PI.25.10 |

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Performance Inflight General

## Chapter PI Section 20

**Takeoff Speeds** 

| V1, V                | 'R, V2                                     |          |                                               |                                               |                                               |                                 |                                        |                                 |                                 |                          |                                        |                          |                          |                                        |                                 | AN                                     | ITI                             | -sk                             | ID                                     | ON                              |
|----------------------|--------------------------------------------|----------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|--------------------------|----------------------------------------|--------------------------|--------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|
| PRES<br>ALTI<br>1000 | SURE<br>TUDE                               |          |                                               |                                               |                                               |                                 |                                        |                                 | OAT                             |                          |                                        |                          |                          |                                        |                                 |                                        |                                 |                                 |                                        |                                 |
| 9 TO                 | 10                                         | °F<br>°C |                                               |                                               |                                               |                                 |                                        |                                 |                                 |                          |                                        | -65<br>-54               | to_                      | 10<br>12                               | 11<br>-11                       | to                                     | 36<br>2                         | 37<br>3                         |                                        | 85<br>29                        |
| 7 TO                 | 9                                          | °F<br>°C |                                               |                                               |                                               |                                 |                                        |                                 | -65<br>-54                      | to_                      | 9<br>13                                | 10<br>-12                |                          | 77                                     | 34<br>1                         | to                                     | 85<br>29                        | 86<br>30                        | to 10                                  | 03<br>39                        |
| 5 TO                 | 7                                          | °F<br>°C |                                               |                                               |                                               | -65<br>-54                      | to_                                    | 16<br>9                         | 17<br>- 8                       | to                       | 42<br>5                                | 43<br>6                  | to                       | 86<br>30                               | 87<br>31                        | to1                                    |                                 | 101<br>38                       | to <sup>1</sup>                        | 12<br>44                        |
| 3 TO                 | 5                                          | °F<br>°C | -65<br>-54                                    | to_                                           | 30<br>1                                       | 31<br>0                         | to                                     | 65<br>18                        | 66<br>19                        | to                       | 87<br>31                               | 88<br>32                 | to1                      | D1<br>38                               | 102<br>39                       | to1                                    | 19<br>48                        | 120<br>49                       |                                        | 30<br>54                        |
| 1 TO                 | 3                                          | °F<br>°C | -65<br>-54                                    | to                                            | 76<br>24                                      | 77<br>25                        | to                                     | 94<br>34                        | 95<br>35                        | to                       | 07<br>41                               | 108<br>42                | to                       | 21<br>49                               | 122<br>50                       |                                        | 30<br>54                        |                                 |                                        |                                 |
| -1 то                | 1                                          | °F<br>°C | -65<br>-54                                    | to                                            | 98<br>36                                      | 99<br>37                        | to1                                    | 10<br>43                        | 111<br>44                       | to <sup>1</sup>          | 21<br>49                               | 122<br>50                | to <sup>1</sup>          | 30<br>54                               |                                 |                                        |                                 |                                 |                                        |                                 |
| FLAPS                | WT<br>1000 L                               | в        | V <sub>1</sub>                                | V <sub>R</sub>                                | ٧ <sub>2</sub>                                | V <sub>1</sub>                  | V <sub>R</sub>                         | ٧ <sub>2</sub>                  | v <sub>1</sub>                  | V <sub>R</sub>           | ٧ <sub>2</sub>                         | V <sub>1</sub>           | v <sub>R</sub>           | ٧ <sub>2</sub>                         | v <sub>1</sub>                  | VR                                     | ٧ <sub>2</sub>                  | V <sub>1</sub>                  | V <sub>R</sub>                         | v <sub>2</sub>                  |
| 1                    | 130<br>120<br>110<br>100<br>90<br>80<br>70 |          | 157<br>150<br>142<br>135<br>127<br>118<br>109 | 145<br>137<br>128<br>120                      | 128                                           | 150<br>143<br>136<br>128<br>119 | 145<br>137<br>129                      | 151<br>144<br>136               | 150<br>144<br>137<br>129<br>120 | 146<br>138<br>130        | 151<br>144                             | 145<br>138<br>129<br>121 | 139<br>130<br>122        | 151<br>144                             | 138<br>130<br>121               | 155<br>147<br>139<br>131<br>122<br>113 | 151<br>144<br>136<br>128        | 145<br>138<br>131<br>122        | 155<br>147<br>140<br>132<br>123<br>114 | 151<br>144<br>136<br>128        |
| 2                    | 130<br>120<br>110<br>100<br>90<br>80<br>70 |          | 139<br>131                                    | 154<br>147<br>140<br>133<br>124<br>116<br>106 | 159<br>153<br>146<br>139<br>132<br>124<br>116 | 139<br>132<br>124<br>115        | 133                                    | 146                             | 145<br>139<br>133               | 141<br>134<br>125<br>117 |                                        | 125<br>116               | 142                      | 146<br>139<br>132<br>124               | 125<br>117                      | 142<br>135<br>126                      | 146<br>139<br>132<br>124        | 141<br>134<br>126<br>118<br>110 | 135<br>127                             | 139<br>132<br>124               |
| 5                    | 130<br>120<br>110<br>100<br>90<br>80<br>70 |          | 148<br>143<br>135<br>128<br>120<br>112<br>105 | 137<br>130                                    |                                               | 143<br>135<br>129<br>121        | 138                                    | 136                             |                                 | 138<br>131               | 143<br>136                             | 130<br>122<br>114        | 139<br>131               |                                        | 123                             | 132<br>124<br>116                      | 136<br>129<br>122               | 123<br>115                      | 140<br>132<br>124<br>116<br>108        | 136<br>129<br>122               |
| 10                   | 120<br>110<br>100<br>90<br>80<br>70        |          | 130<br>123<br>115                             |                                               | 145<br>138<br>131<br>124<br>117<br>110        | 131<br>123<br>116               | 139<br>132<br>124<br>117<br>109<br>105 |                                 | 132<br>124<br>117               |                          | 145<br>138<br>131<br>124<br>117<br>110 | 132<br>125<br>117        | 126                      | 145<br>138<br>131<br>124<br>117<br>110 |                                 |                                        | 131                             | 118                             |                                        |                                 |
| 15                   | 110<br>100<br>90<br>80<br>70               |          | 127<br>119<br>112<br>105<br>105               | 113<br>105<br>105                             | 134<br>127<br>121<br>113<br>110               | 120<br>112<br>105<br>105        | 113<br><u>106</u><br>105               | 134<br>127<br>121<br>113<br>110 | 121<br>113<br>105<br>105        | 114<br>106<br>105        |                                        | 121<br>114<br>106<br>105 | 115<br>107<br>105        | 134<br>127<br>121<br>113<br>110        | 122<br>114<br><u>106</u><br>105 | 115<br>107<br>105                      | 134<br>127<br>121<br>113<br>110 | 122<br>115<br>107               | 131<br>123<br>116<br>108<br>105        | 134<br>127<br>121<br>113<br>110 |
| 25                   | 100<br>90<br>80<br>70                      |          |                                               | 118<br>111<br>105<br>105                      | 125<br>118<br>111<br>110                      | 110<br>105<br>105               | 119<br>111<br>105<br>105               | 125<br>118<br>111<br>110        | 111<br>105<br>105               | 120<br>112<br>105<br>105 | 118<br>111<br>110                      | 111<br>105<br>105        | 120<br>112<br>105<br>105 | 125<br>118<br>111<br>110               | 112<br>105<br>105               |                                        | 125<br>118<br>111<br>110        | 105<br>105                      | 113<br>106<br>105                      | 111                             |
|                      | AREA I<br>JM FIEL                          |          |                                               |                                               |                                               |                                 |                                        |                                 |                                 |                          |                                        |                          |                          |                                        |                                 |                                        |                                 |                                 |                                        |                                 |
| REDUCE<br>2 KNOT     | VR BY<br>S WITH                            |          | NOT<br>FW                                     |                                               |                                               |                                 |                                        |                                 | V1 ADJUSTME                     |                          |                                        |                          |                          |                                        |                                 |                                        |                                 |                                 |                                        |                                 |
|                      |                                            |          |                                               | -                                             |                                               |                                 |                                        | SL                              |                                 | AC                       | VINC<br>T 1<br>AILN                    | KΤ                       |                          |                                        | SUB<br>1%                       | TRA                                    |                                 | 1 K                             |                                        | PER                             |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

D6-27370-200A-TBC

VMCG

# **DO NOT USE FOR FLIGHT**

#### 737 Flight Crew Operations Manual

| OAT  |     |      | PRESSURE A | LTITUDE (FT) |      |       |
|------|-----|------|------------|--------------|------|-------|
| (°C) | 0   | 2000 | 4000       | 6000         | 8000 | 10000 |
| 50   | 97  | 93   | 90         |              |      |       |
| 40   | 101 | 97   | 93         | 90           | 87   |       |
| 30   | 105 | 101  | 97         | 94           | 90   | 87    |
| 20   | 105 | 103  | 99         | 95           | 92   | 88    |
| 10   | 105 | 103  | 99         | 96           | 92   | 89    |
| 0    | 105 | 105  | 101        | 97           | 94   | 90    |
| -10  | 105 | 105  | 103        | 99           | 96   | 92    |
| -20  | 105 | 105  | 104        | 101          | 97   | 93    |
| -30  | 105 | 105  | 104        | 101          | 97   | 93    |
| -40  | 105 | 105  | 104        | 101          | 97   | 93    |

#### **Clearway and Stopway V1 Adjustments**

| CLEARWAY MINUS | NORMAL V1 (KIAS) |     |     |     |  |  |  |  |  |
|----------------|------------------|-----|-----|-----|--|--|--|--|--|
| STOPWAY (FT)   | 100              | 120 | 140 | 160 |  |  |  |  |  |
| 900            | -3               | -3  | -3  | -3  |  |  |  |  |  |
| 600            | -2               | -2  | -2  | -2  |  |  |  |  |  |
| 300            | -1               | -1  | -1  | -1  |  |  |  |  |  |
| 0              | 0                | 0   | 0   | 0   |  |  |  |  |  |
| -300           | 1                | 1   | 1   | 1   |  |  |  |  |  |
| -600           | 2                | 2   | 2   | 2   |  |  |  |  |  |
| -900           | 3                | 3   | 3   | 3   |  |  |  |  |  |

#### Maximum Allowable Clearway

| FIELD LENGTH<br>(FT) | MAX ALLOWABLE<br>CLEARWAY FOR V1<br>REDUCTION (FT) |
|----------------------|----------------------------------------------------|
| 4000                 | 450                                                |
| 6000                 | 600                                                |
| 8000                 | 700                                                |
| 10000                | 800                                                |

#### Stab Trim Setting Max Takeoff Thrust

| C.G. %MAC             | 6     | 10    | 14    | 18    | 22    | 26 | 30    | 32    |
|-----------------------|-------|-------|-------|-------|-------|----|-------|-------|
| FLAPS 1 THRU FLAPS 10 | 7 3/4 | 7     | 6 1/4 | 5 1/2 | 4 3/4 | 4  | 3 1/4 | 2 3/4 |
| FLAPS 15 & FLAPS 25   | 8 3/4 | 7 3/4 | 7     | 6     | 5     | 4  | 3 1/4 | 2 3/4 |

## 737 Flight Crew Operations Manual

#### VREF (KIAS)

| WEIGHT    |     | FLAPS |     |
|-----------|-----|-------|-----|
| (1000 LB) | 40  | 30    | 15  |
| 130       | 149 | 154   | 161 |
| 125       | 146 | 150   | 158 |
| 120       | 142 | 146   | 154 |
| 115       | 139 | 142   | 150 |
| 110       | 135 | 139   | 146 |
| 105       | 132 | 135   | 142 |
| 100       | 128 | 131   | 138 |
| 95        | 124 | 127   | 134 |
| 90        | 121 | 124   | 131 |
| 85        | 117 | 120   | 127 |
| 80        | 113 | 116   | 123 |
| 75        | 110 | 112   | 119 |
| 70        | 106 | 109   | 115 |

For approach speed add wind factor of 1/2 headwind component + gust (max 20 knots).

## 737 Flight Crew Operations Manual

## Flap Maneuver Speeds

|          |                       | MANEUVER SPEED (KIAS)                        |                 |  |  |  |  |  |  |  |  |
|----------|-----------------------|----------------------------------------------|-----------------|--|--|--|--|--|--|--|--|
| FLAP     | WEIGHT                |                                              |                 |  |  |  |  |  |  |  |  |
| POSITION | AT OR BELOW 117000 LB | ABOVE 117000 LB AND<br>AT OR BELOW 138500 LB | ABOVE 138500 LB |  |  |  |  |  |  |  |  |
| UP       | 210                   | 220                                          | 230             |  |  |  |  |  |  |  |  |
| 1        | 190                   | 200                                          | 210             |  |  |  |  |  |  |  |  |
| 5        | 170                   | 180                                          | 190             |  |  |  |  |  |  |  |  |
| 10       | 160                   | 170                                          | 180             |  |  |  |  |  |  |  |  |
| 15       | 150                   | 160                                          | 170             |  |  |  |  |  |  |  |  |
| 25       | 140                   | 150                                          | 160             |  |  |  |  |  |  |  |  |

737 Flight Crew Operations Manual

## ALL ENGINES

### ADVISORY INFORMATION

#### Slush/Standing Water Takeoff Weight Adjustment (1000 LB)

| DRY FIELD/   |      | SLU           | JSH/STANDIN | IG WATER DEPTH |                     |       |  |  |  |
|--------------|------|---------------|-------------|----------------|---------------------|-------|--|--|--|
| OBSTACLE     | 0.2  | 5 INCHES (6 n | nm)         | 0.50           | 0.50 INCHES (13 mm) |       |  |  |  |
| LIMIT WEIGHT | Р    | RESS ALT (F1  | Γ)          | Р              | RESS ALT (F1        | Γ)    |  |  |  |
| (1000 LB)    | S.L. | 4000          | 8000        | S.L.           | 4000                | 8000  |  |  |  |
| 140          | -7.6 | -8.9          | -9.0        | -18.1          | -21.0               | -24.0 |  |  |  |
| 130          | -7.0 | -7.8          | -9.8        | -15.4          | -18.2               | -23.3 |  |  |  |
| 120          | -6.0 | -7.0          | -9.5        | -12.8          | -15.8               | -21.3 |  |  |  |
| 110          | -4.8 | -6.0          | -8.3        | -10.2          | -13.4               | -18.3 |  |  |  |
| 100          | -3.8 | -5.0          | -6.9        | -7.5           | -10.6               | -15.0 |  |  |  |
| 90           | -2.2 | -3.7          | -5.5        | -4.6           | -7.7                | -11.7 |  |  |  |
| 80           | -0.2 | -1.8          | -3.9        | -2.0           | -4.5                | -7.3  |  |  |  |

For Flaps 10, 15 and 20 increase allowable weight limit on slush/standing water by 1000 lb (0.25 in) or 1500 lb (0.50 in).

Interpolate as required using dry runway as zero slush/standing water depth.

737 Flight Crew Operations Manual

#### **Takeoff EPR**

#### Based on engine bleed for packs on and anti-ice on or off

| AIRPO      | RT OAT     |       | AIRF | ORT PRESSU | RE ALTITUDE | E (FT) |                  |
|------------|------------|-------|------|------------|-------------|--------|------------------|
| °F         | °C         | -1000 | 0    | 1000       | 2000        | 3000   | 10000 &<br>ABOVE |
| 130        | 54         | 1.89  | 1.89 | 1.89       | 1.89        | 1.89   | 1.89             |
| 122        | 50         | 1.95  | 1.95 | 1.95       | 1.95        | 1.95   | 1.95             |
| 113        | 45         | 1.99  | 1.99 | 1.99       | 1.99        | 1.99   | 1.99             |
| 104        | 40         | 2.04  | 2.04 | 2.04       | 2.04        | 2.04   | 2.04             |
| 95         | 35         | 2.08  | 2.09 | 2.09       | 2.09        | 2.09   | 2.09             |
| 86         | 30         | 2.09  | 2.14 | 2.14       | 2.14        | 2.14   | 2.14             |
| 77         | 25         | 2.09  | 2.15 | 2.17       | 2.17        | 2.17   | 2.17             |
| 68         | 20         | 2.09  | 2.15 | 2.18       | 2.19        | 2.19   | 2.19             |
| 59         | 15         | 2.09  | 2.15 | 2.18       | 2.20        | 2.20   | 2.20             |
| 50         | 10         | 2.09  | 2.15 | 2.19       | 2.20        | 2.20   | 2.20             |
| 41         | 5          | 2.09  | 2.15 | 2.21       | 2.22        | 2.22   | 2.22             |
| 32         | 0          | 2.09  | 2.15 | 2.21       | 2.26        | 2.26   | 2.26             |
| 23         | -5         | 2.09  | 2.15 | 2.21       | 2.26        | 2.29   | 2.29             |
| 14         | -10        | 2.09  | 2.15 | 2.21       | 2.26        | 2.31   | 2.32             |
| 5          | -15        | 2.09  | 2.15 | 2.21       | 2.26        | 2.31   | 2.34             |
| -4         | -20        | 2.09  | 2.15 | 2.21       | 2.26        | 2.31   | 2.35             |
| -13 TO -65 | -25 TO -54 | 2.09  | 2.15 | 2.21       | 2.26        | 2.31   | 2.35             |

When operating in shaded area with engine anti-ice on, decrease EPR limit by 0.03.

#### **EPR Adjustments for Engine Bleeds**

| BLEED         | AIRPORT PRESSURE ALTITUDE (FT) |               |  |  |  |  |  |  |
|---------------|--------------------------------|---------------|--|--|--|--|--|--|
| CONFIGURATION | -1000                          | 10000 & ABOVE |  |  |  |  |  |  |
| PACKS OFF     | 0.03                           | 0.03          |  |  |  |  |  |  |

With Gravel Protect switch in "ON" position, decrease EPR by 0.01.

#### %N1 vs EPR Crosscheck (Takeoff and Go-around)

| AIRI | PORT |      | TARGET %N1 |      |      |      |      |      |  |  |  |  |  |
|------|------|------|------------|------|------|------|------|------|--|--|--|--|--|
| 0.   | AT   |      | EPR        |      |      |      |      |      |  |  |  |  |  |
| °F   | °C   | 1.70 | 1.80       | 1.90 | 2.00 | 2.10 | 2.20 | 2.30 |  |  |  |  |  |
| 130  | 54   | 90   | 93         | 96   | 99   | 102  | 107  | 111  |  |  |  |  |  |
| 122  | 50   | 89   | 92         | 95   | 98   | 102  | 106  | 110  |  |  |  |  |  |
| 104  | 40   | 88   | 91         | 94   | 97   | 100  | 104  | 108  |  |  |  |  |  |
| 86   | 30   | 87   | 90         | 92   | 95   | 99   | 102  | 106  |  |  |  |  |  |
| 68   | 20   | 85   | 88         | 91   | 94   | 97   | 101  | 105  |  |  |  |  |  |
| 50   | 10   | 84   | 87         | 89   | 92   | 95   | 99   | 103  |  |  |  |  |  |
| 32   | 0    | 82   | 85         | 88   | 90   | 94   | 97   | 101  |  |  |  |  |  |
| 14   | -10  | 81   | 84         | 86   | 89   | 92   | 95   | 99   |  |  |  |  |  |
| -4   | -20  | 79   | 82         | 84   | 87   | 90   | 94   | 97   |  |  |  |  |  |
| -22  | -30  | 78   | 80         | 83   | 85   | 88   | 92   | 95   |  |  |  |  |  |
| -40  | -40  | 76   | 78         | 81   | 84   | 87   | 90   | 94   |  |  |  |  |  |
| -58  | -50  | 75   | 77         | 79   | 82   | 85   | 88   | 92   |  |  |  |  |  |
| -65  | -54  | 74   | 76         | 78   | 81   | 84   | 87   | 91   |  |  |  |  |  |

Use scheduled Takeoff or Go-around EPR.

Use actual OAT only.

%N1 operating tolerance ±2%

%N1 limit 102.45%

A/C on or off

For engine anti-icing on, increase %N1 by 1%.

## 737 Flight Crew Operations Manual

#### Reduced Takeoff EPR Based on engine bleed for packs on or off 1000 FT Pressure Altitude and Below Takeoff EPR Reduction

|                 |    |      |      | I    | FIELD | LENG | TH LIN | MITED | )    |      |        |             |
|-----------------|----|------|------|------|-------|------|--------|-------|------|------|--------|-------------|
|                 |    |      |      |      |       | 0/   | ΑT     |       |      |      |        |             |
|                 |    | -10  | -5   | 0    | 5     | 10   | 15     | 20    | 25   | 30   | 34 AND | CLIMB       |
| SURPLUS         | °C | TO   | TO   | TO   | TO    | TO   | TO     | TO    | TO   | TO   | ABOVE  | LIMITED     |
| WEIGHT          |    | -6   | -1   | 4    | 9     | 14   | 19     | 24    | 29   | 33   |        | (ALL TEMPS) |
| (LB)            |    | 14   | 23   | 32   | 41    | 50   | 59     | 68    | 77   | 86   | 93 AND | · · · · · · |
|                 | °F | TO   | TO   | TO   | TO    | TO   | TO     | TO    | TO   | TO   | ABOVE  |             |
| 4000 800 4000   |    | 22   | 31   | 40   | 49    | 58   | 67     | 76    | 85   | 92   |        |             |
| 1000 TO 1999    |    |      |      |      |       |      |        |       |      | 0.00 | 0.01   | 0.00        |
| 2000 TO 2999    |    |      |      |      |       |      |        |       |      | 0.02 | 0.02   | 0.01        |
| 3000 TO 3999    |    |      |      |      |       |      |        | 0.02  | 0.02 | 0.03 | 0.04   | 0.02        |
| 4000 TO 4999    |    |      |      |      |       |      |        | 0.02  | 0.03 | 0.04 | 0.05   | 0.03        |
| 5000 TO 5999    |    |      |      |      |       |      | 0.02   | 0.03  | 0.04 | 0.06 | 0.06   | 0.03        |
| 6000 TO 6999    |    |      |      |      |       | 0.02 | 0.03   | 0.04  | 0.06 | 0.07 | 0.08   | 0.04        |
| 7000 TO 7999    |    |      |      |      | 0.01  | 0.03 | 0.04   | 0.06  | 0.07 | 0.09 | 0.09   | 0.05        |
| 8000 TO 8999    |    |      |      | 0.01 | 0.03  | 0.04 | 0.06   | 0.07  | 0.09 | 0.10 | 0.10   | 0.06        |
| 9000 TO 9999    |    |      | 0.01 | 0.03 | 0.04  | 0.06 | 0.07   | 0.08  | 0.10 | 0.11 | 0.12   | 0.07        |
| 10000 TO 10999  |    | 0.01 | 0.02 | 0.04 | 0.05  | 0.07 | 0.08   | 0.10  | 0.11 | 0.13 | 0.13   | 0.08        |
| 11000 TO 11999  |    | 0.02 | 0.04 | 0.05 | 0.07  | 0.08 | 0.10   | 0.11  | 0.13 | 0.14 | 0.14   | 0.09        |
| 12000 TO 12999  |    | 0.04 | 0.05 | 0.07 | 0.08  | 0.10 | 0.11   | 0.13  | 0.14 | 0.15 | 0.16   | 0.10        |
| 13000 TO 13999  |    | 0.05 | 0.06 | 0.08 | 0.10  | 0.11 | 0.12   | 0.14  | 0.15 | 0.17 | 0.17   | 0.11        |
| 14000 TO 14999  |    | 0.06 | 0.08 | 0.09 | 0.11  | 0.12 | 0.14   | 0.15  | 0.17 | 0.18 | 0.19   | 0.11        |
| 15000 TO 15999  |    | 0.08 | 0.09 | 0.11 | 0.12  | 0.14 | 0.15   | 0.17  | 0.18 | 0.20 | 0.20   | 0.12        |
| 16000 TO 16999  |    | 0.09 | 0.11 | 0.12 | 0.14  | 0.15 | 0.17   | 0.18  | 0.20 | 0.21 | 0.21   | 0.13        |
| 17000 TO 17999  | 0  | 0.10 | 0.12 | 0.13 | 0.15  | 0.17 | 0.18   | 0.20  | 0.21 | 0.22 | 0.23   | 0.14        |
| 18000 TO 18999  |    | ).12 | 0.13 | 0.15 | 0.16  | 0.18 | 0.19   | 0.21  | 0.22 | 0.24 | 0.24   | 0.15        |
| 19000 TO 19999  | 0  | ).13 | 0.15 | 0.16 | 0.18  | 0.19 | 0.21   | 0.22  | 0.24 | 0.25 | 0.26   | 0.16        |
| 20000 TO 20999  | 0  | ).14 | 0.16 | 0.18 | 0.19  | 0.21 | 0.22   | 0.24  | 0.25 | 0.27 | 0.27   | 0.17        |
| 21000 TO 21999  | 0  | ).16 | 0.17 | 0.19 | 0.21  | 0.22 | 0.24   | 0.25  | 0.27 | 0.28 | 0.28   | 0.18        |
| 22000 TO 22999  | 0  | ).17 | 0.19 | 0.21 | 0.22  | 0.24 | 0.25   | 0.27  | 0.28 | 0.29 | 0.30   | 0.18        |
| 23000 TO 23999  | 0  | 0.20 | 0.20 | 0.22 | 0.23  | 0.25 | 0.26   | 0.28  | 0.29 | 0.31 | 0.31   | 0.19        |
| 24000 TO 24999  | 0  | 0.20 | 0.22 | 0.23 | 0.25  | 0.26 | 0.28   | 0.29  | 0.31 | 0.32 | 0.33   | 0.20        |
| 25000 TO 25999  | 0  | 0.21 | 0.23 | 0.25 | 0.26  | 0.28 | 0.29   | 0.31  | 0.32 | 0.34 | 0.34   | 0.21        |
| 26000 TO 26999  | 0  | ).23 | 0.24 | 0.26 | 0.28  | 0.29 | 0.31   | 0.32  | 0.34 | 0.35 | 0.35   | 0.22        |
| 27000 TO 27999  | 0  | ).24 | 0.26 | 0.28 | 0.29  | 0.31 | 0.32   | 0.34  | 0.35 | 0.36 | 0.36   | 0.23        |
| 28000 TO 28999  | 0  | ).26 | 0.27 | 0.29 | 0.30  | 0.32 | 0.33   | 0.35  | 0.36 | 0.36 | 0.36   | 0.24        |
| 29000 TO 29999  | 0  | ).27 | 0.29 | 0.30 | 0.32  | 0.33 | 0.35   | 0.36  | 0.36 | 0.36 | 0.36   | 0.25        |
| 30000 TO 30999  | 0  | ).28 | 0.30 | 0.32 | 0.33  | 0.35 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.25        |
| 31000 TO 31999  | 0  | ).30 | 0.31 | 0.33 | 0.35  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.26        |
| 32000 TO 32999  | 0  | ).31 | 0.33 | 0.35 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.27        |
| 33000 TO 33999  | 0  | ).33 | 0.34 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.28        |
| 34000 TO 34999  | 0  | ).34 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.29        |
| 35000 TO 35999  | 0  | ).35 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.30        |
| 36000 TO 36869  | 0  | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.31        |
| 36870 TO 38009  | 0  | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.32        |
| 38010 TO 39149  | 0  | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.33        |
| 39150 TO 40299  | 0  | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.34        |
| 40300 TO 41439  | 0  | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.35        |
| 41440 AND ABOVE | 0  | ).36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   | 0.36  | 0.36 | 0.36 | 0.36   | 0.36        |

Bocing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 3, 2015 D6-27370-200A-TBC PI.20.7

#### 737 Flight Crew Operations Manual

#### **Minimum EPR**

| PRESSURE ALTITUDE (1000 FT) |      |      |  |  |  |  |  |  |
|-----------------------------|------|------|--|--|--|--|--|--|
| -1                          | 0    | 1    |  |  |  |  |  |  |
| 1.95                        | 1.95 | 1.95 |  |  |  |  |  |  |

Increase Minimum EPR by 0.03 for bleeds off.

Use actual weight and OAT to determine takeoff speeds. Increase V1 and VR by 1 kt for each 0.09 EPR reduction, except when speeds are found in shaded area of the Takeoff Speeds chart.

If V1 prior to adjustment is found in the shaded area of the Takeoff Speeds chart, find the lightest weight above the shaded area and using the weight as the actual weight recalculate the surplus weight and the Takeoff EPR reduction.

#### Based on engine bleed for packs on or off Above 1000 FT Pressure Altitude Takeoff EPR Reduction

|                 |    |     |      |      |      |          |      |      |      | FIELD LENGTH LIMITED |        |                        |  |  |  |  |  |  |  |  |  |
|-----------------|----|-----|------|------|------|----------|------|------|------|----------------------|--------|------------------------|--|--|--|--|--|--|--|--|--|
|                 |    |     |      |      |      |          |      |      |      |                      |        |                        |  |  |  |  |  |  |  |  |  |
|                 |    | -10 | -5   | 0    | 5    | 0A<br>10 | 15   | 20   | 25   | 30                   |        |                        |  |  |  |  |  |  |  |  |  |
| SURPLUS         | °C | TO  | TO   | TO   | TO   | TO       | TO   | TO   | TO   | TO                   | 34 AND | CLIMB                  |  |  |  |  |  |  |  |  |  |
| WEIGHT          | -  | -6  | -1   | 4    | 9    | 14       | 19   | 24   | 29   | 33                   | ABOVE  | LIMITED<br>(ALL TEMPS) |  |  |  |  |  |  |  |  |  |
| (LB)            |    | 14  | 23   | 32   | 41   | 50       | 59   | 68   | 77   | 86                   | 02.430 | (ALL IEMPS)            |  |  |  |  |  |  |  |  |  |
|                 | °F | TO  | TO   | TO   | TO   | TO       | TO   | TO   | TO   | TO                   | 93 AND |                        |  |  |  |  |  |  |  |  |  |
|                 |    | 22  | 31   | 40   | 49   | 58       | 67   | 76   | 85   | 92                   | ABOVE  |                        |  |  |  |  |  |  |  |  |  |
| 1000 TO 1999    |    |     |      |      |      | 0.01     |      |      | 0.01 | 0.01                 | 0.01   | 0.01                   |  |  |  |  |  |  |  |  |  |
| 2000 TO 2999    |    |     |      |      | 0.02 | 0.01     |      | 0.02 | 0.02 | 0.03                 | 0.02   | 0.02                   |  |  |  |  |  |  |  |  |  |
| 3000 TO 3999    |    |     |      |      | 0.03 | 0.01     | 0.01 | 0.03 | 0.04 | 0.04                 | 0.04   | 0.03                   |  |  |  |  |  |  |  |  |  |
| 4000 TO 4999    |    |     |      |      | 0.03 | 0.02     | 0.03 | 0.05 | 0.05 | 0.05                 | 0.05   | 0.04                   |  |  |  |  |  |  |  |  |  |
| 5000 TO 5999    |    |     |      | 0.02 | 0.03 | 0.03     | 0.04 | 0.06 | 0.07 | 0.07                 | 0.07   | 0.05                   |  |  |  |  |  |  |  |  |  |
| 6000 TO 6999    |    |     |      | 0.03 | 0.05 | 0.05     | 0.06 | 0.08 | 0.08 | 0.08                 | 0.08   | 0.06                   |  |  |  |  |  |  |  |  |  |
| 7000 TO 7999    |    |     | 0.01 | 0.03 | 0.06 | 0.06     | 0.07 | 0.09 | 0.10 | 0.10                 | 0.10   | 0.07                   |  |  |  |  |  |  |  |  |  |
| 8000 TO 8999    |    |     | 0.03 | 0.03 | 0.07 | 0.08     | 0.09 | 0.11 | 0.11 | 0.11                 | 0.11   | 0.08                   |  |  |  |  |  |  |  |  |  |
| 9000 TO 9999    |    |     | 0.03 | 0.05 | 0.09 | 0.09     | 0.10 | 0.12 | 0.13 | 0.13                 | 0.13   | 0.09                   |  |  |  |  |  |  |  |  |  |
| 10000 TO 10999  | 0  | .02 | 0.03 | 0.06 | 0.10 | 0.11     | 0.12 | 0.14 | 0.14 | 0.14                 | 0.14   | 0.10                   |  |  |  |  |  |  |  |  |  |
| 11000 TO 11999  | 0  | .03 | 0.04 | 0.07 | 0.12 | 0.12     | 0.13 | 0.15 | 0.16 | 0.16                 | 0.16   | 0.11                   |  |  |  |  |  |  |  |  |  |
| 12000 TO 12999  | 0  | .03 | 0.05 | 0.09 | 0.13 | 0.14     | 0.15 | 0.17 | 0.17 | 0.17                 | 0.17   | 0.12                   |  |  |  |  |  |  |  |  |  |
| 13000 TO 13999  | 0  | .03 | 0.07 | 0.10 | 0.15 | 0.15     | 0.16 | 0.18 | 0.19 | 0.19                 | 0.18   | 0.13                   |  |  |  |  |  |  |  |  |  |
| 14000 TO 14999  | 0  | .05 | 0.08 | 0.12 | 0.16 | 0.17     | 0.18 | 0.20 | 0.20 | 0.20                 | 0.20   | 0.14                   |  |  |  |  |  |  |  |  |  |
| 15000 TO 15999  | 0  | .06 | 0.10 | 0.13 | 0.18 | 0.18     | 0.19 | 0.21 | 0.22 | 0.22                 | 0.21   | 0.15                   |  |  |  |  |  |  |  |  |  |
| 16000 TO 16999  | 0  | .07 | 0.11 | 0.15 | 0.19 | 0.20     | 0.21 | 0.23 | 0.23 | 0.23                 | 0.23   | 0.16                   |  |  |  |  |  |  |  |  |  |
| 17000 TO 17999  | 0  | .09 | 0.13 | 0.16 | 0.21 | 0.21     | 0.22 | 0.24 | 0.24 | 0.24                 | 0.24   | 0.17                   |  |  |  |  |  |  |  |  |  |
| 18000 TO 18999  | 0  | .10 | 0.14 | 0.18 | 0.22 | 0.23     | 0.24 | 0.25 | 0.26 | 0.26                 | 0.25   | 0.18                   |  |  |  |  |  |  |  |  |  |
| 19000 TO 19999  | 0  | .12 | 0.15 | 0.19 | 0.24 | 0.24     | 0.25 | 0.27 | 0.27 | 0.27                 | 0.27   | 0.19                   |  |  |  |  |  |  |  |  |  |
| 20000 TO 20999  | 0  | .13 | 0.17 | 0.21 | 0.25 | 0.26     | 0.26 | 0.28 | 0.29 | 0.29                 | 0.28   | 0.21                   |  |  |  |  |  |  |  |  |  |
| 21000 TO 21999  | 0  | .15 | 0.18 | 0.22 | 0.27 | 0.27     | 0.28 | 0.30 | 0.30 | 0.30                 | 0.30   | 0.22                   |  |  |  |  |  |  |  |  |  |
| 22000 TO 22999  | 0  | .16 | 0.20 | 0.24 | 0.28 | 0.28     | 0.29 | 0.31 | 0.31 | 0.31                 | 0.31   | 0.23                   |  |  |  |  |  |  |  |  |  |
| 23000 TO 23999  | 0  | .18 | 0.21 | 0.25 | 0.29 | 0.30     | 0.31 | 0.32 | 0.33 | 0.33                 | 0.32   | 0.24                   |  |  |  |  |  |  |  |  |  |
| 24000 TO 24999  | 0  | .19 | 0.23 | 0.27 | 0.31 | 0.31     | 0.32 | 0.34 | 0.34 | 0.34                 | 0.34   | 0.25                   |  |  |  |  |  |  |  |  |  |
| 25000 TO 25999  | 0  | .21 | 0.25 | 0.28 | 0.32 | 0.33     | 0.33 | 0.35 | 0.36 | 0.36                 | 0.35   | 0.26                   |  |  |  |  |  |  |  |  |  |
| 26000 TO 26999  | 0  | .22 | 0.26 | 0.29 | 0.34 | 0.34     | 0.35 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.27                   |  |  |  |  |  |  |  |  |  |
| 27000 TO 27999  | 0  | .24 | 0.27 | 0.31 | 0.35 | 0.35     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.28                   |  |  |  |  |  |  |  |  |  |
| 28000 TO 28999  | 0  | .25 | 0.29 | 0.32 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.29                   |  |  |  |  |  |  |  |  |  |
| 29000 TO 29999  | 0  | .27 | 0.30 | 0.34 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.30                   |  |  |  |  |  |  |  |  |  |
| 30000 TO 30999  | 0  | .28 | 0.32 | 0.35 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.31                   |  |  |  |  |  |  |  |  |  |
| 31000 TO 31999  | 0  | .29 | 0.33 | 0.36 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.32                   |  |  |  |  |  |  |  |  |  |
| 32000 TO 32999  | 0  | .31 | 0.34 | 0.36 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.33                   |  |  |  |  |  |  |  |  |  |
| 33000 TO 33999  |    | .32 | 0.36 | 0.36 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.35                   |  |  |  |  |  |  |  |  |  |
| 34000 TO 34999  |    | .34 | 0.36 | 0.36 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.36                   |  |  |  |  |  |  |  |  |  |
| 35000 TO 35999  |    | .35 | 0.36 | 0.36 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.36                   |  |  |  |  |  |  |  |  |  |
| 36000 AND ABOVE | 0  | .36 | 0.36 | 0.36 | 0.36 | 0.36     | 0.36 | 0.36 | 0.36 | 0.36                 | 0.36   | 0.36                   |  |  |  |  |  |  |  |  |  |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

#### 737-200ADV/JT8D-17A FAA

# **DO NOT USE FOR FLIGHT**

#### 737 Flight Crew Operations Manual

#### **Minimum EPR**

|      | PRESSURE ALTITUDE (1000 FT)                                           |  |  |  |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 1    | 1 2 3 4 5 6 7 8 9 10 11 12 13 13.5                                    |  |  |  |  |  |  |  |  |  |  |
| 1.95 | 1.95 1.95 1.96 1.98 2.00 2.02 2.04 2.06 2.12 2.15 2.16 2.17 2.18 2.18 |  |  |  |  |  |  |  |  |  |  |

Increase Minimum EPR by 0.03 for bleeds off.

Use actual weight and OAT to determine takeoff speeds. Increase V1 and VR by 1 kt for each 0.09 EPR reduction, except when speeds are found in shaded area of the Takeoff Speeds chart.

If V1 prior to adjustment is found in the shaded area of the Takeoff Speeds chart, find the lightest weight above the shaded area and using the weight as the actual weight recalculate the surplus weight and the Takeoff EPR reduction.

#### 737 Flight Crew Operations Manual

#### Max Climb EPR

#### Based on engine bleed for packs on and anti-ice off

| TAT  |      |      | -    | F    | RESSUR | RE ALTIT | UDE (FT | `)    |       |       |       |
|------|------|------|------|------|--------|----------|---------|-------|-------|-------|-------|
| (°C) | 0    | 1000 | 2000 | 3000 | 5000   | 10000    | 15000   | 20000 | 25000 | 30000 | 37000 |
| 50   | 1.72 | 1.72 | 1.72 | 1.72 |        |          |         |       |       |       |       |
| 45   | 1.77 | 1.77 | 1.77 | 1.77 | 1.77   |          |         |       |       |       |       |
| 40   | 1.82 | 1.82 | 1.82 | 1.82 | 1.82   |          |         |       |       |       |       |
| 35   | 1.87 | 1.87 | 1.87 | 1.87 | 1.87   | 1.86     |         |       |       |       |       |
| 30   | 1.89 | 1.91 | 1.92 | 1.92 | 1.92   | 1.91     | 1.91    |       |       |       |       |
| 25   | 1.89 | 1.91 | 1.92 | 1.94 | 1.97   | 1.97     | 1.96    | 1.96  |       |       |       |
| 20   | 1.92 | 1.92 | 1.92 | 1.94 | 1.98   | 2.02     | 2.02    | 2.01  | 2.01  |       |       |
| 15   | 1.97 | 1.97 | 1.97 | 1.97 | 1.98   | 2.06     | 2.07    | 2.07  | 2.06  | 2.06  |       |
| 10   | 2.03 | 2.03 | 2.03 | 2.03 | 2.03   | 2.06     | 2.09    | 2.12  | 2.12  | 2.12  | 2.11  |
| 5    | 2.08 | 2.08 | 2.08 | 2.08 | 2.08   | 2.08     | 2.09    | 2.13  | 2.16  | 2.16  | 2.15  |
| 0    | 2.13 | 2.13 | 2.13 | 2.13 | 2.13   | 2.12     | 2.12    | 2.13  | 2.21  | 2.21  | 2.20  |
| -5   | 2.13 | 2.18 | 2.18 | 2.18 | 2.18   | 2.17     | 2.17    | 2.17  | 2.21  | 2.24  | 2.24  |
| -10  | 2.13 | 2.18 | 2.22 | 2.22 | 2.22   | 2.22     | 2.21    | 2.21  | 2.21  | 2.27  | 2.27  |
| -15  | 2.13 | 2.18 | 2.23 | 2.26 | 2.26   | 2.26     | 2.25    | 2.25  | 2.25  | 2.28  | 2.29  |
| -20  | 2.13 | 2.18 | 2.23 | 2.29 | 2.29   | 2.29     | 2.28    | 2.28  | 2.28  | 2.28  | 2.30  |
| -25  | 2.13 | 2.18 | 2.23 | 2.29 | 2.30   | 2.31     | 2.30    | 2.30  | 2.30  | 2.30  | 2.32  |
| -30  | 2.13 | 2.18 | 2.23 | 2.29 | 2.30   | 2.32     | 2.32    | 2.32  | 2.31  | 2.31  | 2.32  |
| -35  | 2.13 | 2.18 | 2.23 | 2.29 | 2.30   | 2.33     | 2.33    | 2.33  | 2.32  | 2.32  | 2.32  |
| -60  | 2.13 | 2.18 | 2.23 | 2.29 | 2.30   | 2.33     | 2.33    | 2.33  | 2.32  | 2.32  | 2.32  |

#### **EPR Adjustments for Engine Bleeds**

| BLEED                         | PRESSURE ALTITUDE (FT) |       |  |  |  |  |
|-------------------------------|------------------------|-------|--|--|--|--|
| CONFIGURATION                 | 0                      | 37000 |  |  |  |  |
| PACKS OFF                     | 0.03                   | 0.03  |  |  |  |  |
| ENGINE ANTI-ICE ON            | -0.08                  | -0.08 |  |  |  |  |
| ENGINE AND WING ANTI-ICE ON*  | -0.12                  | -0.12 |  |  |  |  |
| ENGINE AND WING ANTI-ICE ON** | -0.15                  | -0.15 |  |  |  |  |

\*Dual Bleed Source

\*\*Single Bleed Source

With Gravel Protect switch in "Anti-Ice/Test" position and up to 15000 ft, decrease EPR by 0.01. With Gravel Protect switch in "Anti-Ice/Test" position and above 15000 ft, decrease EPR by 0.02.

737 Flight Crew Operations Manual

#### Go-around EPR Based on engine bleed for packs on, wing anti-ice off

|            |            |            | P     | ming and |           |            |      |                  |
|------------|------------|------------|-------|----------|-----------|------------|------|------------------|
| REPORT     | TED OAT    | TAT        |       | P        | RESSURE A | LTITUDE (F | Γ)   |                  |
| °F         | °C         | (°C)       | -1000 | 0        | 1000      | 2000       | 3000 | 12000 &<br>ABOVE |
| 137        | 58         | 60         | 1.83  | 1.83     | 1.83      | 1.83       | 1.83 | 1.82             |
| 128        | 53         | 55         | 1.89  | 1.89     | 1.89      | 1.89       | 1.89 | 1.88             |
| 119        | 48         | 50         | 1.95  | 1.95     | 1.95      | 1.95       | 1.95 | 1.94             |
| 110        | 43         | 45         | 2.00  | 2.00     | 2.00      | 2.00       | 2.00 | 1.99             |
| 100        | 38         | 40         | 2.05  | 2.05     | 2.05      | 2.05       | 2.05 | 2.04             |
| 91         | 33         | 35         | 2.08  | 2.10     | 2.10      | 2.10       | 2.10 | 2.09             |
| 83         | 28         | 30         | 2.08  | 2.13     | 2.13      | 2.13       | 2.13 | 2.12             |
| 73         | 23         | 25         | 2.08  | 2.13     | 2.14      | 2.16       | 2.16 | 2.15             |
| 64         | 18         | 20         | 2.08  | 2.13     | 2.14      | 2.17       | 2.17 | 2.16             |
| 55         | 13         | 15         | 2.08  | 2.13     | 2.14      | 2.17       | 2.17 | 2.16             |
| 47         | 8          | 10         | 2.08  | 2.13     | 2.18      | 2.18       | 2.18 | 2.17             |
| 38         | 3          | 5          | 2.08  | 2.13     | 2.18      | 2.22       | 2.22 | 2.21             |
| 27         | -3         | 0          | 2.08  | 2.13     | 2.18      | 2.23       | 2.26 | 2.25             |
| 18         | -8         | -5         | 2.08  | 2.13     | 2.18      | 2.23       | 2.29 | 2.28             |
| 10         | -13        | -10        | 2.08  | 2.13     | 2.18      | 2.23       | 2.29 | 2.31             |
| 0          | -18        | -15        | 2.08  | 2.13     | 2.18      | 2.23       | 2.29 | 2.33             |
| -10 TO -61 | -23 TO -52 | -20 TO -50 | 2.08  | 2.13     | 2.18      | 2.23       | 2.29 | 2.33             |

When operating in shaded area with engine anti-ice on, decrease EPR limit by 0.03.

#### **EPR Adjustments for Engine Bleeds**

| BLEED                         | AIRPORT PRESSU | RE ALTITUDE (FT) |
|-------------------------------|----------------|------------------|
| CONFIGURATION                 | -1000          | 12000 & ABOVE    |
| PACKS OFF                     | 0.03           | 0.03             |
| ENGINE AND WING ANTI-ICE ON*  | -0.04          | -0.04            |
| ENGINE AND WING ANTI-ICE ON** | -0.07          | -0.07            |

\*Dual bleed source

\*\*Single bleed source

With Gravel Protect switch in "ON" position, decrease limit EPR by 0.01.

#### 737 Flight Crew Operations Manual

### Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Climb (280/.70)

#### Flaps Up, Set Max Climb Thrust

| PRES      | SURE         |      | WEIGHT | (1000 LB) |      |
|-----------|--------------|------|--------|-----------|------|
| ALTITU    | JDE (FT)     | 80   | 100    | 120       | 130  |
| 37000     | PITCH ATT    | 6.0  | 6.0    |           |      |
| 37000     | V/S (FT/MIN) | 1200 | 400    |           |      |
| 35000     | PITCH ATT    | 6.0  | 6.0    | 6.0       |      |
| 33000     | V/S (FT/MIN) | 1600 | 800    | 100       |      |
| 30000     | PITCH ATT    | 6.0  | 6.0    | 6.0       | 6.0  |
| 30000     | V/S (FT/MIN) | 2400 | 1600   | 900       | 600  |
| 27000     | PITCH ATT    | 6.0  | 5.0    | 5.0       | 5.0  |
| 27000     | V/S (FT/MIN) | 2700 | 1900   | 1300      | 1000 |
| 25000     | PITCH ATT    | 5.0  | 5.0    | 5.0       | 5.0  |
| 23000     | V/S (FT/MIN) | 2300 | 1700   | 1200      | 900  |
| 20000     | PITCH ATT    | 6.0  | 6.0    | 6.0       | 6.0  |
| 20000     | V/S (FT/MIN) | 2900 | 2100   | 1600      | 1300 |
| 15000     | PITCH ATT    | 8.0  | 7.0    | 7.0       | 7.0  |
| 15000     | V/S (FT/MIN) | 3400 | 2500   | 1900      | 1700 |
| 5000      | PITCH ATT    | 9.0  | 8.0    | 8.0       | 8.0  |
| 5000      | V/S (FT/MIN) | 4300 | 3300   | 2600      | 2300 |
| SEA LEVEL | PITCH ATT    | 12.0 | 10.0   | 9.0       | 9.0  |
| SEA LEVEL | V/S (FT/MIN) | 4700 | 3600   | 2900      | 2600 |

#### Cruise (.70/280) Flaps Up, EPR for Level Flight

| PRES          | SURE      | WEIGHT (1000 LB) |      |      |      |      |      |  |  |
|---------------|-----------|------------------|------|------|------|------|------|--|--|
| ALTITUDE (FT) |           | 80               | 90   | 100  | 110  | 120  | 130  |  |  |
| 37000         | PITCH ATT | 3.8              | 4.5  | 5.2  |      |      |      |  |  |
| 57000         | EPR       | 1.83             | 1.95 | 2.09 |      |      |      |  |  |
| 30000         | PITCH ATT | 2.5              | 2.9  | 3.3  | 3.8  | 4.3  | 5.2  |  |  |
| 50000         | EPR       | 1.68             | 1.72 | 1.78 | 1.84 | 1.91 | 2.00 |  |  |
| 10000         | PITCH ATT | 2.0              | 2.3  | 2.7  | 3.1  | 3.5  | 3.7  |  |  |
| 10000         | EPR       | 1.31             | 1.33 | 1.34 | 1.36 | 1.39 | 1.42 |  |  |

#### Descent (.70/280) Flaps Up, Set Idle Thrust

| PRES          | SURE         |       | WEIGHT | (1000 LB) |       |
|---------------|--------------|-------|--------|-----------|-------|
| ALTITUDE (FT) |              | 80    | 90     | 100       | 110   |
| 37000         | PITCH ATT    | 0.8   | 1.5    | 2.1       | 2.4   |
| 37000         | V/S (FT/MIN) | -2100 | -2100  | -2200     | -2400 |
| 30000         | PITCH ATT    | -1.5  | -0.9   | -0.3      | 0.2   |
| 30000         | V/S (FT/MIN) | -2900 | -2700  | -2700     | -2600 |
| 10000         | PITCH ATT    | -1.5  | -0.9   | -0.3      | 0.2   |
| 10000         | V/S (FT/MIN) | -2000 | -1800  | -1700     | -1700 |

#### Holding Flaps Up, EPR for Level Flight

| PRES   | PRESSURE  |      | WEIGHT (1000 LB) |      |      |      |  |  |  |
|--------|-----------|------|------------------|------|------|------|--|--|--|
| ALTITU | DE (FT)   | 80   | 90               | 100  | 110  | 120  |  |  |  |
|        | PITCH ATT | 5.8  | 5.9              | 6.4  | 6.3  | 6.4  |  |  |  |
| 10000  | EPR       | 1.24 | 1.26             | 1.30 | 1.33 | 1.36 |  |  |  |
|        | KIAS      | 210  | 210              | 210  | 220  | 230  |  |  |  |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. PI.20.12 D6-27370-200A-TBC April 3, 2015

## 737 Flight Crew Operations Manual

#### Terminal Area (0 to 10000 FT) EPR for Level Flight

| FLAP POSITIO         | N         | WEIGHT (1000 LB) |      |      |      |      |  |  |
|----------------------|-----------|------------------|------|------|------|------|--|--|
| (SPEED)              |           | 70               | 80   | 90   | 100  | 110  |  |  |
| FLAPS UP (GEAR UP)   | PITCH ATT | 4.0              | 4.8  | 5.5  | 6.3  | 7.1  |  |  |
| (210 KIAS)           | EPR       | 1.21             | 1.23 | 1.26 | 1.30 | 1.33 |  |  |
| FLAPS 1 (GEAR UP)    | PITCH ATT | 4.1              | 4.8  | 5.6  | 6.4  | 7.2  |  |  |
| (190 KIAS)           | EPR       | 1.27             | 1.30 | 1.33 | 1.36 | 1.40 |  |  |
| FLAPS 5 (GEAR UP)    | PITCH ATT | 4.2              | 5.1  | 6.1  | 7.0  | 7.9  |  |  |
| (170 KIAS)           | EPR       | 1.28             | 1.31 | 1.35 | 1.40 | 1.44 |  |  |
| FLAPS 15 (GEAR DOWN) | PITCH ATT | 3.8              | 4.9  | 6.1  | 7.2  | 8.4  |  |  |
| (150 KIAS)           | EPR       | 1.43             | 1.48 | 1.52 | 1.58 | 1.64 |  |  |
| FLAPS 25 (GEAR DOWN) | PITCH ATT | 3.3              | 4.7  | 6.0  | 7.3  | 8.6  |  |  |
| (140 KIAS)           | EPR       | 1.45             | 1.50 | 1.56 | 1.63 | 1.70 |  |  |

#### Final Approach (0 to 10000 FT) Gear Down, EPR for 3° Glideslope

|          | OSITION   |      | W    | EIGHT (1000 L | .B)  |      |
|----------|-----------|------|------|---------------|------|------|
| TLAF FO  | JSITION   | 70   | 80   | 90            | 100  | 110  |
|          | PITCH ATT | 0.0  | 0.0  | 0.0           | 0.0  | 0.0  |
| FLAPS 40 | EPR       | 1.25 | 1.29 | 1.33          | 1.38 | 1.41 |
|          | KIAS      | 115  | 123  | 130           | 137  | 145  |
|          | PITCH ATT | 2.6  | 2.6  | 2.6           | 2.6  | 2.6  |
| FLAPS 30 | EPR       | 1.17 | 1.20 | 1.23          | 1.26 | 1.28 |
|          | KIAS      | 118  | 125  | 133           | 141  | 149  |
|          | PITCH ATT | 4.5  | 4.5  | 4.5           | 4.5  | 4.5  |
| FLAPS 15 | EPR       | 1.13 | 1.15 | 1.17          | 1.18 | 1.20 |
|          | KIAS      | 125  | 133  | 140           | 148  | 156  |



Intentionally Blank

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. PI.20.14 D6-27370-200A-TBC April 3, 2015

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Performance Inflight All Engines

Chapter PI Section 21

## Long Range Cruise Maximum Operating Altitude

#### Max Cruise Thrust ISA + 10°C and Below

| WEIGHT    | OPTIMUM  | TAT  | MAR        | GIN TO INIT | AL BUFFET ' | G' (BANK AN | GLE)       |
|-----------|----------|------|------------|-------------|-------------|-------------|------------|
| (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)  | 1.30 (39°)  | 1.40 (44°)  | 1.50 (48°) |
| 130       | 28700    | -6   | 32500*     | 32500       | 31600       | 30000       | 28500      |
| 120       | 30400    | -10  | 34300*     | 34200       | 33300       | 31800       | 30300      |
| 110       | 32300    | -14  | 36100*     | 36000       | 35200       | 33600       | 32100      |
| 100       | 34400    | -19  | 37000      | 37000       | 37000       | 35600       | 34200      |
| 90        | 36600    | -22  | 37000      | 37000       | 37000       | 37000       | 36400      |
| 80        | 37000    | -22  | 37000      | 37000       | 37000       | 37000       | 37000      |
| 70        | 37000    | -22  | 37000      | 37000       | 37000       | 37000       | 37000      |
| 60        | 37000    | -19  | 37000      | 37000       | 37000       | 37000       | 37000      |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

#### ISA+15°C

| WEIGHT    | OPTIMUM  | TAT  | MAR        | RGIN TO INIT | IAL BUFFET ' | G' (BANK AN | GLE)       |
|-----------|----------|------|------------|--------------|--------------|-------------|------------|
| (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)   | 1.30 (39°)   | 1.40 (44°)  | 1.50 (48°) |
| 130       | 28700    | -1   | 32100*     | 32100*       | 31600        | 30000       | 28500      |
| 120       | 30400    | -5   | 34000*     | 34000*       | 33300        | 31800       | 30300      |
| 110       | 32300    | -9   | 35900*     | 35900*       | 35200        | 33600       | 32100      |
| 100       | 34400    | -13  | 37000      | 37000        | 37000        | 35600       | 34200      |
| 90        | 36600    | -17  | 37000      | 37000        | 37000        | 37000       | 36400      |
| 80        | 37000    | -17  | 37000      | 37000        | 37000        | 37000       | 37000      |
| 70        | 37000    | -17  | 37000      | 37000        | 37000        | 37000       | 37000      |
| 60        | 37000    | -13  | 37000      | 37000        | 37000        | 37000       | 37000      |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

#### ISA + 20°C

| WEIGHT    | OPTIMUM  | TAT  | MAF        | RGIN TO INIT | IAL BUFFET ' | G' (BANK AN | GLE)       |
|-----------|----------|------|------------|--------------|--------------|-------------|------------|
| (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)   | 1.30 (39°)   | 1.40 (44°)  | 1.50 (48°) |
| 130       | 28700    | 5    | 31600*     | 31600*       | 31600        | 30000       | 28500      |
| 120       | 30400    | 1    | 33700*     | 33700*       | 33300        | 31800       | 30300      |
| 110       | 32300    | -3   | 35700*     | 35700*       | 35200        | 33600       | 32100      |
| 100       | 34400    | -8   | 37000      | 37000        | 37000        | 35600       | 34200      |
| 90        | 36600    | -11  | 37000      | 37000        | 37000        | 37000       | 36400      |
| 80        | 37000    | -11  | 37000      | 37000        | 37000        | 37000       | 37000      |
| 70        | 37000    | -11  | 37000      | 37000        | 37000        | 37000       | 37000      |
| 60        | 37000    | -8   | 37000      | 37000        | 37000        | 37000       | 37000      |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

## 737 Flight Crew Operations Manual

#### Long Range Cruise Control

| WE       | EIGHT  |      |      | PI   | RESSURE | ALTITUD | E (1000 F | T)   |      |      |
|----------|--------|------|------|------|---------|---------|-----------|------|------|------|
| (100     | 00 LB) | 21   | 23   | 25   | 27      | 29      | 31        | 33   | 35   | 37   |
| 1        | EPR    | 1.68 | 1.74 | 1.80 | 1.87    | 1.95    | 2.06      | 2.23 |      |      |
| 120      | MACH   | .692 | .713 | .724 | .729    | .728    | .728      | .728 |      |      |
| 130      | KIAS   | 313  | 311  | 303  | 293     | 280     | 268       | 257  |      |      |
|          | FF/ENG | 3430 | 3395 | 3318 | 3241    | 3177    | 3219      | 3451 |      |      |
|          | EPR    | 1.64 | 1.69 | 1.75 | 1.81    | 1.88    | 1.96      | 2.08 |      |      |
| 120      | MACH   | .674 | .693 | .714 | .725    | .729    | .728      | .728 |      |      |
| 120      | KIAS   | 305  | 302  | 299  | 291     | 281     | 268       | 257  |      |      |
|          | FF/ENG | 3186 | 3149 | 3113 | 3044    | 2971    | 2918      | 2974 |      |      |
|          | EPR    | 1.59 | 1.63 | 1.69 | 1.75    | 1.81    | 1.88      | 1.97 | 2.09 |      |
| 110      | MACH   | .658 | .673 | .693 | .715    | .725    | .729      | .728 | .728 |      |
| 110      | KIAS   | 297  | 292  | 289  | 287     | 279     | 269       | 257  | 245  |      |
|          | FF/ENG | 2973 | 2906 | 2872 | 2843    | 2776    | 2708      | 2662 | 2725 |      |
|          | EPR    | 1.54 | 1.58 | 1.63 | 1.68    | 1.75    | 1.81      | 1.88 | 1.97 | 2.09 |
| 100      | MACH   | .639 | .656 | .672 | .691    | .714    | .724      | .729 | .728 | .728 |
| 100      | KIAS   | 288  | 284  | 280  | 277     | 274     | 267       | 257  | 245  | 234  |
|          | FF/ENG | 2761 | 2694 | 2631 | 2600    | 2576    | 2516      | 2452 | 2411 | 2473 |
|          | EPR    | 1.50 | 1.53 | 1.58 | 1.62    | 1.67    | 1.74      | 1.80 | 1.87 | 1.96 |
| 90       | MACH   | .613 | .635 | .652 | .668    | .687    | .711      | .724 | .729 | .728 |
| 90       | KIAS   | 276  | 275  | 271  | 267     | 263     | 261       | 255  | 245  | 234  |
|          | FF/ENG | 2527 | 2481 | 2422 | 2366    | 2328    | 2312      | 2262 | 2205 | 2168 |
|          | EPR    | 1.43 | 1.48 | 1.52 | 1.56    | 1.61    | 1.66      | 1.72 | 1.78 | 1.85 |
| 80       | MACH   | .579 | .604 | .627 | .647    | .663    | .681      | .705 | .721 | .728 |
| 00       | KIAS   | 260  | 261  | 260  | 258     | 253     | 249       | 248  | 243  | 234  |
|          | FF/ENG | 2261 | 2238 | 2208 | 2157    | 2106    | 2064      | 2049 | 2016 | 1969 |
|          | EPR    | 1.38 | 1.41 | 1.45 | 1.50    | 1.54    | 1.58      | 1.63 | 1.69 | 1.76 |
| 70       | MACH   | .546 | .566 | .589 | .616    | .637    | .656      | .672 | .694 | .717 |
| /0       | KIAS   | 245  | 244  | 244  | 245     | 243     | 240       | 235  | 233  | 230  |
|          | FF/ENG | 2024 | 1986 | 1954 | 1940    | 1899    | 1854      | 1811 | 1791 | 1777 |
|          | EPR    | 1.32 | 1.35 | 1.39 | 1.42    | 1.47    | 1.51      | 1.55 | 1.60 | 1.65 |
| 60       | MACH   | .511 | .530 | .550 | .571    | .596    | .623      | .644 | .661 | .680 |
| 50       | KIAS   | 228  | 228  | 227  | 226     | 226     | 227       | 225  | 221  | 217  |
| <u> </u> | FF/ENG | 1792 | 1765 | 1728 | 1700    | 1679    | 1656      | 1619 | 1581 | 1558 |

Shaded area approximates optimum altitude.

#### Long Range Cruise Enroute Fuel and Time - Low Altitudes Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | (NM)    |      | GROUND   |      | AIR D  | ISTANCE | (NM)    |      |
|------|--------|---------|---------|------|----------|------|--------|---------|---------|------|
| HE   | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | IENT (K | ΓS)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80      | 100  |
| 290  | 266    | 245     | 228     | 213  | 200      | 190  | 181    | 173     | 166     | 159  |
| 584  | 536    | 493     | 458     | 427  | 400      | 381  | 363    | 347     | 332     | 319  |
| 880  | 807    | 742     | 688     | 641  | 600      | 572  | 545    | 521     | 499     | 479  |
| 1179 | 1080   | 992     | 919     | 856  | 800      | 762  | 727    | 694     | 665     | 638  |
| 1480 | 1354   | 1243    | 1150    | 1071 | 1000     | 952  | 908    | 867     | 831     | 798  |
| 1786 | 1632   | 1496    | 1383    | 1286 | 1200     | 1142 | 1089   | 1040    | 996     | 957  |
| 2094 | 1911   | 1750    | 1616    | 1502 | 1400     | 1332 | 1270   | 1213    | 1161    | 1115 |
| 2407 | 2193   | 2006    | 1850    | 1718 | 1600     | 1523 | 1451   | 1386    | 1327    | 1274 |
| 2725 | 2479   | 2263    | 2085    | 1934 | 1800     | 1713 | 1633   | 1559    | 1492    | 1432 |

#### 737-200ADV/JT8D-17A FAA

# **DO NOT USE FOR FLIGHT**

### 737 Flight Crew Operations Manual

#### **Reference Fuel and Time Required at Check Point**

| ATD         |           |                                                                                                                                        |           | PRESS    | URE ALTI  | TUDE (10 | 000 FT)   |          |           |          |
|-------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|
| AIR<br>DIST | 1         | 0                                                                                                                                      | 1         | 4        | 2         | .0       | 2         | 4        | 2         | .8       |
| (NM)        | FUEL      | FUEL         TIME           1000 LB)         (HR:MIN           3.4         0:41           6.8         1:20           10.1         1:59 | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME     |
| (1111)      | (1000 LB) | (HR:MIN)                                                                                                                               | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |
| 200         | 3.4       | 0:41                                                                                                                                   | 3.0       | 0:40     | 2.6       | 0:38     | 2.3       | 0:37     | 2.1       | 0:36     |
| 400         | 6.8       | 1:20                                                                                                                                   | 6.1       | 1:16     | 5.3       | 1:11     | 4.8       | 1:08     | 4.4       | 1:06     |
| 600         | 10.1      | 1:59                                                                                                                                   | 9.2       | 1:53     | 8.0       | 1:45     | 7.3       | 1:39     | 6.7       | 1:37     |
| 800         | 13.4      | 2:38                                                                                                                                   | 12.2      | 2:30     | 10.6      | 2:19     | 9.7       | 2:11     | 8.9       | 2:07     |
| 1000        | 16.7      | 3:19                                                                                                                                   | 15.2      | 3:08     | 13.2      | 2:53     | 12.1      | 2:43     | 11.1      | 2:38     |
| 1200        | 19.9      | 4:00                                                                                                                                   | 18.1      | 3:47     | 15.8      | 3:28     | 14.5      | 3:16     | 13.3      | 3:09     |
| 1400        | 23.0      | 4:43                                                                                                                                   | 21.0      | 4:26     | 18.3      | 4:04     | 16.8      | 3:49     | 15.5      | 3:40     |
| 1600        | 26.1      | 5:26                                                                                                                                   | 23.8      | 5:06     | 20.8      | 4:40     | 19.1      | 4:23     | 17.6      | 4:11     |
| 1800        | 29.2      | 6:11                                                                                                                                   | 26.6      | 5:47     | 23.3      | 5:17     | 21.4      | 4:57     | 19.7      | 4:43     |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED |      | WEIGH | T AT CHEC | K POINT (1 | 000 LB) |     |
|-------------------------|------|-------|-----------|------------|---------|-----|
| (1000 LB)               | 70   | 80    | 90        | 100        | 110     | 120 |
| 5                       | -0.4 | -0.2  | 0.0       | 0.2        | 0.5     | 0.7 |
| 10                      | -0.8 | -0.4  | 0.0       | 0.5        | 1.1     | 1.6 |
| 15                      | -1.2 | -0.6  | 0.0       | 0.8        | 1.7     | 2.6 |
| 20                      | -1.6 | -0.8  | 0.0       | 1.1        | 2.3     | 3.5 |
| 25                      | -2.0 | -1.0  | 0.0       | 1.4        | 2.9     | 4.4 |
| 30                      | -2.3 | -1.2  | 0.0       | 1.7        | 3.4     | 5.2 |

#### Long Range Cruise Enroute Fuel and Time - High Altitudes Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | (NM)    |      | GROUND   |      | AIR D  | ISTANCE | (NM)    |      |
|------|--------|---------|---------|------|----------|------|--------|---------|---------|------|
| HE   | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | NENT (K | ΓS)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80      | 100  |
| 272  | 254    | 237     | 223     | 211  | 200      | 190  | 181    | 173     | 166     | 160  |
| 538  | 504    | 473     | 446     | 422  | 400      | 381  | 364    | 348     | 334     | 322  |
| 805  | 754    | 708     | 668     | 632  | 600      | 572  | 547    | 524     | 502     | 483  |
| 1072 | 1005   | 944     | 891     | 843  | 800      | 763  | 729    | 698     | 670     | 644  |
| 1340 | 1256   | 1180    | 1113    | 1054 | 1000     | 954  | 912    | 873     | 837     | 805  |
| 1609 | 1508   | 1416    | 1336    | 1265 | 1200     | 1145 | 1094   | 1048    | 1005    | 967  |
| 1878 | 1760   | 1653    | 1559    | 1476 | 1400     | 1336 | 1277   | 1222    | 1173    | 1128 |
| 2148 | 2013   | 1890    | 1783    | 1687 | 1600     | 1527 | 1459   | 1397    | 1341    | 1290 |
| 2419 | 2266   | 2128    | 2006    | 1898 | 1800     | 1718 | 1642   | 1572    | 1508    | 1451 |
| 2690 | 2520   | 2365    | 2230    | 2110 | 2000     | 1909 | 1824   | 1747    | 1676    | 1612 |
| 2963 | 2774   | 2604    | 2454    | 2321 | 2200     | 2100 | 2007   | 1921    | 1843    | 1773 |
| 3237 | 3029   | 2842    | 2678    | 2532 | 2400     | 2291 | 2189   | 2096    | 2011    | 1934 |
| 3512 | 3285   | 3081    | 2902    | 2744 | 2600     | 2482 | 2372   | 2270    | 2178    | 2094 |
| 3788 | 3542   | 3321    | 3128    | 2956 | 2800     | 2672 | 2553   | 2444    | 2345    | 2255 |
| 4066 | 3801   | 3562    | 3353    | 3168 | 3000     | 2862 | 2735   | 2618    | 2511    | 2415 |
| 4346 | 4061   | 3804    | 3580    | 3381 | 3200     | 3053 | 2916   | 2791    | 2677    | 2575 |
| 4628 | 4322   | 4047    | 3806    | 3593 | 3400     | 3243 | 3098   | 2965    | 2844    | 2734 |
| 4911 | 4584   | 4290    | 4033    | 3806 | 3600     | 3434 | 3280   | 3139    | 3010    | 2893 |
| 5196 | 4848   | 4534    | 4261    | 4019 | 3800     | 3624 | 3461   | 3312    | 3175    | 3052 |
| 5483 | 5112   | 4779    | 4489    | 4232 | 4000     | 3814 | 3642   | 3484    | 3340    | 3210 |

#### 737 Flight Crew Operations Manual

#### **Reference Fuel and Time Required at Check Point**

| AIR    |           |          |           | PRESS    | URE ALTI  | TUDE (10 | 000 FT)   |          |           |          |
|--------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|
| DIST   | 2         | 9        | 3         | 1        | 3         | 3        | 3         | 5        | 3         | 7        |
| NM     | FUEL      | TIME     |
| (1111) | (1000 LB) | (HR:MIN) |
| 200    | 2.1       | 0:36     | 2.0       | 0:36     | 1.9       | 0:36     | 1.9       | 0:36     | 1.8       | 0:36     |
| 400    | 4.3       | 1:06     | 4.2       | 1:05     | 4.0       | 1:04     | 3.9       | 1:04     | 3.8       | 1:05     |
| 600    | 6.6       | 1:36     | 6.4       | 1:34     | 6.1       | 1:33     | 6.0       | 1:33     | 5.9       | 1:33     |
| 800    | 8.8       | 2:06     | 8.5       | 2:04     | 8.2       | 2:02     | 8.0       | 2:02     | 7.8       | 2:02     |
| 1000   | 10.9      | 2:36     | 10.6      | 2:33     | 10.2      | 2:31     | 10.0      | 2:30     | 9.7       | 2:31     |
| 1200   | 13.1      | 3:07     | 12.6      | 3:04     | 12.2      | 3:00     | 11.9      | 2:59     | 11.6      | 2:59     |
| 1400   | 15.2      | 3:38     | 14.7      | 3:34     | 14.2      | 3:30     | 13.8      | 3:28     | 13.5      | 3:28     |
| 1600   | 17.3      | 4:09     | 16.7      | 4:04     | 16.1      | 4:00     | 15.7      | 3:57     | 15.3      | 3:57     |
| 1800   | 19.3      | 4:41     | 18.7      | 4:35     | 18.1      | 4:30     | 17.6      | 4:26     | 17.2      | 4:26     |
| 2000   | 21.3      | 5:12     | 20.6      | 5:06     | 19.9      | 5:00     | 19.4      | 4:56     | 18.9      | 4:55     |
| 2200   | 23.3      | 5:44     | 22.5      | 5:37     | 21.8      | 5:31     | 21.2      | 5:26     | 20.7      | 5:24     |
| 2400   | 25.3      | 6:17     | 24.4      | 6:09     | 23.6      | 6:02     | 23.0      | 5:56     | 22.4      | 5:53     |
| 2600   | 27.3      | 6:49     | 26.3      | 6:41     | 25.5      | 6:33     | 24.7      | 6:26     | 24.1      | 6:22     |
| 2800   | 29.2      | 7:23     | 28.2      | 7:13     | 27.2      | 7:04     | 26.4      | 6:57     | 25.8      | 6:52     |
| 3000   | 31.1      | 7:56     | 30.0      | 7:45     | 29.0      | 7:36     | 28.2      | 7:28     | 27.4      | 7:22     |
| 3200   | 33.0      | 8:31     | 31.8      | 8:18     | 30.7      | 8:08     | 29.8      | 7:59     | 29.1      | 7:52     |
| 3400   | 34.9      | 9:06     | 33.6      | 8:51     | 32.5      | 8:40     | 31.5      | 8:31     | 30.7      | 8:23     |
| 3600   | 36.7      | 9:41     | 35.4      | 9:25     | 34.2      | 9:12     | 33.2      | 9:02     | 32.3      | 8:54     |
| 3800   | 38.6      | 10:17    | 37.1      | 9:59     | 35.9      | 9:45     | 34.8      | 9:34     | 33.9      | 9:25     |
| 4000   | 40.4      | 10:54    | 38.9      | 10:35    | 37.5      | 10:18    | 36.4      | 10:07    | 35.4      | 9:56     |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED |      | WEIGH | T AT CHEC | K POINT (1 | 000 LB) |      |
|-------------------------|------|-------|-----------|------------|---------|------|
| (1000 LB)               | 70   | 80    | 90        | 100        | 110     | 120  |
| 5                       | -0.4 | -0.2  | 0.0       | 0.5        | 1.2     | 2.7  |
| 10                      | -1.0 | -0.5  | 0.0       | 1.0        | 2.4     | 4.9  |
| 15                      | -1.5 | -0.8  | 0.0       | 1.4        | 3.4     | 6.7  |
| 20                      | -2.1 | -1.1  | 0.0       | 1.8        | 4.3     | 8.3  |
| 25                      | -2.6 | -1.3  | 0.0       | 2.2        | 5.1     | 9.4  |
| 30                      | -3.1 | -1.6  | 0.0       | 2.5        | 5.7     | 10.4 |
| 35                      | -3.5 | -1.8  | 0.0       | 2.8        | 6.2     | 10.8 |
| 40                      | -4.0 | -2.1  | 0.0       | 3.0        | 6.5     | 11.0 |
| 45                      | -4.5 | -2.3  | 0.0       | 3.2        | 6.7     | 10.9 |

### Long Range Cruise Wind-Altitude Trade

| PRESSURE              |     |     |     | С   | RUISE V | VEIGHT | (1000 LE | 3) |    |     |     |
|-----------------------|-----|-----|-----|-----|---------|--------|----------|----|----|-----|-----|
| ALTITUDE<br>(1000 FT) | 130 | 125 | 120 | 115 | 110     | 105    | 100      | 95 | 90 | 85  | 80  |
| 37                    |     |     |     |     |         |        | 15       | 4  | 0  | 1   | 6   |
| 35                    |     |     |     |     | 15      | 5      | 1        | 1  | 4  | 10  | 18  |
| 33                    |     |     | 13  | 4   | 1       | 0      | 3        | 8  | 15 | 23  | 32  |
| 31                    | 10  | 3   | 0   | 0   | 3       | 7      | 13       | 20 | 28 | 37  | 47  |
| 29                    | 0   | 1   | 3   | 7   | 12      | 19     | 26       | 34 | 43 | 52  | 62  |
| 27                    | 4   | 8   | 13  | 19  | 25      | 32     | 40       | 48 | 57 | 67  | 78  |
| 25                    | 14  | 19  | 25  | 32  | 39      | 46     | 54       | 63 | 73 | 83  | 95  |
| 23                    | 26  | 32  | 38  | 46  | 53      | 61     | 70       | 79 | 89 | 100 | 112 |

The above wind factor tables are for calculation of wind required to maintain present range capability at new pressure altitude, i.e., break-even wind.

#### Method:

- 1. Read wind factors for present and new altitudes from table.
- 2. Determine difference (new altitude wind factor minus present altitude wind factor); This
- difference may be negative or positive.
- 3. Break-even wind at new altitude is present altitude wind plus difference from step 2.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

D6-27370-200A-TBC

## 737 Flight Crew Operations Manual

#### Descent at .70/280/250

| PRESSURE ALT (1000 FT) | 21 | 23 | 25 | 27  | 29  | 31  | 33  | 35  | 37  |
|------------------------|----|----|----|-----|-----|-----|-----|-----|-----|
| DISTANCE (NM)          | 82 | 89 | 96 | 102 | 108 | 113 | 118 | 124 | 129 |
| TIME (MINUTES)         | 17 | 18 | 19 | 20  | 21  | 22  | 22  | 23  | 24  |

#### Holding

Flaps Up

| W   | EIGHT   |      |      |       | PRESSU | RE ALTIT | UDE (FT) |       |       |       |
|-----|---------|------|------|-------|--------|----------|----------|-------|-------|-------|
| (10 | 000 LB) | 1500 | 5000 | 10000 | 15000  | 20000    | 25000    | 30000 | 35000 | 37000 |
|     | EPR     | 1.28 | 1.32 | 1.40  | 1.49   | 1.61     | 1.77     | 2.00  |       |       |
| 130 | KIAS    | 243  | 246  | 246   | 247    | 250      | 253      | 246   |       |       |
|     | FF/ENG  | 3380 | 3300 | 3190  | 3100   | 3030     | 3040     | 3110  |       |       |
|     | EPR     | 1.26 | 1.30 | 1.36  | 1.45   | 1.56     | 1.71     | 1.90  |       |       |
| 120 | KIAS    | 232  | 236  | 236   | 237    | 239      | 243      | 241   |       |       |
|     | FF/ENG  | 3150 | 3070 | 2960  | 2870   | 2810     | 2780     | 2820  |       |       |
|     | EPR     | 1.23 | 1.27 | 1.33  | 1.41   | 1.51     | 1.65     | 1.82  | 2.09  |       |
| 110 | KIAS    | 220  | 223  | 227   | 227    | 228      | 232      | 233   | 222   |       |
|     | FF/ENG  | 2910 | 2840 | 2740  | 2650   | 2580     | 2540     | 2560  | 2670  |       |
|     | EPR     | 1.21 | 1.24 | 1.30  | 1.37   | 1.46     | 1.58     | 1.74  | 1.96  | 2.09  |
| 100 | KIAS    | 210  | 211  | 216   | 216    | 217      | 219      | 223   | 218   | 211   |
|     | FF/ENG  | 2690 | 2610 | 2520  | 2430   | 2360     | 2310     | 2300  | 2350  | 2430  |
|     | EPR     | 1.19 | 1.22 | 1.26  | 1.33   | 1.41     | 1.52     | 1.66  | 1.85  | 1.95  |
| 90  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 211   | 210   |
|     | FF/ENG  | 2510 | 2420 | 2320  | 2230   | 2160     | 2100     | 2060  | 2090  | 2120  |
|     | EPR     | 1.17 | 1.19 | 1.24  | 1.29   | 1.36     | 1.46     | 1.58  | 1.74  | 1.82  |
| 80  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2350 | 2270 | 2160  | 2080   | 2000     | 1940     | 1880  | 1870  | 1890  |
|     | EPR     | 1.15 | 1.17 | 1.21  | 1.26   | 1.32     | 1.40     | 1.51  | 1.65  | 1.72  |
| 70  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2230 | 2130 | 2040  | 1950   | 1860     | 1810     | 1750  | 1710  | 1720  |
|     | EPR     | 1.14 | 1.16 | 1.19  | 1.23   | 1.29     | 1.36     | 1.45  | 1.58  | 1.64  |
| 60  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2120 | 2020 | 1930  | 1850   | 1740     | 1680     | 1620  | 1580  | 1590  |

This table includes 5% additional fuel for holding in a racetrack pattern.



Intentionally Blank

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. PI.21.6 D6-27370-200A-TBC April 3, 2015

737-200ADV/JT8D-17A FAA

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Performance Inflight Advisory Information

Chapter PI Section 22

## ADVISORY INFORMATION

#### Normal Configuration Landing Distance - Autobrake System Flaps 15 Dry Runway

|                          |                                | L          | ANDING       | DISTA               | NCE A          | ND AD        | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|------------|--------------|---------------------|----------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ  | ALT<br>ADJ   | WINI<br>PER 1       | O ADJ<br>0 KTS | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVI<br>THR<br>Al | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | 1 5000 L B | ABOVE<br>SEA | $H \vdash \Delta I$ |                | DOWN<br>HILL | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF15 | REV               |      |
| MAX MANUAL               | 2820                           | 180/-110   | 90           | -140                | 510            | 30           | -30        | 50   | -50           | 330                              | 90                | 200  |
| MAX AUTO                 | 3730                           | 150/-140   | 90           | -150                | 520            | 0            | 0          | 50   | -50           | 400                              | 0                 | 0    |
| MED AUTO                 | 4730                           | 210/-190   | 120          | -210                | 720            | 0            | 0          | 70   | -70           | 550                              | 0                 | 0    |
| MIN AUTO                 | 6090                           | 350/-300   | 220          | -300                | 1050           | 160          | -180       | 90   | -90           | 500                              | 920               | 1010 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3600 | 150/-130 | 90  | -150 | 550  | 70  | -70  | 40 | -40 | 270 | 280 | 710  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3770 | 160/-140 | 90  | -160 | 570  | 40  | -10  | 50 | -50 | 400 | 130 | 550  |
| MED AUTO   | 4730 | 210/-190 | 120 | -210 | 730  | 0   | 0    | 70 | -70 | 550 | 0   | 80   |
| MIN AUTO   | 6090 | 350/-300 | 220 | -300 | 1050 | 160 | -180 | 90 | -90 | 500 | 920 | 1010 |

#### **Medium Reported Braking Action**

|   | -          |      | -        |     |      |      |     |      |    |     |     |     |      |
|---|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| Г | MAX MANUAL | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760 | 2260 |
| Γ | MAX AUTO   | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760 | 2260 |
| Γ | MED AUTO   | 4930 | 220/-200 | 140 | -240 | 890  | 100 | -60  | 70 | -70 | 500 | 470 | 1960 |
| L | MIN AUTO   | 6090 | 350/-300 | 220 | -300 | 1090 | 170 | -180 | 90 | -90 | 500 | 960 | 1570 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 | 5700 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 | 5700 |
| MED AUTO   | 5650 | 300/-260 | 190 | -300 | 1250 | 250 | -180 | 80 | -80 | 470 | 1430 | 5640 |
| MIN AUTO   | 6220 | 360/-310 | 230 | -330 | 1340 | 260 | -220 | 90 | -90 | 500 | 1400 | 5130 |

Reference distance is for sea level, standard day, no wind or slope, VREF15 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



#### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Autobrake System Flaps 30 Dry Runway

|                          |                                | L                                      | ANDING       | DISTA | NCE A          | ND AD        | JUSTI | MENT | (FT)          |                                  |                   |     |
|--------------------------|--------------------------------|----------------------------------------|--------------|-------|----------------|--------------|-------|------|---------------|----------------------------------|-------------------|-----|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ   |       | O ADJ<br>0 KTS | SLOPE<br>PER |       |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE<br>SEA | HEAD  | TAIL<br>WIND   | DOWN<br>HILL |       |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF30 | REV               |     |
| MAX MANUAL               | 2560                           | 170/-80                                | 80           | -100  | 520            | 30           | -30   | 40   | -40           | 330                              | 60                | 140 |
| MAX AUTO                 | 3410                           | 140/-120                               | 80           | -140  | 490            | 0            | 0     | 40   | -40           | 370                              | 0                 | 0   |
| MED AUTO                 | 4290                           | 200/-170                               | 110          | -200  | 680            | 0            | 0     | 60   | -60           | 510                              | 0                 | 0   |
| MIN AUTO                 | 5430                           | 300/-260                               | 190          | -280  | 980            | 150          | -160  | 70   | -80           | 420                              | 800               | 930 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3350 | 140/-120 | 80  | -150 | 530 | 70  | -60  | 40 | -40 | 270 | 250 | 620 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|-----|
| MAX AUTO   | 3450 | 140/-120 | 80  | -150 | 540 | 50  | -20  | 40 | -40 | 360 | 140 | 520 |
| MED AUTO   | 4290 | 200/-170 | 110 | -200 | 680 | 0   | 0    | 60 | -60 | 510 | 0   | 70  |
| MIN AUTO   | 5430 | 300/-260 | 190 | -280 | 980 | 150 | -160 | 70 | -80 | 420 | 800 | 930 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
| MED AUTO   | 4460 | 210/-180 | 120 | -220 | 840  | 100 | -50  | 60 | -70 | 470 | 410 | 1670 |
| MIN AUTO   | 5440 | 300/-260 | 190 | -280 | 1020 | 160 | -160 | 70 | -80 | 420 | 840 | 1410 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
| MED AUTO   | 5080 | 270/-230 | 170 | -280 | 1190 | 220 | -160 | 70 | -70 | 420 | 1190 | 4600 |
| MIN AUTO   | 5560 | 320/-270 | 200 | -310 | 1270 | 230 | -200 | 80 | -80 | 420 | 1230 | 4240 |

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



#### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Autobrake System Flaps 40 Dry Runway

|                          |                                | L                                      | ANDING       | DISTA | NCE A          | ND AD        | JUSTI | MENT | (FT)          |                                  |                   |     |
|--------------------------|--------------------------------|----------------------------------------|--------------|-------|----------------|--------------|-------|------|---------------|----------------------------------|-------------------|-----|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ   |       | D ADJ<br>0 KTS | SLOPE<br>PER |       |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE<br>SEA | HEAD  |                | DOWN<br>HILL |       |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF40 | REV               |     |
| MAX MANUAL               | 2480                           | 160/-70                                | 80           | -90   | 510            | 30           | -20   | 40   | -30           | 320                              | 50                | 120 |
| MAX AUTO                 | 3300                           | 130/-120                               | 80           | -140  | 480            | 0            | 0     | 40   | -40           | 370                              | 0                 | 0   |
| MED AUTO                 | 4140                           | 180/-160                               | 100          | -190  | 660            | 0            | 0     | 60   | -60           | 490                              | 0                 | 0   |
| MIN AUTO                 | 5120                           | 270/-240                               | 170          | -270  | 950            | 150          | -150  | 70   | -70           | 370                              | 750               | 970 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3250 | 130/-110 | 80  | -140 | 520 | 70  | -60  | 40 | -40 | 260 | 230 | 580 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|-----|
| MAX AUTO   | 3350 | 130/-120 | 80  | -150 | 530 | 50  | -20  | 40 | -40 | 350 | 140 | 490 |
| MED AUTO   | 4140 | 180/-160 | 100 | -190 | 670 | 0   | 0    | 60 | -60 | 490 | 0   | 70  |
| MIN AUTO   | 5120 | 270/-240 | 170 | -270 | 950 | 150 | -150 | 70 | -70 | 370 | 750 | 970 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4050 | 190/-170 | 120 | -200 | 790 | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4050 | 190/-160 | 120 | -200 | 790 | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
| MED AUTO   | 4280 | 190/-170 | 110 | -220 | 830 | 90  | -40  | 60 | -60 | 470 | 370 | 1510 |
| MIN AUTO   | 5130 | 270/-240 | 170 | -270 | 990 | 160 | -160 | 70 | -70 | 370 | 780 | 1400 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 4100 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----------|
| MAX AUTO   | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 4100 |
| MED AUTO   | 4830 | 240/-210 | 150 | -270 | 1160 | 200 | -150 | 70 | -70 | 380 | 1060 4040 |
| MIN AUTO   | 5240 | 280/-250 | 180 | -300 | 1230 | 230 | -190 | 70 | -80 | 370 | 1140 3810 |

Reference distance is for sea level, standard day, no wind or slope, VREF40 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



#### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Digital Autobrake System Flaps 15 Dev Punway

Dry Runway

|                          |                                | L                                      | ANDING       | DISTA | NCE A          | ND AD        | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|----------------------------------------|--------------|-------|----------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ   |       | O ADJ<br>0 KTS | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE<br>SEA | ΗΕΔΙ) |                | DOWN<br>HILL | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF15 | REV               |      |
| MAX MANUAL               | 2820                           | 180/-110                               | 90           | -140  | 510            | 30           | -30        | 50   | -50           | 330                              | 90                | 200  |
| MAX AUTO                 | 3840                           | 150/-140                               | 90           | -150  | 520            | 10           | -10        | 50   | -50           | 380                              | 0                 | 0    |
| MED AUTO                 | 5380                           | 250/-240                               | 150          | -250  | 840            | 40           | -70        | 80   | -80           | 530                              | 50                | 50   |
| MIN AUTO                 | 6170                           | 350/-310                               | 230          | -310  | 1080           | 200          | -200       | 90   | -90           | 470                              | 1070              | 1250 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3600 | 150/-130 | 90  | -150 | 550  | 70  | -70  | 40 | -40 | 270 | 280  | 710  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 3890 | 160/-140 | 90  | -160 | 580  | 40  | -20  | 50 | -50 | 380 | 170  | 630  |
| MED AUTO   | 5380 | 250/-240 | 150 | -250 | 840  | 40  | -70  | 80 | -80 | 530 | 50   | 50   |
| MIN AUTO   | 6170 | 350/-310 | 230 | -310 | 1080 | 200 | -200 | 90 | -90 | 470 | 1070 | 1250 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760  | 2260 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 4680 | 230/-200 | 150 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 770  | 2290 |
| MED AUTO   | 5450 | 260/-250 | 160 | -260 | 960  | 80  | -90  | 80 | -80 | 530 | 280  | 1610 |
| MIN AUTO   | 6170 | 350/-310 | 230 | -310 | 1110 | 210 | -210 | 90 | -90 | 470 | 1100 | 1710 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 5700 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----------|
| MAX AUTO   | 5590 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 5710 |
| MED AUTO   | 5830 | 310/-280 | 200 | -310 | 1270 | 240 | -180 | 80 | -90 | 470 | 1270 5490 |
| MIN AUTO   | 6280 | 360/-320 | 240 | -330 | 1350 | 280 | -240 | 90 | -90 | 470 | 1500 5160 |

Reference distance is for sea level, standard day, no wind or slope, VREF15 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



#### **ADVISORY INFORMATION**

## Normal Configuration Landing Distance - Digital Autobrake System Flaps 30

Dry Runway

|                          |                                | L                                      | ANDING     | DISTA | NCE A          | NDAD         | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|----------------------------------------|------------|-------|----------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ |       | D ADJ<br>0 KTS | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB |            | HEAD  | TAIL<br>WIND   | DOWN<br>HILL | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF30 | REV               |      |
| MAX MANUAL               | 2560                           | 170/-80                                | 80         | -100  | 520            | 30           | -30        | 40   | -40           | 330                              | 60                | 140  |
| MAX AUTO                 | 3500                           | 140/-120                               | 80         | -140  | 490            | 10           | -10        | 40   | -40           | 350                              | 0                 | 0    |
| MED AUTO                 | 4830                           | 230/-210                               | 130        | -230  | 790            | 40           | -60        | 70   | -70           | 480                              | 50                | 50   |
| MIN AUTO                 | 5480                           | 310/-260                               | 190        | -290  | 1010           | 180          | -170       | 80   | -80           | 410                              | 910               | 1130 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3350 | 140/-120 | 80  | -150 | 530  | 70  | -60  | 40 | -40 | 270 | 250 | 620  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3560 | 140/-130 | 80  | -150 | 550  | 50  | -30  | 40 | -40 | 340 | 180 | 580  |
| MED AUTO   | 4830 | 230/-210 | 130 | -230 | 790  | 40  | -60  | 70 | -70 | 480 | 50  | 60   |
| MIN AUTO   | 5480 | 310/-260 | 190 | -290 | 1010 | 180 | -170 | 80 | -80 | 410 | 910 | 1130 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4260 | 210/-180 | 130 | -210 | 810  | 140 | -110 | 60 | -60 | 330 | 650 | 1930 |
| MED AUTO   | 4890 | 240/-210 | 140 | -240 | 910  | 80  | -80  | 70 | -70 | 480 | 260 | 1380 |
| MIN AUTO   | 5480 | 310/-260 | 190 | -290 | 1040 | 190 | -170 | 80 | -80 | 410 | 940 | 1530 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4660 |
| MED AUTO   | 5230 | 270/-240 | 170 | -290 | 1210 | 220 | -160 | 70 | -80 | 420 | 1070 | 4480 |
| MIN AUTO   | 5590 | 320/-270 | 200 | -310 | 1270 | 250 | -210 | 80 | -80 | 410 | 1290 | 4270 |

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



#### ADVISORY INFORMATION

## Normal Configuration Landing Distance - Digital Autobrake System Flaps 40

Dry Runway

|                          |                                | L                                      | ANDING     | DISTA | NCE A          | ND AD        | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|----------------------------------------|------------|-------|----------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ | 1     | O ADJ<br>0 KTS | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE      | ΗΕΔΙ) |                |              | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF40 | REV               |      |
| MAX MANUAL               | 2480                           | 160/-70                                | 80         | -90   | 510            | 30           | -20        | 40   | -30           | 320                              | 50                | 120  |
| MAX AUTO                 | 3370                           | 130/-120                               | 70         | -140  | 480            | 10           | -10        | 40   | -40           | 340                              | 0                 | 0    |
| MED AUTO                 | 4600                           | 210/-200                               | 130        | -220  | 760            | 50           | -60        | 70   | -70           | 440                              | 70                | 70   |
| MIN AUTO                 | 5160                           | 270/-240                               | 180        | -270  | 970            | 160          | -160       | 70   | -70           | 370                              | 820               | 1140 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3250 | 130/-110 | 80  | -140 | 520 | 70  | -60  | 40 | -40 | 260 | 230 | 580  |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3430 | 140/-120 | 80  | -150 | 540 | 50  | -30  | 40 | -40 | 330 | 180 | 550  |
| MED AUTO   | 4600 | 210/-200 | 130 | -220 | 760 | 50  | -60  | 70 | -70 | 440 | 70  | 70   |
| MIN AUTO   | 5160 | 270/-240 | 180 | -270 | 970 | 160 | -160 | 70 | -70 | 370 | 820 | 1140 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4050 | 190/-170 | 120 | -200 | 790  | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4080 | 190/-170 | 120 | -210 | 790  | 130 | -110 | 50 | -60 | 310 | 590 | 1740 |
| MED AUTO   | 4670 | 220/-200 | 130 | -240 | 880  | 80  | -80  | 70 | -70 | 440 | 270 | 1250 |
| MIN AUTO   | 5160 | 270/-240 | 180 | -270 | 1000 | 170 | -160 | 70 | -70 | 370 | 840 | 1500 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 | 4100 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 | 4100 |
| MED AUTO   | 4950 | 250/-220 | 160 | -280 | 1180 | 200 | -150 | 70 | -70 | 420 | 960  | 3940 |
| MIN AUTO   | 5260 | 280/-250 | 180 | -300 | 1240 | 240 | -190 | 70 | -80 | 370 | 1170 | 3850 |

Reference distance is for sea level, standard day, no wind or slope, VREF40 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Non-Normal Configuration Landing Distance Dry Runway

|                                                                      |           | LANDING DISTANCE AND ADJUSTMENT (FT) |                                 |                               |               |     |              |     |                             |  |  |
|----------------------------------------------------------------------|-----------|--------------------------------------|---------------------------------|-------------------------------|---------------|-----|--------------|-----|-----------------------------|--|--|
|                                                                      | -         | REF DIST<br>FOR                      | WT ADJ<br>PER                   | ALT ADJ<br>PER                | WINI<br>PER 1 |     | SLOPE<br>PER |     | APPROACH<br>SPEED           |  |  |
| LANDING<br>CONFIGURATION                                             | VREF      | 100000 LB<br>LANDING<br>WEIGHT       | 5000 LB<br>ABV/BLW<br>100000 LB | 1000 FT<br>ABOVE<br>SEA LEVEL |               |     | DOWN<br>HILL |     | PER 10 KTS<br>ABOVE<br>VREF |  |  |
| ALL FLAPS UP                                                         | VREF40+55 | 4400                                 | 370 / -210                      | 440                           | -200          | 810 | 60           | -60 | 420                         |  |  |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 3640                                 | 135 / -120                      | 75                            | -160          | 560 | 60           | -55 | 275                         |  |  |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 3400                                 | 220 / -150                      | 190                           | -170          | 620 | 60           | -50 | 440                         |  |  |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 3100                                 | 190 / -130                      | 130                           | -150          | 570 | 40           | -40 | 360                         |  |  |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 3850                                 | 260 / -170                      | 230                           | -200          | 710 | 80           | -70 | 530                         |  |  |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 2800                                 | 170 / -110                      | 150                           | -140          | 500 | 30           | -30 | 310                         |  |  |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 2800                                 | 170 / -110                      | 150                           | -140          | 500 | 30           | -30 | 310                         |  |  |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 3050                                 | 190 / -130                      | 180                           | -160          | 520 | 40           | -40 | 320                         |  |  |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 2850                                 | 190 / -120                      | 160                           | -150          | 540 | 40           | -30 | 350                         |  |  |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 3700                                 | 260 / -180                      | 290                           | -160          | 640 | 50           | -40 | 330                         |  |  |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 3400                                 | 220 / -170                      | 230                           | -150          | 570 | 40           | -40 | 300                         |  |  |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

#### 737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Non-Normal Configuration Landing Distance Good Reported Braking Action

|                                                                      |           | LANDING DISTANCE AND ADJUSTMENT (FT) |                                 |                               |               |     |              |     |                             |  |
|----------------------------------------------------------------------|-----------|--------------------------------------|---------------------------------|-------------------------------|---------------|-----|--------------|-----|-----------------------------|--|
|                                                                      |           | REF DIST<br>FOR                      | WT ADJ<br>PER                   | ALT ADJ<br>PER                | WINI<br>PER 1 |     | SLOPE<br>PER |     | APPROACH<br>SPEED           |  |
| LANDING<br>CONFIGURATION                                             | VREF      | 100000 LB<br>LANDING<br>WEIGHT       | 5000 LB<br>ABV/BLW<br>100000 LB | 1000 FT<br>ABOVE<br>SEA LEVEL |               |     | DOWN<br>HILL |     | PER 10 KTS<br>ABOVE<br>VREF |  |
| ALL FLAPS UP                                                         | VREF40+55 | 4900                                 | 170 / -170                      | 410                           | -180          | 630 | 80           | -80 | 280                         |  |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 4270                                 | 180 / -155                      | 105                           | -215          | 800 | 115          | -90 | 305                         |  |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 4000                                 | 160 / -150                      | 210                           | -170          | 590 | 90           | -80 | 350                         |  |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 3620                                 | 150 / -130                      | 150                           | -150          | 540 | 70           | -60 | 280                         |  |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 4200                                 | 190 / -160                      | 230                           | -170          | 610 | 100          | -90 | 400                         |  |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 3500                                 | 140 / -120                      | 170                           | -150          | 530 | 60           | -60 | 250                         |  |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 3500                                 | 140 / -120                      | 170                           | -150          | 530 | 60           | -60 | 250                         |  |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 3750                                 | 160 / -130                      | 200                           | -160          | 550 | 70           | -70 | 290                         |  |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 3750                                 | 150 / -140                      | 190                           | -160          | 580 | 80           | -80 | 290                         |  |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 4300                                 | 160 / -150                      | 290                           | -160          | 580 | 70           | -70 | 250                         |  |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 4050                                 | 150 / -100                      | 250                           | -160          | 560 | 70           | -60 | 250                         |  |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Non-Normal Configuration Landing Distance Medium Reported Braking Action

|                                                                      |           | LANDING DISTANCE AND ADJUSTMENT (FT) |               |                    |               |      |              |      |                             |  |
|----------------------------------------------------------------------|-----------|--------------------------------------|---------------|--------------------|---------------|------|--------------|------|-----------------------------|--|
|                                                                      |           | REF DIST<br>FOR                      | WT ADJ<br>PER | ALT ADJ<br>PER     | WINI<br>PER 1 |      | SLOPE<br>PER |      | APPROACH<br>SPEED           |  |
| LANDING<br>CONFIGURATION                                             | VREF      | 100000 LB<br>LANDING<br>WEIGHT       |               | ABOVE<br>SEA LEVEL | WIND          | WIND | DOWN<br>HILL | HILL | PER 10 KTS<br>ABOVE<br>VREF |  |
| ALL FLAPS UP                                                         | VREF40+55 | 6200                                 | 280 / -240    | 530                | -260          | 940  | 160          | -150 | 360                         |  |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 4880                                 | 225 / -195    | 135                | -280          | 1135 | 265          | -145 | 330                         |  |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 4950                                 | 230 / -210    | 260                | -230          | 870  | 150          | -140 | 400                         |  |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 4510                                 | 210 / -190    | 190                | -220          | 820  | 130          | -110 | 340                         |  |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 5150                                 | 250 / -220    | 290                | -240          | 890  | 170          | -150 | 450                         |  |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 4400                                 | 200 / -180    | 220                | -210          | 800  | 120          | -110 | 310                         |  |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 4400                                 | 200 / -180    | 220                | -210          | 800  | 120          | -110 | 310                         |  |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 4730                                 | 230 / -190    | 260                | -220          | 840  | 140          | -120 | 350                         |  |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 5000                                 | 240 / -210    | 270                | -250          | 940  | 190          | -160 | 390                         |  |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 5450                                 | 240 / -210    | 380                | -230          | 870  | 140          | -120 | 320                         |  |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 5100                                 | 230 / -200    | 320                | -230          | 850  | 130          | -120 | 320                         |  |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

#### 737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Non-Normal Configuration Landing Distance Poor Reported Braking Action

|                                                                      |           |                                | LANDING       | DISTANCE                      | AND A         | DJUST | MENT         | (FT) |                   |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------|-------------------------------|---------------|-------|--------------|------|-------------------|
|                                                                      |           | REF DIST<br>FOR                | WT ADJ<br>PER | ALT ADJ<br>PER                | WINI<br>PER 1 |       | SLOPE<br>PER |      | APPROACH<br>SPEED |
| LANDING<br>CONFIGURATION                                             |           | 100000 LB<br>LANDING<br>WEIGHT |               | 1000 FT<br>ABOVE<br>SEA LEVEL | WIND          | WIND  | DOWN<br>HILL | HILL | VREF              |
| ALL FLAPS UP                                                         | VREF40+55 | 7400                           | 360 / -330    | 650                           | -340          | 1330  | 270          | -230 | 410               |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 5630                           | 280 / -245    | 170                           | -390          | 1865  | 1140         | -265 | 350               |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 5700                           | 310 / -250    | 310                           | -300          | 1230  | 250          | -210 | 430               |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 5290                           | 280 / -240    | 220                           | -290          | 1180  | 220          | -180 | 380               |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 5950                           | 320 / -280    | 340                           | -310          | 1250  | 260          | -220 | 470               |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 5150                           | 270 / -230    | 260                           | -280          | 1160  | 210          | -170 | 350               |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 5150                           | 270 / -230    | 260                           | -280          | 1160  | 210          | -170 | 350               |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 5570                           | 300 / -250    | 310                           | -300          | 1200  | 230          | -190 | 400               |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 6300                           | 330 / -300    | 340                           | -360          | 1430  | 380          | -300 | 460               |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 6450                           | 310 / -280    | 460                           | -310          | 1250  | 240          | -200 | 370               |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 6080                           | 300 / -260    | 390                           | -300          | 1220  | 230          | -190 | 370               |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

#### ADVISORY INFORMATION

#### Brake Cooling Schedule Reference Brake Energy (Millions of Foot Pounds)

|           |      |     |       |     |     |       | BRA  | KES O     | N SPE | EED (k    | (IAS) |      |           |      |      |      |
|-----------|------|-----|-------|-----|-----|-------|------|-----------|-------|-----------|-------|------|-----------|------|------|------|
|           |      |     | 60    |     |     | 80    |      |           | 100   |           |       | 120  |           |      | 140  |      |
| WEIGHT    | OAT  | PR  | ESS A | LT  | PR  | ESS A | LT   | PRESS ALT |       | PRESS ALT |       |      | PRESS ALT |      |      |      |
| (1000 LB) | (°F) | 0   | 2     | 4   | 0   | 2     | 4    | 0         | 2     | 4         | 0     | 2    | 4         | 0    | 2    | 4    |
|           | 40   | 4.8 | 5.2   | 5.7 | 8.5 | 9.2   | 9.9  | 13.0      | 14.1  | 15.3      | 18.3  | 19.9 | 21.5      | 22.2 | 24.0 | 25.9 |
| 130       | 80   | 5.2 | 5.7   | 6.1 | 9.2 | 10.0  | 10.7 | 14.1      | 15.3  | 16.5      | 19.8  | 21.4 | 23.2      | 23.9 | 25.9 | 27.9 |
|           | 120  | 5.6 | 6.1   | 6.6 | 9.9 | 10.7  | 11.5 | 15.1      | 16.4  | 17.7      | 21.2  | 23.0 | 24.9      | 25.7 | 27.8 | 30.0 |
|           | 40   | 4.5 | 4.9   | 5.3 | 7.9 | 8.6   | 9.2  | 12.0      | 13.0  | 14.0      | 15.8  | 17.2 | 18.6      | 20.4 | 22.2 | 24.0 |
| 120       | 80   | 4.9 | 5.3   | 5.8 | 8.6 | 9.3   | 10.0 | 12.9      | 14.0  | 15.2      | 17.0  | 18.6 | 20.0      | 22.0 | 24.0 | 25.9 |
|           | 120  | 5.2 | 5.7   | 6.2 | 9.2 | 10.0  | 10.8 | 13.8      | 15.1  | 16.3      | 18.3  | 19.9 | 21.5      | 23.6 | 25.7 | 27.8 |
|           | 40   | 4.2 | 4.5   | 4.9 | 7.2 | 7.8   | 8.5  | 11.1      | 12.1  | 13.0      | 15.1  | 16.5 | 17.8      | 18.5 | 20.1 | 21.7 |
| 110       | 80   | 4.5 | 4.9   | 5.3 | 7.8 | 8.5   | 9.2  | 12.0      | 13.0  | 14.1      | 16.3  | 17.8 | 19.2      | 20.0 | 21.7 | 23.4 |
|           | 120  | 4.8 | 5.2   | 5.6 | 8.4 | 9.1   | 9.9  | 12.8      | 14.0  | 15.2      | 17.5  | 19.0 | 20.6      | 21.4 | 23.3 | 25.2 |
|           | 40   | 3.9 | 4.2   | 4.5 | 6.6 | 7.1   | 7.7  | 10.0      | 10.9  | 11.8      | 13.5  | 14.7 | 15.8      | 16.8 | 18.2 | 19.7 |
| 100       | 80   | 4.2 | 4.5   | 4.9 | 7.1 | 7.7   | 8.3  | 10.8      | 11.8  | 12.7      | 14.6  | 15.8 | 17.0      | 18.1 | 19.6 | 21.2 |
|           | 120  | 4.5 | 4.9   | 5.2 | 7.6 | 8.3   | 9.0  | 11.6      | 12.6  | 13.6      | 15.7  | 17.0 | 18.3      | 19.4 | 21.1 | 22.7 |
|           | 40   | 3.4 | 3.7   | 4.0 | 6.0 | 6.5   | 7.1  | 9.0       | 9.7   | 10.5      | 11.8  | 12.8 | 13.8      | 14.8 | 16.1 | 17.4 |
| 90        | 80   | 3.6 | 4.0   | 4.3 | 6.5 | 7.0   | 7.6  | 9.7       | 10.5  | 11.4      | 12.7  | 13.8 | 14.9      | 16.0 | 17.4 | 18.8 |
|           | 120  | 3.9 | 4.2   | 4.6 | 6.9 | 7.5   | 8.2  | 10.4      | 11.3  | 12.2      | 13.6  | 14.9 | 16.1      | 17.2 | 18.7 | 20.2 |
|           | 40   | 3.1 | 3.4   | 3.7 | 5.2 | 5.7   | 6.2  | 7.9       | 8.6   | 9.2       | 10.0  | 10.9 | 11.8      | 13.0 | 14.1 | 15.3 |
| 80        | 80   | 3.3 | 3.6   | 3.9 | 5.6 | 6.1   | 6.6  | 8.5       | 9.3   | 10.0      | 10.8  | 11.8 | 12.7      | 14.1 | 15.3 | 16.5 |
|           | 120  | 3.6 | 3.9   | 4.2 | 6.0 | 6.6   | 7.1  | 9.2       | 10.0  | 10.8      | 11.6  | 12.6 | 13.6      | 15.1 | 16.4 | 17.7 |

To correct for wind, enter table with the brakes on speed minus one half the headwind or plus 1.5 times the tailwind.

If ground speed is used for brakes on speed, ignore wind, altitude, and OAT effects.

#### Adjusted Brake Energy per Brake (Millions of Foot Pounds)

|             | REF | REFERENCE BRAKE ENERGY PER BRAKE (MILLIONS OF FOOT POUNDS) |     |     |     |      |      |      |      |      |  |  |  |
|-------------|-----|------------------------------------------------------------|-----|-----|-----|------|------|------|------|------|--|--|--|
| EVENT       | 2   | 4                                                          | 6   | 8   | 10  | 12   | 14   | 16   | 18   | 20   |  |  |  |
| RTO MAX MAN | 2   | 4                                                          | 6   | 8   | 10  | 12   | 14   | 16   | 18   | 20   |  |  |  |
| MAX AUTO    | 1.8 | 3.5                                                        | 5.3 | 7.1 | 8.7 | 10.2 | 11.7 | 13.1 | 14.4 | 15.7 |  |  |  |
| MED AUTO    | 1.5 | 3.2                                                        | 4.8 | 6.3 | 7.6 | 8.8  | 10.0 | 10.8 | 11.7 | 12.5 |  |  |  |
| MIN AUTO    | 1.4 | 3.0                                                        | 4.0 | 4.9 | 5.8 | 6.2  | 6.6  | 7.5  | 7.5  | 7.6  |  |  |  |

#### **Cooling Time (Minutes)**

|                       | ADJUSTED                | ADJUSTED BRAKE ENERGY PER BRAKE (MILLIONS OF FOOT POUNDS) |     |     |     |      |          |                        |  |  |  |  |
|-----------------------|-------------------------|-----------------------------------------------------------|-----|-----|-----|------|----------|------------------------|--|--|--|--|
|                       | 6 & BELOW               | 8                                                         | 10  | 12  | 14  | 15.9 | 16 TO 20 | 20 & ABOVE             |  |  |  |  |
| INFLIGHT<br>GEAR DOWN | NO SPECIAL<br>PROCEDURE | 1.0                                                       | 2.9 | 4.9 | 7.0 | 8.8  | CAUTION  | FUSE PLUG<br>MELT ZONE |  |  |  |  |
| GROUND                | REQUIRED                | 15                                                        | 28  | 38  | 48  | 56   |          | MELI ZONE              |  |  |  |  |

Observe maximum quick turnaround limit.

Table does not consider the benefit of reverse thrust.

Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added.

Add 1.0 million foot pounds for each taxi mile.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after 30 minutes. If overheat occurs after takeoff, extend gear soon for at least 9 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not approach gear or attempt to taxi for 50 minutes. Alert fire equipment.



Intentionally Blank

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. PI.22.12 D6-27370-200A-TBC April 6, 2017

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Performance Inflight Engine Inoperative

## Chapter PI Section 23

## ENGINE INOP

## Max Continuous EPR

Based on engine bleed for packs on, engine and wing anti-ice off

|          | 0    |      | -    |        |           | -        |       |       |       |
|----------|------|------|------|--------|-----------|----------|-------|-------|-------|
| TAT      |      |      |      | PRESSU | RE ALTITU | JDE (FT) |       |       |       |
| (°C)     | 0    | 1000 | 1499 | 1500   | 2000      | 3000     | 10000 | 15000 | 35000 |
| 50       | 1.79 | 1.79 | 1.79 | 1.79   | 1.79      | 1.79     | 1.78  | 1.78  | 1.77  |
| 45       | 1.84 | 1.84 | 1.84 | 1.84   | 1.85      | 1.85     | 1.84  | 1.84  | 1.83  |
| 40       | 1.87 | 1.87 | 1.87 | 1.90   | 1.90      | 1.90     | 1.89  | 1.89  | 1.88  |
| 35       | 1.87 | 1.87 | 1.87 | 1.95   | 1.95      | 1.95     | 1.94  | 1.94  | 1.93  |
| 30       | 1.92 | 1.92 | 1.92 | 2.00   | 2.00      | 2.00     | 1.99  | 1.99  | 1.98  |
| 25       | 1.98 | 1.98 | 1.98 | 2.05   | 2.05      | 2.05     | 2.04  | 2.04  | 2.02  |
| 20       | 2.03 | 2.03 | 2.03 | 2.10   | 2.10      | 2.10     | 2.09  | 2.09  | 2.08  |
| 15       | 2.08 | 2.08 | 2.08 | 2.14   | 2.14      | 2.14     | 2.14  | 2.13  | 2.12  |
| 10       | 2.13 | 2.13 | 2.13 | 2.19   | 2.19      | 2.19     | 2.18  | 2.17  | 2.16  |
| 5        | 2.13 | 2.18 | 2.18 | 2.20   | 2.23      | 2.23     | 2.22  | 2.21  | 2.20  |
| 0        | 2.13 | 2.18 | 2.20 | 2.20   | 2.23      | 2.26     | 2.25  | 2.25  | 2.24  |
| -5       | 2.13 | 2.18 | 2.20 | 2.20   | 2.23      | 2.27     | 2.28  | 2.28  | 2.27  |
| -10      | 2.13 | 2.18 | 2.20 | 2.20   | 2.23      | 2.27     | 2.31  | 2.31  | 2.30  |
| -15      | 2.13 | 2.18 | 2.20 | 2.20   | 2.23      | 2.27     | 2.31  | 2.33  | 2.32  |
| -20      | 2.13 | 2.18 | 2.20 | 2.20   | 2.23      | 2.27     | 2.31  | 2.33  | 2.32  |
| -25      | 2.13 | 2.18 | 2.20 | 2.20   | 2.23      | 2.27     | 2.31  | 2.33  | 2.32  |
| -40TO-50 | 2.13 | 2.18 | 2.20 | 2.20   | 2.23      | 2.27     | 2.31  | 2.33  | 2.32  |

#### **EPR Adjustments for Engine Bleeds**

| BLEED                       | PRESSURE A | LTITUDE (FT) |
|-----------------------------|------------|--------------|
| CONFIGURATION               | 0          | 35000        |
| PACKS OFF                   | 0.03       | 0.03         |
| ENGINE ANTI-ICE ON          | -0.08      | -0.08        |
| ENGINE AND WING ANTI-ICE ON | -0.15      | -0.15        |

With Gravel Protect switch in "Anti-Ice/Test" position and up to 15000 ft, decrease limit EPR by 0.01. With Gravel Protect switch in "Anti-Ice/Test" position and above 15000 ft, decrease limit EPR by 0.02.

737 Flight Crew Operations Manual

## ENGINE INOP

## MAX CONTINUOUS THRUST

#### Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

| WEIGHT                 | (1000 LB)    | OPTIMUM                      | LEVI                  | EL OFF ALTITUDI | E (FT)     |
|------------------------|--------------|------------------------------|-----------------------|-----------------|------------|
| START<br>DRIFT<br>DOWN | LEVEL<br>OFF | DRIFTDOWN<br>SPEED<br>(KIAS) | ISA + 10°C<br>& BELOW | ISA + 15°C      | ISA + 20°C |
| 130                    | 123          | 231                          | 14800                 | 13700           | 12400      |
| 120                    | 113          | 223                          | 17500                 | 16500           | 15400      |
| 110                    | 104          | 214                          | 20200                 | 19300           | 18500      |
| 100                    | 95           | 204                          | 22900                 | 22200           | 21500      |
| 90                     | 86           | 194                          | 25500                 | 25100           | 24600      |
| 80                     | 76           | 183                          | 28100                 | 28000           | 27900      |
| 70                     | 67           | 171                          | 31000                 | 31000           | 31000      |
| 60                     | 57           | 158                          | 34200                 | 34200           | 34200      |

#### Driftdown/LRC Cruise Range Capability Ground to Air Miles Conversion

|      | AIR D   | ISTANCE | E (NM)  |      | GROUND   |                             | AIR D | ISTANCE | E (NM) |      |  |
|------|---------|---------|---------|------|----------|-----------------------------|-------|---------|--------|------|--|
| HEA  | AD WINE | O COMPO | NENT (K | TS)  | DISTANCE | DISTANCE TAIL WIND COMPONEN |       |         |        |      |  |
| 100  | 80      | 60      | 40      | 20   | (NM)     | 20                          | 40    | 60      | 80     | 100  |  |
| 291  | 267     | 246     | 229     | 213  | 200      | 188                         | 178   | 168     | 160    | 152  |  |
| 577  | 530     | 490     | 456     | 426  | 400      | 377                         | 356   | 338     | 321    | 306  |  |
| 859  | 791     | 733     | 682     | 639  | 600      | 566                         | 535   | 508     | 483    | 461  |  |
| 1139 | 1050    | 974     | 908     | 851  | 800      | 755                         | 715   | 679     | 646    | 617  |  |
| 1417 | 1308    | 1215    | 1134    | 1063 | 1000     | 944                         | 895   | 850     | 809    | 772  |  |
| 1697 | 1567    | 1456    | 1359    | 1275 | 1200     | 1134                        | 1074  | 1021    | 972    | 928  |  |
| 1978 | 1827    | 1698    | 1585    | 1487 | 1400     | 1323                        | 1254  | 1191    | 1135   | 1083 |  |
| 2262 | 2089    | 1941    | 1812    | 1699 | 1600     | 1512                        | 1432  | 1361    | 1296   | 1238 |  |
| 2551 | 2355    | 2186    | 2040    | 1913 | 1800     | 1700                        | 1610  | 1530    | 1457   | 1390 |  |

#### Driftdown/Cruise Fuel and Time

| AIR  |      |      | FUEL R     | EQUIRED (1 | 000 LB)   |        |      | TIME         |
|------|------|------|------------|------------|-----------|--------|------|--------------|
| DIST |      | WEIG | HT AT STAF | T OF DRIFT | FDOWN (10 | 00 LB) |      | (HR:MIN)     |
| (NM) | 70   | 80   | 90         | 100        | 110       | 120    | 130  | (IIIC.WIIIV) |
| 200  | 2.0  | 2.1  | 2.3        | 2.7        | 2.9       | 3.2    | 3.4  | 0:38         |
| 400  | 4.1  | 4.6  | 5.1        | 5.8        | 6.5       | 7.1    | 7.7  | 1:14         |
| 600  | 6.1  | 6.9  | 7.7        | 8.7        | 9.7       | 10.5   | 11.4 | 1:49         |
| 800  | 8.1  | 9.1  | 10.2       | 11.4       | 12.7      | 13.8   | 15.0 | 2:23         |
| 1000 | 10.0 | 11.3 | 12.6       | 14.1       | 15.6      | 17.0   | 18.5 | 2:57         |
| 1200 | 11.9 | 13.4 | 15.0       | 16.8       | 18.5      | 20.2   | 21.9 | 3:31         |
| 1400 | 13.7 | 15.5 | 17.3       | 19.3       | 21.3      | 23.3   | 25.3 | 4:05         |
| 1600 | 15.5 | 17.5 | 19.6       | 21.8       | 24.1      | 26.3   | 28.5 | 4:41         |
| 1800 | 17.3 | 19.5 | 21.8       | 24.3       | 26.8      | 29.2   | 31.7 | 5:18         |

Includes APU fuel burn.

Driftdown at optimum driftdown speed and cruise at LRC speed.

737 Flight Crew Operations Manual

#### Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

| WEIGHT    |                       | PRESSURE ALTITUDE (FT | )          |
|-----------|-----------------------|-----------------------|------------|
| (1000 LB) | ISA + 10°C<br>& BELOW | ISA+15°C              | ISA + 20°C |
| 130       | 9000                  | 6900                  | 3000       |
| 120       | 12600                 | 10700                 | 8500       |
| 110       | 16100                 | 14300                 | 12600      |
| 100       | 19500                 | 18200                 | 16500      |
| 90        | 23000                 | 21900                 | 20700      |
| 80        | 26300                 | 25600                 | 24700      |
| 70        | 29400                 | 29200                 | 28800      |
| 60        | 32400                 | 32300                 | 32100      |

## Long Range Cruise Control

| WE   | IGHT   |      |      |      | PRE  | SSURE | ALTITUI | DE (1000 | ) FT) |      |      |      |
|------|--------|------|------|------|------|-------|---------|----------|-------|------|------|------|
| (100 | 00 LB) | 10   | 13   | 15   | 17   | 19    | 21      | 23       | 25    | 27   | 29   | 31   |
|      | EPR    | 2.04 | 2.15 |      |      |       |         |          |       |      |      |      |
| 120  | MACH   | .541 | .566 |      |      |       |         |          |       |      |      |      |
| 130  | KIAS   | 300  | 297  |      |      |       |         |          |       |      |      |      |
|      | FF/ENG | 6928 | 6970 |      |      |       |         |          |       |      |      |      |
|      | EPR    | 1.95 | 2.07 | 2.15 | 2.24 |       |         |          |       |      |      |      |
| 120  | MACH   | .519 | .549 | .566 | .584 |       |         |          |       |      |      |      |
| 120  | KIAS   | 288  | 288  | 286  | 284  |       |         |          |       |      |      |      |
|      | FF/ENG | 6262 | 6352 | 6380 | 6463 |       |         |          |       |      |      |      |
|      | EPR    | 1.87 | 1.98 | 2.07 | 2.15 | 2.23  |         |          |       |      |      |      |
| 110  | MACH   | .501 | .527 | .548 | .564 | .582  |         |          |       |      |      |      |
| 110  | KIAS   | 277  | 276  | 276  | 274  | 272   |         |          |       |      |      |      |
|      | FF/ENG | 5684 | 5708 | 5767 | 5792 | 5861  |         |          |       |      |      |      |
|      | EPR    | 1.80 | 1.89 | 1.97 | 2.05 | 2.13  | 2.22    |          |       |      |      |      |
| 100  | MACH   | .487 | .505 | .523 | .544 | .562  | .579    |          |       |      |      |      |
| 100  | KIAS   | 269  | 264  | 264  | 264  | 262   | 260     |          |       |      |      |      |
|      | FF/ENG | 5205 | 5108 | 5125 | 5186 | 5208  | 5271    |          |       |      |      |      |
|      | EPR    | 1.73 | 1.81 | 1.87 | 1.94 | 2.03  | 2.11    | 2.20     | 2.30  |      |      |      |
| 90   | MACH   | .469 | .489 | .500 | .517 | .539  | .557    | .575     | .601  |      |      |      |
| 90   | KIAS   | 259  | 256  | 252  | 251  | 251   | 250     | 248      | 249   |      |      |      |
|      | FF/ENG | 4729 | 4634 | 4561 | 4553 | 4611  | 4638    | 4690     | 4839  |      |      |      |
|      | EPR    | 1.64 | 1.73 | 1.78 | 1.84 | 1.91  | 1.99    | 2.08     | 2.17  | 2.27 |      |      |
| 80   | MACH   | .447 | .469 | .482 | .495 | .509  | .530    | .551     | .569  | .593 |      |      |
| 80   | KIAS   | 247  | 245  | 242  | 240  | 237   | 237     | 237      | 235   | 235  |      |      |
|      | FF/ENG | 4253 | 4165 | 4092 | 4039 | 4000  | 4035    | 4079     | 4115  | 4232 |      |      |
|      | EPR    | 1.56 | 1.63 | 1.69 | 1.74 | 1.81  | 1.87    | 1.94     | 2.03  | 2.12 | 2.21 |      |
| 70   | MACH   | .423 | .444 | .460 | .473 | .487  | .500    | .517     | .540  | .559 | .578 |      |
| /0   | KIAS   | 234  | 232  | 231  | 228  | 227   | 223     | 222      | 223   | 221  | 219  |      |
|      | FF/ENG | 3784 | 3698 | 3648 | 3579 | 3532  | 3479    | 3476     | 3526  | 3553 | 3600 |      |
|      | EPR    | 1.48 | 1.54 | 1.58 | 1.64 | 1.69  | 1.75    | 1.82     | 1.90  | 1.98 | 2.07 | 2.17 |
| 60   | MACH   | .395 | .417 | .431 | .446 | .461  | .475    | .491     | .511  | .532 | .555 | .579 |
| 00   | KIAS   | 218  | 217  | 216  | 215  | 214   | 212     | 210      | 210   | 210  | 210  | 210  |
|      | FF/ENG | 3305 | 3235 | 3183 | 3133 | 3091  | 3030    | 3003     | 3013  | 3039 | 3074 | 3131 |

### 737 Flight Crew Operations Manual

### Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | (NM)    |      | GROUND   |      | AIR D | ISTANCE | (NM) |      |
|------|--------|---------|---------|------|----------|------|-------|---------|------|------|
| HE   | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ΓS)   |         |      |      |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40    | 60      | 80   | 100  |
| 303  | 276    | 252     | 232     | 215  | 200      | 190  | 181   | 173     | 166  | 159  |
| 615  | 557    | 506     | 465     | 431  | 400      | 380  | 362   | 345     | 330  | 317  |
| 930  | 841    | 764     | 700     | 647  | 600      | 570  | 542   | 517     | 494  | 474  |
| 1248 | 1127   | 1022    | 936     | 864  | 800      | 759  | 722   | 689     | 658  | 631  |
| 1570 | 1415   | 1281    | 1172    | 1080 | 1000     | 949  | 902   | 860     | 822  | 787  |
| 1896 | 1706   | 1542    | 1408    | 1298 | 1200     | 1139 | 1082  | 1031    | 984  | 943  |
| 2227 | 2000   | 1805    | 1646    | 1515 | 1400     | 1328 | 1262  | 1202    | 1147 | 1098 |
| 2562 | 2298   | 2070    | 1886    | 1734 | 1600     | 1517 | 1441  | 1371    | 1309 | 1253 |
| 2902 | 2598   | 2336    | 2126    | 1952 | 1800     | 1706 | 1620  | 1542    | 1471 | 1408 |

#### **Reference Fuel and Time Required at Check Point**

| AIR    | PRESSURE ALTITUDE (1000 FT) |          |           |          |           |          |           |          |           |          |
|--------|-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|
| DIST   | 10                          |          | 16        |          | 20        |          | 24        |          | 28        |          |
| (NM)   | FUEL                        | TIME     | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME     |
| (1111) | (1000 LB)                   | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |
| 200    | 3.3                         | 0:43     | 2.8       | 0:41     | 2.5       | 0:40     | 2.4       | 0:38     | 2.2       | 0:37     |
| 400    | 6.5                         | 1:24     | 5.7       | 1:20     | 5.3       | 1:16     | 5.1       | 1:13     | 4.9       | 1:09     |
| 600    | 9.7                         | 2:06     | 8.5       | 1:59     | 8.0       | 1:53     | 7.6       | 1:48     | 7.4       | 1:41     |
| 800    | 12.9                        | 2:48     | 11.4      | 2:38     | 10.7      | 2:30     | 10.2      | 2:23     | 10.0      | 2:14     |
| 1000   | 16.0                        | 3:31     | 14.1      | 3:18     | 13.3      | 3:08     | 12.7      | 2:59     | 12.4      | 2:48     |
| 1200   | 19.1                        | 4:15     | 16.9      | 3:58     | 15.9      | 3:46     | 15.2      | 3:34     | 14.8      | 3:22     |
| 1400   | 22.1                        | 4:59     | 19.6      | 4:39     | 18.4      | 4:25     | 17.6      | 4:11     | 17.1      | 3:56     |
| 1600   | 25.0                        | 5:44     | 22.2      | 5:20     | 20.8      | 5:05     | 19.9      | 4:48     | 19.4      | 4:31     |
| 1800   | 28.0                        | 6:30     | 24.8      | 6:02     | 23.2      | 5:45     | 22.2      | 5:26     | 21.6      | 5:07     |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED | WEIGHT AT CHECK POINT (1000 LB) |      |     |     |     |     |  |  |
|-------------------------|---------------------------------|------|-----|-----|-----|-----|--|--|
| (1000 LB)               | 70                              | 80   | 90  | 100 | 110 | 120 |  |  |
| 5                       | -0.4                            | -0.2 | 0.0 | 0.4 | 0.8 | 1.5 |  |  |
| 10                      | -0.9                            | -0.4 | 0.0 | 0.9 | 1.9 | 3.2 |  |  |
| 15                      | -1.3                            | -0.7 | 0.0 | 1.4 | 2.9 | 4.7 |  |  |
| 20                      | -1.8                            | -0.9 | 0.0 | 1.9 | 3.9 | 6.2 |  |  |
| 25                      | -2.2                            | -1.1 | 0.0 | 2.4 | 4.9 | 7.6 |  |  |
| 30                      | -2.7                            | -1.4 | 0.0 | 2.9 | 5.8 | 8.9 |  |  |

## 737 Flight Crew Operations Manual

Holding Flaps Up

| WEIGHT<br>(1000 LB) |        | PRESSURE ALTITUDE (FT) |      |       |       |       |       |       |  |  |  |
|---------------------|--------|------------------------|------|-------|-------|-------|-------|-------|--|--|--|
|                     |        | 1500                   | 5000 | 10000 | 15000 | 20000 | 25000 | 30000 |  |  |  |
| 130                 | EPR    | 1.65                   | 1.76 | 1.95  | 2.17  |       |       |       |  |  |  |
|                     | KIAS   | 243                    | 246  | 246   | 247   |       |       |       |  |  |  |
|                     | FF/ENG | 6110                   | 6090 | 6150  | 6440  |       |       |       |  |  |  |
| 120                 | EPR    | 1.59                   | 1.69 | 1.87  | 2.08  |       |       |       |  |  |  |
|                     | KIAS   | 232                    | 236  | 236   | 237   |       |       |       |  |  |  |
|                     | FF/ENG | 5630                   | 5590 | 5590  | 5780  |       |       |       |  |  |  |
| 110                 | EPR    | 1.54                   | 1.62 | 1.78  | 1.98  | 2.22  |       |       |  |  |  |
|                     | KIAS   | 220                    | 223  | 227   | 227   | 228   |       |       |  |  |  |
|                     | FF/ENG | 5160                   | 5110 | 5070  | 5150  | 5430  |       |       |  |  |  |
| 100                 | EPR    | 1.48                   | 1.56 | 1.70  | 1.88  | 2.10  |       |       |  |  |  |
|                     | KIAS   | 210                    | 211  | 216   | 216   | 217   |       |       |  |  |  |
|                     | FF/ENG | 4710                   | 4640 | 4580  | 4580  | 4750  |       |       |  |  |  |
| 90                  | EPR    | 1.43                   | 1.50 | 1.62  | 1.78  | 1.99  | 2.23  |       |  |  |  |
|                     | KIAS   | 210                    | 210  | 210   | 210   | 210   | 210   |       |  |  |  |
|                     | FF/ENG | 4340                   | 4260 | 4160  | 4110  | 4170  | 4430  |       |  |  |  |
| 80                  | EPR    | 1.39                   | 1.45 | 1.56  | 1.70  | 1.88  | 2.10  |       |  |  |  |
|                     | KIAS   | 210                    | 210  | 210   | 210   | 210   | 210   |       |  |  |  |
|                     | FF/ENG | 4020                   | 3940 | 3830  | 3760  | 3750  | 3880  |       |  |  |  |
| 70                  | EPR    | 1.35                   | 1.40 | 1.50  | 1.62  | 1.79  | 1.99  | 2.24  |  |  |  |
|                     | KIAS   | 210                    | 210  | 210   | 210   | 210   | 210   | 210   |  |  |  |
|                     | FF/ENG | 3740                   | 3660 | 3560  | 3470  | 3420  | 3480  | 3660  |  |  |  |
| 60                  | EPR    | 1.32                   | 1.37 | 1.45  | 1.57  | 1.71  | 1.90  | 2.12  |  |  |  |
|                     | KIAS   | 210                    | 210  | 210   | 210   | 210   | 210   | 210   |  |  |  |
|                     | FF/ENG | 3510                   | 3430 | 3320  | 3230  | 3160  | 3160  | 3250  |  |  |  |

This table includes 5% additional fuel for holding in a racetrack pattern.



Intentionally Blank

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight**

## Gear Down

Chapter PI Section 24

## GEAR DOWN

#### 220 KIAS Cruise Altitude Capability Max Cruise Thrust, 100 ft/min residual rate of climb

| WEIGHT    |                       | PRESSURE ALTITUDE (FT) |            |  |  |  |  |  |  |  |  |
|-----------|-----------------------|------------------------|------------|--|--|--|--|--|--|--|--|
| (1000 LB) | ISA + 10°C<br>& BELOW | ISA + 15°C             | ISA + 20°C |  |  |  |  |  |  |  |  |
| 130       | 19200                 | 17600                  | 15500      |  |  |  |  |  |  |  |  |
| 120       | 21100                 | 19700                  | 17900      |  |  |  |  |  |  |  |  |
| 110       | 22700                 | 21700                  | 20100      |  |  |  |  |  |  |  |  |
| 100       | 24200                 | 23300                  | 22200      |  |  |  |  |  |  |  |  |
| 90        | 25500                 | 24700                  | 23700      |  |  |  |  |  |  |  |  |
| 80        | 26600                 | 25900                  | 25000      |  |  |  |  |  |  |  |  |
| 70        | 27600                 | 27000                  | 26200      |  |  |  |  |  |  |  |  |
| 60        | 28400                 | 27800                  | 27200      |  |  |  |  |  |  |  |  |

#### 220 KIAS Cruise Control

| WE   | IGHT   |      |      | Р    | RESSURE | ALTITUD | E (1000 F | Г)   |      |      |
|------|--------|------|------|------|---------|---------|-----------|------|------|------|
| (100 | 00 LB) | 10   | 13   | 15   | 17      | 19      | 21        | 23   | 25   | 27   |
|      | EPR    | 1.72 | 1.83 | 1.91 | 1.99    | 2.09    |           |      |      |      |
| 130  | MACH   | .399 | .422 | .438 | .456    | .474    |           |      |      |      |
| 130  | KIAS   | 220  | 220  | 220  | 220     | 220     |           |      |      |      |
|      | FF/ENG | 4495 | 4489 | 4510 | 4569    | 4649    |           |      |      |      |
|      | EPR    | 1.68 | 1.78 | 1.85 | 1.93    | 2.02    | 2.12      |      |      |      |
| 120  | MACH   | .399 | .422 | .438 | .456    | .474    | .493      |      |      |      |
| 120  | KIAS   | 220  | 220  | 220  | 220     | 220     | 220       |      |      |      |
|      | FF/ENG | 4278 | 4257 | 4262 | 4291    | 4355    | 4435      |      |      |      |
|      | EPR    | 1.64 | 1.73 | 1.80 | 1.88    | 1.96    | 2.05      | 2.15 |      |      |
| 110  | MACH   | .399 | .422 | .438 | .456    | .474    | .493      | .513 |      |      |
| 110  | KIAS   | 220  | 220  | 220  | 220     | 220     | 220       | 220  |      |      |
|      | FF/ENG | 4084 | 4052 | 4044 | 4057    | 4093    | 4161      | 4266 |      |      |
|      | EPR    | 1.60 | 1.69 | 1.76 | 1.83    | 1.91    | 1.99      | 2.09 | 2.20 |      |
| 100  | MACH   | .399 | .422 | .438 | .456    | .474    | .493      | .513 | .534 |      |
| 100  | KIAS   | 220  | 220  | 220  | 220     | 220     | 220       | 220  | 220  |      |
|      | FF/ENG | 3917 | 3877 | 3858 | 3858    | 3875    | 3924      | 4003 | 4129 |      |
|      | EPR    | 1.57 | 1.65 | 1.72 | 1.79    | 1.86    | 1.94      | 2.04 | 2.14 |      |
| 90   | MACH   | .399 | .422 | .438 | .456    | .474    | .493      | .513 | .534 |      |
| 90   | KIAS   | 220  | 220  | 220  | 220     | 220     | 220       | 220  | 220  |      |
|      | FF/ENG | 3776 | 3732 | 3708 | 3696    | 3703    | 3732      | 3800 | 3894 |      |
|      | EPR    | 1.55 | 1.62 | 1.69 | 1.75    | 1.82    | 1.90      | 1.99 | 2.09 | 2.20 |
| 80   | MACH   | .399 | .422 | .438 | .456    | .474    | .493      | .513 | .534 | .557 |
| 80   | KIAS   | 220  | 220  | 220  | 220     | 220     | 220       | 220  | 220  | 220  |
|      | FF/ENG | 3659 | 3612 | 3585 | 3566    | 3562    | 3580      | 3634 | 3710 | 3828 |
|      | EPR    | 1.53 | 1.60 | 1.66 | 1.72    | 1.79    | 1.87      | 1.95 | 2.05 | 2.15 |
| 70   | MACH   | .399 | .422 | .438 | .456    | .474    | .493      | .513 | .534 | .557 |
| /0   | KIAS   | 220  | 220  | 220  | 220     | 220     | 220       | 220  | 220  | 220  |
|      | FF/ENG | 3559 | 3510 | 3480 | 3457    | 3445    | 3456      | 3497 | 3562 | 3659 |
|      | EPR    | 1.51 | 1.58 | 1.64 | 1.70    | 1.77    | 1.84      | 1.92 | 2.02 | 2.12 |
| 60   | MACH   | .399 | .422 | .438 | .456    | .474    | .493      | .513 | .534 | .557 |
| 00   | KIAS   | 220  | 220  | 220  | 220     | 220     | 220       | 220  | 220  | 220  |
|      | FF/ENG | 3480 | 3429 | 3398 | 3374    | 3355    | 3360      | 3392 | 3450 | 3531 |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 3, 2015 D6-27370-200A-TBC PI.24.1

#### 737 Flight Crew Operations Manual

#### **220 KIAS Enroute Fuel and Time** Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | (NM)    |      | GROUND   |      | AIR D  | ISTANCE | (NM)    |      |
|------|--------|---------|---------|------|----------|------|--------|---------|---------|------|
| HE   | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | NENT (K | ΓS)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80      | 100  |
| 335  | 297    | 264     | 239     | 218  | 200      | 189  | 179    | 170     | 161     | 154  |
| 678  | 599    | 531     | 479     | 437  | 400      | 378  | 357    | 339     | 323     | 308  |
| 1021 | 901    | 799     | 720     | 656  | 600      | 566  | 535    | 507     | 483     | 461  |
| 1364 | 1204   | 1067    | 961     | 875  | 800      | 755  | 714    | 677     | 644     | 614  |
| 1707 | 1506   | 1334    | 1201    | 1093 | 1000     | 943  | 892    | 845     | 804     | 767  |
| 2050 | 1808   | 1602    | 1442    | 1312 | 1200     | 1132 | 1071   | 1015    | 964     | 920  |
| 2393 | 2111   | 1871    | 1683    | 1531 | 1400     | 1321 | 1248   | 1183    | 1125    | 1074 |
| 2736 | 2413   | 2138    | 1923    | 1750 | 1600     | 1510 | 1427   | 1353    | 1286    | 1227 |
| 3079 | 2715   | 2406    | 2164    | 1969 | 1800     | 1698 | 1605   | 1521    | 1446    | 1380 |

#### **Reference Fuel and Time Required at Check Point**

| -       |           |          |           | DDECC    |           |           |           |          |           | 1        |  |
|---------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|----------|--|
| AIR     |           |          |           | PRESS    | SURE ALT  | ITUDE (10 | 00 FT)    |          |           |          |  |
| DIST    | 1         | 0        | 1         | 4        | 1         | 8         | 2         | 2        | 26        |          |  |
| (NM)    | FUEL      | TIME     | FUEL      | TIME     | FUEL      | FUEL TIME |           | TIME     | FUEL      | TIME     |  |
| (14141) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN)  | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |  |
| 200     | 5.7       | 0:50     | 5.2       | 0:47     | 4.7       | 0:45      | 4.4       | 0:43     | 4.2       | 0:41     |  |
| 400     | 11.5      | 1:37     | 10.5      | 1:32     | 9.8       | 1:27      | 9.2       | 1:22     | 9.0       | 1:18     |  |
| 600     | 17.2      | 2:24     | 15.8      | 2:16     | 14.7      | 2:08      | 13.9      | 2:01     | 13.6      | 1:54     |  |
| 800     | 22.8      | 3:11     | 21.1      | 3:00     | 19.6      | 2:50      | 18.5      | 2:40     | 18.1      | 2:31     |  |
| 1000    | 28.3      | 3:58     | 26.2      | 3:45     | 24.4      | 3:32      | 23.1      | 3:20     | 22.5      | 3:08     |  |
| 1200    | 33.8      | 4:45     | 31.3      | 4:29     | 29.1      | 4:13      | 27.6      | 3:59     | 26.9      | 3:44     |  |
| 1400    | 39.2      | 5:32     | 36.3      | 5:13     | 33.8      | 4:55      | 32.0      | 4:38     | 31.2      | 4:21     |  |
| 1600    | 44.6      | 6:20     | 41.3      | 5:58     | 38.4      | 5:37      | 36.4      | 5:17     | 35.5      | 4:58     |  |
| 1800    | 49.9      | 7:07     | 46.3      | 6:42     | 43.0      | 6:18      | 40.7      | 5:56     | 39.7      | 5:34     |  |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED |      | WEIGH | T AT CHEC | K POINT (1 | 000 LB) |     |
|-------------------------|------|-------|-----------|------------|---------|-----|
| (1000 LB)               | 70   | 80    | 90        | 100        | 110     | 120 |
| 5                       | -0.2 | -0.1  | 0.0       | 0.2        | 0.5     | 0.8 |
| 10                      | -0.5 | -0.3  | 0.0       | 0.5        | 1.1     | 1.8 |
| 15                      | -0.7 | -0.4  | 0.0       | 0.7        | 1.6     | 2.6 |
| 20                      | -0.9 | -0.5  | 0.0       | 0.9        | 2.1     | 3.4 |
| 25                      | -1.1 | -0.6  | 0.0       | 1.1        | 2.5     | 4.1 |
| 30                      | -1.2 | -0.7  | 0.0       | 1.3        | 2.8     | 4.7 |
| 35                      | -1.4 | -0.8  | 0.0       | 1.4        | 3.1     | 5.2 |
| 40                      | -1.5 | -0.8  | 0.0       | 1.5        | 3.4     | 5.6 |
| 45                      | -1.5 | -0.9  | 0.0       | 1.6        | 3.6     | 5.9 |

#### **Descent at 220 KIAS**

| PRESSURE ALT (1000 FT) | 5  | 10 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 |
|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| DISTANCE (NM)          | 19 | 28 | 37 | 41 | 45 | 49 | 52 | 56 | 60 | 64 | 67 | 71 |
| TIME (MINUTES)         | 7  | 9  | 11 | 12 | 13 | 14 | 14 | 15 | 16 | 16 | 17 | 18 |

#### 737 Flight Crew Operations Manual

Holding Flaps Up

| W   | EIGHT   |      |      | PRESSURE A | LTITUDE (FT) |       |       |
|-----|---------|------|------|------------|--------------|-------|-------|
| (10 | 000 LB) | 1500 | 5000 | 10000      | 15000        | 20000 | 25000 |
|     | EPR     | 1.55 | 1.64 | 1.80       | 2.00         |       |       |
| 130 | KIAS    | 243  | 246  | 246        | 247          |       |       |
|     | FF/ENG  | 5330 | 5320 | 5260       | 5400         |       |       |
|     | EPR     | 1.49 | 1.58 | 1.73       | 1.91         |       |       |
| 120 | KIAS    | 232  | 236  | 236        | 237          |       |       |
|     | FF/ENG  | 4890 | 4900 | 4830       | 4870         |       |       |
|     | EPR     | 1.44 | 1.52 | 1.66       | 1.83         | 2.04  |       |
| 110 | KIAS    | 220  | 223  | 227        | 227          | 228   |       |
|     | FF/ENG  | 4470 | 4450 | 4430       | 4400         | 4540  |       |
|     | EPR     | 1.40 | 1.46 | 1.59       | 1.74         | 1.93  | 2.19  |
| 100 | KIAS    | 210  | 211  | 216        | 216          | 217   | 219   |
|     | FF/ENG  | 4100 | 4030 | 4020       | 3960         | 4010  | 4310  |
|     | EPR     | 1.37 | 1.43 | 1.54       | 1.67         | 1.85  | 2.07  |
| 90  | KIAS    | 210  | 210  | 210        | 210          | 210   | 210   |
|     | FF/ENG  | 3930 | 3840 | 3740       | 3660         | 3640  | 3770  |
|     | EPR     | 1.36 | 1.41 | 1.51       | 1.64         | 1.80  | 2.02  |
| 80  | KIAS    | 210  | 210  | 210        | 210          | 210   | 210   |
|     | FF/ENG  | 3790 | 3700 | 3600       | 3520         | 3480  | 3560  |
|     | EPR     | 1.34 | 1.39 | 1.49       | 1.61         | 1.77  | 1.97  |
| 70  | KIAS    | 210  | 210  | 210        | 210          | 210   | 210   |
|     | FF/ENG  | 3680 | 3590 | 3480       | 3400         | 3340  | 3400  |
|     | EPR     | 1.33 | 1.38 | 1.47       | 1.58         | 1.74  | 1.93  |
| 60  | KIAS    | 210  | 210  | 210        | 210          | 210   | 210   |
|     | FF/ENG  | 3580 | 3490 | 3380       | 3300         | 3240  | 3270  |

This table includes 5% additional fuel for holding in a racetrack pattern.



Intentionally Blank

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. PI.24.4 D6-27370-200A-TBC April 3, 2015

737-200ADV/JT8D-17A FAA

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight**

Text

Chapter PI Section 25

### Introduction

This chapter contains information required to complete a normal flight. In the event of conflict between data presented in this chapter and that contained in the Approved Flight Manual, the Flight Manual shall always take precedence.

## General

## **Takeoff Speeds**

The speeds presented in the Takeoff Speeds table can be used for all performance conditions except where adjustments must be made to V1 for clearway, stopway, anti-skid inoperative, improved climb, contaminated runway situations or brake energy limitations. These speeds may be used for weights less than or equal to the performance limited weight.

Normal takeoff speeds, V1, VR and V2, with anti-skid on, are read from the table by entering with station pressure altitude and moving horizontally to the appropriate outside air temperature (OAT) column. Proceed down and read V1, VR and V2 for the anticipated takeoff weight and flap setting. Slope and wind adjustments to V1 are obtained by entering the V1 Adjustments chart. Adjusted V1 must not exceed VR.

## VMCG

Regulations prohibit scheduling takeoff with a V1 less than minimum V1 for control on the ground, VMCG. Therefore compare the adjusted V1 to the VMCG. To find VMCG, enter the VMCG table with the airport pressure altitude and actual OAT. If VR is less than VMCG, set VR equal to VMCG, and determine a new V2 by adding the difference between the normal VR and VMCG to the normal V2.

## **Clearway and Stopway V1 Adjustments**

Takeoff speed adjustments are to be applied to V1 speed when using takeoff weights based on the use of clearway and stopway.

Adjust V1 speed by the amount shown in the appropriate column. The adjusted V1 speed must not exceed VR.

Maximum allowable clearway limits are provided for guidance when more precise data is not available.

#### **Performance Inflight** Text

### Stab Trim

To find takeoff stabilizer trim setting, enter the Stab Trim Setting table with takeoff flap setting and center of gravity (C.G. % MAC) and read required stabilizer trim units.

## VREF

The Reference Speed table contains flaps 40, 30 and 15 landing speeds for a given weight. Apply wind adjustments shown as required.

## **Flap Maneuver Speeds**

This table provides the flap speed schedule for recommended maneuvering speed. The speed schedule is a function of weight and will provide adequate maneuver margin above stall at all weights.

During flap retraction/extension, movement of the flap to the next position should be initiated when reaching the maneuver speed for the existing flap.

## **Slush/Standing Water Takeoff**

Experience has shown that aircraft performance may deteriorate significantly on runways covered with snow, slush, standing water or ice. Therefore, reductions in field/obstacle limited takeoff weight and revised takeoff speeds are necessary. The tables are intended for guidance in accordance with advisory material and are based on all engines operating throughout the takeoff.

The entire runway is assumed to be completely covered by a contaminant of uniform thickness and density. Therefore this information is conservative when operating under typical colder weather conditions where patches of slush exist and some degree of sanding is common. Takeoffs in slush/standing water depths greater than 0.50 inches (13 mm) are not recommended because of possible airplane damage as a result of slush/standing water impingement on the airplane structure. The use of assumed temperature method for reduced thrust is not allowed on contaminated runways. Interpolation for slush/standing water depths between the values shown is permitted.

Takeoff weight determination:

Instructions for Using Tables:

1. Determine the dry field/obstacle limit weight for the anticipated flap setting.

2. Enter the Weight Adjustment table with the dry field/obstacle limit weight to obtain the slush/standing water weight adjustment for the slush depth and airport pressure altitude.

737 Flight Crew Operations Manual

3. Determine takeoff speeds VR and V2 for the actual brake release weight from the Takeoff Speeds chart.

Interpolate for intermediate slush depths as required using the dry runway condition as zero slush depth.

## **Anti-skid Inoperative**

For anti-skid inoperative, the runway limited maximum gross weight at brake release and the V1 speed must be reduced to allow for the effect on accelerate-stop performance as detailed in the Approved Airplane Flight Manual. Obstacle clearance capability must also be considered since the reduced V1 speed will increase the distance required to achieve a given height above the runway following engine failure. A simplified method which conservatively accounts for the effects of anti-skid inoperative is shown below. Reduce the dry runway/obstacle limited weight at brake release obtained from the takeoff performance charts in this section or from the specific airport analysis and the associated V1 (i.e., V1 for the runway/obstacle limited weight at brake release) by the weight and V1 values shown in the table below. (Note that the resulting V1 must not be less than VMCG value.)

For takeoff below the anti-skid inoperative limited weight it is only necessary to ensure that the V1 speed set does not exceed the anti-skid limited V1 value.

| AN                    | TI-SKID INOPERATIVE ADJUSTMEN | NTS                    |
|-----------------------|-------------------------------|------------------------|
| RUNWAY LENGTH<br>(FT) | WEIGHT ADJUSTMENT<br>(LB)     | V1 ADJUSTMENT<br>(KTS) |
| LESS THAN 5000        | CHECK AFM                     |                        |
| 5000                  | -11000                        | -26                    |
| 6000                  | -11000                        | -23                    |
| 7000                  | -11000                        | -22                    |
| 8000                  | -11000                        | -21                    |
| 9000                  | -11000                        | -20                    |
| 10000                 | -11000                        | -19                    |
| 11000                 | -11000                        | -18                    |
| 12000                 | -11000                        | -17                    |

If the resulting V1 is less than minimum V1, takeoff is permitted with V1 set equal to VMCG.

Detailed analysis for the specific case from the AFM may yield a less restrictive penalty.

737 Flight Crew Operations Manual

## **Takeoff EPR**

To find Takeoff EPR based on normal engine bleed for air conditioning packs on, enter Takeoff EPR table with airport pressure altitude and airport OAT and read EPR. For packs off operation, apply the EPR adjustment shown below the table. No takeoff EPR adjustment is required for wing anti-ice operation.

## Reduced Takeoff EPR

The tables present the allowable Takeoff EPR Reduction as a function of Actual OAT and Surplus Weight which is defined as the difference between the Performance Limited TOGW and the Actual TOGW. These tables are valid for engine A/C bleed on or off, any flap setting. They are not valid when the maximum takeoff weight is limited by obstacles, brake energy or tire speed. Since the tables are conservative, larger reductions in EPR may be achieved under some conditions by using the Assumed Temperature Method described in the AFM Appendix.

Enter the Field Length Limited section of the table appropriate for the airplane pressure altitude with the Surplus Weight based on the field length limit (i.e., Field length limited weight minus actual weight). Read the allowable Takeoff EPR Reduction. Then enter the Climb Limited section of the table with the Surplus Weight based on the climb limit and determine the allowable Takeoff EPR Reduction. Use the smaller of the two reductions. Enter the Minimum EPR table with the pressure altitude. The Takeoff EPR, after the reduction is applied, should not be less than this minimum. Apply the noted V1, VR and V2 adjustments.

Takeoff with assumed temperature reduced thrust is not permitted when: runway is contaminated with water, ice, slush or snow; anti-skid is inoperative. Use of this procedure is not recommended if potential windshear conditions exist.

## Max Climb EPR

This table shows Max Climb EPR based on normal engine bleed for packs on and anti-ice off. Enter the table with pressure altitude and TAT and read EPR. EPR adjustments are shown for anti-ice operation.

## Go-around EPR

To find Go-around EPR based on normal engine bleed for packs on and wing anti-ice off, enter the Go-around EPR table with airport pressure altitude and reported OAT or TAT and read EPR. For packs off, apply the EPR adjustment shown below the table. EPR adjustments are also shown for engine and wing anti-ice operations.

### Flight with Unreliable Airspeed / Turbulent Air Penetration

Pitch attitude and average EPR information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration.

Pitch attitude is shown in bold type for emphasis since altitude and/or vertical speed indications may also be unreliable.

### All Engines

### Long Range Cruise Maximum Operating Altitude

Maximum altitudes are shown for a given cruise weight and maneuver capability. This table considers both thrust and buffet limits, providing the more limiting of the two. Any data that is thrust limited is denoted by an asterisk and represents only a thrust limited condition in level flight with 100 ft/min residual rate of climb. Flying above these altitudes with sustained banks in excess of approximately 15° may cause the airplane to lose speed and/or altitude.

Note that the altitudes shown in the table are limited to the maximum certified altitude of 37000 ft.

### Long Range Cruise Control

These tables provide target EPR, Long Range Cruise Mach number, KIAS and standard day fuel flow per engine for the airplane weight and pressure altitude. As indicated by the shaded area, at optimum altitude .72M approximates the Long Range Cruise Mach schedule.

### Long Range Cruise Enroute Fuel and Time

Long Range Cruise Enroute Fuel and Time tables are provided to determine remaining time and fuel required to destination. The data is based on Long Range Cruise and .70/280/250 descent. Tables are presented for low altitudes and high altitudes.

To determine remaining fuel and time required, first enter the Ground to Air Miles Conversion table to convert ground distance and enroute wind to an equivalent still air distance for use with the Reference Fuel and Time tables. Next, enter the Reference Fuel and Time table with air distance from the Ground to Air Miles Conversion table and the desired altitude and read Reference Fuel and Time Required. Lastly, enter the Fuel Required Adjustment table with the Reference Fuel and the actual weight at checkpoint to obtain fuel required to destination.

### Long Range Cruise Wind-Altitude Trade

Wind is a factor which may justify operations considerably below optimum altitude. For example, a favorable wind component may have an effect on ground speed which more than compensates for the loss in air range.

Using this table, it is possible to determine the break-even wind (advantage necessary or disadvantage that can be tolerated) to maintain the same range at another altitude and long range cruise speed. The tables make no allowance for climb or descent time, fuel or distance, and are based on comparing ground fuel mileage.

### Descent

Distance and time for descent are shown for a .70/280/250 descent speed schedule. Enter the table with top of descent pressure altitude and read distance in nautical miles and time in minutes. Data is based on flight idle thrust descent in zero wind. Allowances are included for a straight-in approach with gear down and landing flaps at the outer marker.

## Holding

Target EPR, indicated airspeed and fuel flow per engine information is tabulated for holding with flaps up based on the optimum holding speed schedule. This is the higher of the maximum endurance speed and the maneuvering speed. Small variations in airspeed will not appreciably affect the overall endurance time. Enter the table with weight and pressure altitude to read EPR, KIAS and fuel flow per engine.

### **Advisory Information**

### **Autobrake Landing Distance**

The Autobrake Landing Distance tables are provided as advisory information to assist in the selection of the most desirable autobrake setting for a given field length. It is not to be used to determine required field length. This data reflects actual landing distances on a dry runway for setting MINIMUM through MAXIMUM, from touchdown to full stop, with or without reverse thrust. The tables include typical flare distances from threshold. 737-200ADV/JT8D-17A FAA

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

To use the Autobrake Landing Distance table, determine the appropriate table to use. The Digital Autobrake Landing Distance table is only applicable if Autobrake Control Valve Module, Boeing part number 60800263 is installed. Enter the chart with the estimated approach speed and determine the actual stopping distance from touchdown for a given autobrake setting. If airspeed is used for approach speed, adjust landing distance for pressure altitude and tailwind effects.

Selection of an autobrake setting results in a constant rate of deceleration. Maximum effort manual braking should achieve shorter landing distance than the MAXIMUM setting.

### **Slippery Runway Landing Distance**

Landing distances are the actual landing distances and do not include the 1.67% regulatory factor. Therefore they cannot be used to determine dispatch required landing field length. When landing on slippery runways or runways contaminated with ice, snow, slush or standing water, the reported braking action must be considered. If the surface is affected by water, snow or ice, and the braking action is reported as "good," conditions should not be expected to be as good as on clean dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when landing. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate the "good" at the airplane weight, and then apply the adjustments for airport pressure altitude and approach speed as required.

### Non-normal Configuration Landing Distance

Advisory information is provided to support non-normal configurations that affect landing performance of the airplane. Landing distances are shown for dry runway and good, medium and poor reported braking action. Each non-normal configuration is listed with its recommended approach speed. Landing distance can be determined for the reference landing weight and then adjusted for actual weight and pressure altitude.

## **Brake Cooling Schedule**

Advisory information is provided to assist in avoiding the problems associated with hot brakes. For normal operation, most landings are at weights below the AFM quick turnaround limit weight.

Use of the recommended cooling schedule will help avoid brake overheat and fuse plug problems that could result from repeated landings at short time intervals or a rejected takeoff.

Enter the Brake Cooling Schedule table with the airplane weight and brakes on speed, adjusted for wind at the appropriate temperature and altitude condition. Instructions for applying wind adjustments are included below the table. Linear interpolation may be used to obtain intermediate values. The resulting number is the reference brake energy per brake in millions of foot-pounds, and represents the amount of energy absorbed by each brake during a rejected takeoff.

To determine the energy per brake absorbed during landing, enter the Adjusted Brake Energy Per Brake table with the reference brake energy per brake and the type of braking used during landing (RTO Max Man, Max Auto, Med Auto or Min Auto). The resulting number is the adjusted brake energy per brake and represents the energy absorbed in each brake during the landing.

The recommended cooling time is found in the final table by entering with the adjusted brake energy per brake. Times are provided for ground cooling and inflight gear down cooling.

## **Engine Inoperative**

## **Max Continuous EPR**

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude and TAT to read EPR.

It is desirable to maintain engine thrust within the limits of the Max Cruise thrust rating. However, where thrust in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous thrust rating. The Max Continuous thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

## Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb.

The level off altitude is dependent on air temperature (ISA deviation).

737 Flight Crew Operations Manual

## Driftdown/LRC Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to Long Range Cruise speed. Cruise is continued at level off altitude and Long Range Cruise speed.

To determine fuel required, enter the Ground to Air Miles Conversion table with the desired ground distance and adjust for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude are used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Diversion Fuel and Time table.

## Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on Long Range Cruise speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

## Long Range Cruise Control

The table provides target EPR, engine inoperative Long Range Cruise Mach number, KIAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn. To conservatively account for APU fuel burn, add 115 kg/hr to fuel flow values.

## Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .70/280/250 descent. Enter with Air Distance as determined from the Ground to Air Miles Conversion table and read Fuel and Time required at the cruise pressure altitude. Adjust the fuel obtained for deviation from the reference weight at checkpoint as required by entering the Fuel Required Adjustment table with the fuel required for the reference weight at checkpoint.

## Holding

Single engine holding data is provided in the same format as the all engine holding data and is based on the same assumptions.



### Gear Down

This section contains performance data for airplane operation with the landing gear extended. The data include engine bleed effects for normal air conditioning operation; i.e., two packs on at normal flow with all engines operating, and one pack normal flow with engine inoperative.

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.

737 Flight Crew Operations Manual

## Performance Inflight

Table of Contents

Chapter PI Section 30

## 737-200ADV JT8D-9 LB FAA

| General PI.30.1                                                      |
|----------------------------------------------------------------------|
| Takeoff Speeds PI.30.1                                               |
| VMCG PI.30.2                                                         |
| Clearway and Stopway V1 Adjustments PI.30.2                          |
| Stab Trim Setting PI.30.2                                            |
| VREF (KIAS) PI.30.3                                                  |
| Flap Maneuver Speeds PI.30.4                                         |
| Slush/Standing Water Takeoff PI.30.5                                 |
| Takeoff EPRPI.30.6                                                   |
| %N1 vs EPR Crosscheck PI.30.6                                        |
| Reduced Takeoff EPR PI.30.7                                          |
| Max Climb EPR PI.30.9                                                |
| Go-around EPR PI.30.10                                               |
| Flight With Unreliable Airspeed / Turbulent Air Penetration PI.30.11 |
| All Engines                                                          |
| Long Range Cruise Maximum Operating Altitude PI.31.1                 |
| Long Range Cruise Control PI.31.2                                    |
| Long Range Cruise Enroute Fuel and Time - Low Altitudes . PI.31.2    |
| Long Range Cruise Enroute Fuel and Time - High Altitudes. PI.31.3    |
| Long Range Cruise Wind-Altitude Trade PI.31.4                        |
| Descent at .70/280/250 PI.31.5                                       |
| Holding PI.31.5                                                      |
| Normal Configuration Landing Distance - Autobrake System PI.32.1     |
| Normal Configuration Landing Distance - Digital                      |
| Autobrake System PI.32.4                                             |
| Non-Normal Configuration Landing Distance PI.32.7                    |
| Brake Cooling Schedule PI.32.11                                      |

737 Flight Crew Operations Manual

| Engine Inoperative                        | PI.33.1  |
|-------------------------------------------|----------|
| Max Continuous EPR                        | PI.33.1  |
| Driftdown Speed/Level Off Altitude        | PI.33.2  |
| Driftdown/LRC Cruise Range Capability     | PI.33.2  |
| Long Range Cruise Altitude Capability     | PI.33.3  |
| Long Range Cruise Control                 | PI.33.3  |
| Long Range Cruise Diversion Fuel and Time | PI.33.4  |
| Holding                                   | PI.33.5  |
| Gear Down                                 | PI.34.1  |
| 220 KIAS Cruise Altitude Capability       | PI.34.1  |
| 220 KIAS Cruise Control                   |          |
| 220 KIAS Enroute Fuel and Time            |          |
| Descent at 220 KIAS                       | PI.34.3  |
| Holding                                   |          |
| Text                                      | PI.35.1  |
| Introduction                              | PI.35.1  |
| General                                   | PI.35.1  |
| All Engines                               | PI.35.5  |
| Advisory Information                      | PI.35.6  |
| Engine Inoperative                        | PI.35.8  |
| Gear Down                                 | PI.35.10 |

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight** General

#### **Takeoff Speeds**

| V1,                    | VR, V2         |                                                                                                                                    |                   |                   |                   |                   |                   |            |                   |                   |            |                   |                   |            | AN             | ITI            | -sk                            | ID             | ON                |
|------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|------------|----------------|----------------|--------------------------------|----------------|-------------------|
| PRESS<br>ALTIT<br>1000 | UDE            |                                                                                                                                    |                   |                   |                   |                   |                   |            | 0/                | Υ                 |            |                   |                   |            |                |                |                                |                |                   |
| 9 TO                   | 10 🔊 🖁         |                                                                                                                                    |                   |                   |                   |                   |                   | -65<br>-54 | το-               | 22<br>30          | -21<br>-29 |                   | 7<br>14           | 8<br>-13   |                | 34<br>1        | <sup>35</sup> to 86<br>2 to 30 |                |                   |
| 7 TO                   | 9              |                                                                                                                                    |                   |                   | -65<br>-54        | to                | 25<br>32          | -24<br>-31 | to_               | 2<br>17           | 3<br>-16   |                   | 31<br>1           | 32         |                | 56<br>13       | 57<br>14                       |                | 97<br>36          |
| 5 TO                   | 7              | -65<br>-54                                                                                                                         |                   | -20<br>-29        | -19<br>-28        |                   | 11<br>12          | 12<br>-11  | 2 +0              | 34<br>1           | 35<br>2    |                   | 58<br>14          | 59<br>15   |                | 97<br>36       | 98<br>37                       | to             | 15<br>46          |
| 3 TO                   | 5 🔊 ° c        | -65<br>-54                                                                                                                         | to                | 14                | 17<br>- 8         |                   | 40<br>4           | 41         |                   | 85<br>29          | 86<br>30   |                   | 99<br>37          | 100<br>38  |                | 15<br>46       |                                |                |                   |
| 1 TO                   | 3              | -65<br>-54                                                                                                                         | to                | 47<br>8           | 48                |                   | 88<br>31          | 89<br>32   |                   | 01<br>38          | 102<br>39  |                   | 15<br>46          |            |                |                |                                |                |                   |
| -1 TO                  | 1 🔊 🖧          | -65<br>-54                                                                                                                         |                   | 92<br>33          | 93<br>34          |                   | 03<br>39          | 104<br>40  |                   | 15<br>46          |            |                   |                   |            |                |                |                                |                |                   |
|                        |                |                                                                                                                                    |                   |                   | ×                 |                   |                   | ×          |                   | ,                 |            |                   |                   | ~          |                |                | ×                              |                |                   |
| FLAPS                  | WT<br>1000 LB  | V <sub>1</sub>                                                                                                                     | V <sub>R</sub>    | ٧2                | V1                | V <sub>R</sub>    | v <sub>2</sub>    | V1         | V <sub>R</sub>    | v <sub>2</sub>    | V1         | V <sub>R</sub>    | v <sub>2</sub>    | V1         | V <sub>R</sub> | v <sub>2</sub> | V <sub>1</sub>                 | V <sub>R</sub> | v <sub>2</sub>    |
|                        | 120            | 151                                                                                                                                | 153               | 158               | 152               | 154               | 158               | 153        | 155               | 158               | 153        | 155               | 158               | -          |                |                |                                | ĸ              | 2                 |
| 1                      | 110<br>100     | 137                                                                                                                                | 146<br>138        |                   | 145<br>138        | 147<br>139        | 151<br>144        | 138        |                   | 151<br>144        | 145<br>139 | 147<br>140        | 151<br>144        |            | 140            | 151<br>144     | 140                            |                | 144               |
| •                      | 90<br>80       | 120                                                                                                                                | 130<br>121        | 128               | 129<br>121        | 130<br>122        | 136<br>128        | 121        |                   | 128               | 131<br>121 | 132<br>123        | 136<br>128        | 131<br>122 |                | 136<br>128     | 132<br>123                     | 124            | 136<br>128        |
|                        | 70<br>120      | 146                                                                                                                                | 111<br>148        | 120<br>153        | 112<br>147        | 113<br>149        | 120<br>153        | 148        | 113<br>150        | 120<br>153        | 113        | 114               | 120               | 113        | 114            | 120            | 114                            | 115            | 120               |
| 2                      | 110<br>100     | 133                                                                                                                                | 141<br>134        |                   | 141<br>133        | 142<br>134        | 146<br>139        | 134        | 142<br>135        | 139               | 142<br>134 | 135               | 146<br>139        | 134        |                | 139            |                                | 136            | 139               |
| 2                      | 90<br>80<br>70 | 117                                                                                                                                | 125<br>117<br>107 | 132<br>124<br>116 | 126<br>117<br>108 | 126<br>117<br>108 | 132<br>124<br>116 | 118        | 126<br>118<br>109 | 132<br>124<br>116 |            | 127<br>119<br>110 | 132<br>124<br>116 | 126<br>119 |                | 132<br>124     |                                |                | 132<br>124<br>116 |
|                        | 120            | 144                                                                                                                                | 145               | 150               | 145               | 146               | 150               |            |                   |                   |            |                   |                   | 110        | 110            | 110            |                                |                | 110               |
| 5                      | 110<br>100     | 131                                                                                                                                | 138<br>131        | 136               | 138<br>131        | 139<br>131        | 143<br>136        | 138<br>132 | 132               | 136               | 132        | 132               | 143<br>136        | 133        |                | 136            |                                |                |                   |
| _                      | 90<br>80       | 115                                                                                                                                | 123<br>115        | 129<br>122        | 123<br>115        | 123<br>115        | 129<br>122        |            | 116               | 129<br>122        | 116        | 124<br>116        | 129<br>122        | 125<br>117 | 117            | 129<br>122     | 117                            |                | 122               |
|                        | 70             |                                                                                                                                    | 106<br>133        | 114<br>138        | 105<br>132        | 106<br>133        | 114<br>138        | 106<br>133 | 107<br>134        | 114<br>138        | 107        | 108               | 114               | 107        | 108            | 114            | 108                            | 109            | 114               |
| 10                     | 100<br>90      |                                                                                                                                    | 125<br>118        | 131<br>124        | 125<br>117        | 126<br>118        | 131<br>124        | 125<br>118 | 126<br>119        | 131<br>124        |            | 126<br>119        | 131<br>124        | 118        | 119            | 124            | 119                            | 120            | 124               |
| 10                     | 80<br>70       | 109                                                                                                                                | 110               | 117               | 109<br>105        | 110               | 117               |            | 111               | 117               | 110<br>105 | 111               | 117               | 111<br>105 | 112            | 117            | 111<br>105                     | 112            | 117<br>110        |
|                        | 110            | 129                                                                                                                                | 129               | 134               | 130               | 130               | 134               | 130        | 130               | 134               | 131        | 131               | 134               | 105        | 105            | 110            | 105                            | 105            | 110               |
| 15                     | 100<br>90      | 114                                                                                                                                | 122<br>114        | 127<br>121        | 122<br>115        | 122<br>115        | 127<br>121        |            | 123<br>115        | 127<br>121        | 123<br>116 | 123<br>116        | 127<br>121        | 116        |                | 121            |                                |                |                   |
|                        | 80<br>70       |                                                                                                                                    | 106<br>105        | 113<br>110        | 107<br>105        | 107<br>105        | 113<br>110        | 107<br>105 | 107<br>105        | 113<br>110        | 108<br>105 | 108<br>105        | 113<br>110        | 108<br>105 | 108<br>105     | 113<br>110     | 109<br>105                     | 109<br>105     | 113<br>110        |
| 25                     | 100<br>90      |                                                                                                                                    |                   |                   |                   |                   |                   |            |                   |                   |            |                   |                   |            |                |                |                                |                |                   |
| 25                     | 80<br>70       | 105                                                                                                                                | 105<br>105        | 110               | 105<br>105        | 105<br>105        | 110<br>110<br>110 | 105        | 105<br>105        | 110<br>110        | 106        | 106               | 111               | 106<br>105 |                | 111<br>110     | 107<br>105                     | 107<br>105     | 111<br>110        |
|                        | D AREA IN      | AREA INDICATES PERFORMANCE AFFECTED BY MINIMUM CONTROL SPEED,<br>JM FIELD LENGTH FOR LIGHTEST WEIGHT ABOVE BOXED AREA IS REQUIRED. |                   |                   |                   |                   |                   |            |                   |                   |            |                   |                   |            |                |                |                                |                |                   |
|                        |                |                                                                                                                                    |                   |                   |                   |                   |                   |            |                   |                   |            | V1                | AD                | JUST       | MEN            | ITS            |                                |                |                   |

| V1 ADJU           | ISTMENTS          |  |  |  |  |  |  |  |
|-------------------|-------------------|--|--|--|--|--|--|--|
| WIND              | SLOPE             |  |  |  |  |  |  |  |
| SUBTRACT 1 KT PER | SUBTRACT 1 KT PER |  |  |  |  |  |  |  |
| 5 KTS TAILWIND    | 1% DOWN SLOPE     |  |  |  |  |  |  |  |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. **October 9, 2008** D6-27370-200A-TBC PI.30.1

#### ANTT CKTD ON

**Chapter PI** Section 30

VMCG

## **DO NOT USE FOR FLIGHT**

#### 737 Flight Crew Operations Manual

| OAT  |     |      | PRESSURE A | LTITUDE (FT) |      |       |
|------|-----|------|------------|--------------|------|-------|
| (°C) | 0   | 2000 | 4000       | 6000         | 8000 | 10000 |
| 50   | 95  | 91   | 88         |              |      |       |
| 40   | 99  | 95   | 92         | 88           | 85   |       |
| 30   | 103 | 99   | 96         | 92           | 89   | 85    |
| 20   | 103 | 100  | 96         | 92           | 89   | 86    |
| 10   | 103 | 101  | 97         | 94           | 90   | 87    |
| 0    | 103 | 103  | 100        | 96           | 92   | 89    |
| -10  | 103 | 103  | 102        | 98           | 94   | 91    |
| -20  | 103 | 103  | 104        | 100          | 96   | 93    |
| -30  | 103 | 103  | 104        | 102          | 98   | 94    |
| -40  | 103 | 103  | 104        | 103          | 100  | 96    |

#### **Clearway and Stopway V1 Adjustments**

| CLEARWAY MINUS |     | NORMAL V1 (KIAS) |     |     |  |  |  |  |  |  |  |  |
|----------------|-----|------------------|-----|-----|--|--|--|--|--|--|--|--|
| STOPWAY (FT)   | 100 | 120              | 140 | 160 |  |  |  |  |  |  |  |  |
| 900            | -3  | -3               | -3  | -3  |  |  |  |  |  |  |  |  |
| 600            | -2  | -2               | -2  | -2  |  |  |  |  |  |  |  |  |
| 300            | -1  | -1               | -1  | -1  |  |  |  |  |  |  |  |  |
| 0              | 0   | 0                | 0   | 0   |  |  |  |  |  |  |  |  |
| -300           | 1   | 1                | 1   | 1   |  |  |  |  |  |  |  |  |
| -600           | 2   | 2                | 2   | 2   |  |  |  |  |  |  |  |  |
| -900           | 3   | 3                | 3   | 3   |  |  |  |  |  |  |  |  |

#### Maximum Allowable Clearway

| FIELD LENGTH<br>(FT) | MAX ALLOWABLE<br>CLEARWAY FOR V1<br>REDUCTION (FT) |
|----------------------|----------------------------------------------------|
| 4000                 | 450                                                |
| 6000                 | 600                                                |
| 8000                 | 700                                                |
| 10000                | 800                                                |

#### Stab Trim Setting Max Takeoff Thrust

| C.G. %MAC             | 6     | 10    | 14    | 18    | 22    | 26 | 30    | 32    |
|-----------------------|-------|-------|-------|-------|-------|----|-------|-------|
| FLAPS 1 THRU FLAPS 10 | 7 3/4 | 7     | 6 1/4 | 5 1/2 | 4 3/4 | 4  | 3 1/4 | 2 3/4 |
| FLAPS 15 & FLAPS 25   | 8 3/4 | 7 3/4 | 7     | 6     | 5     | 4  | 3 1/4 | 2 3/4 |

#### 737 Flight Crew Operations Manual

#### VREF (KIAS)

| ( )       |     |       |     |
|-----------|-----|-------|-----|
| WEIGHT    |     | FLAPS |     |
| (1000 LB) | 40  | 30    | 15  |
| 130       | 149 | 154   | 161 |
| 125       | 146 | 150   | 158 |
| 120       | 142 | 146   | 154 |
| 115       | 139 | 142   | 150 |
| 110       | 135 | 139   | 146 |
| 105       | 132 | 135   | 142 |
| 100       | 128 | 131   | 138 |
| 95        | 124 | 127   | 134 |
| 90        | 121 | 124   | 131 |
| 85        | 117 | 120   | 127 |
| 80        | 113 | 116   | 123 |
| 75        | 110 | 112   | 119 |
| 70        | 106 | 109   | 115 |

For approach speed add wind factor of 1/2 headwind component + gust (max 20 knots).

#### 737 Flight Crew Operations Manual

#### **Flap Maneuver Speeds**

|          |                       | MANEUVER SPEED (KIAS)                        |                 |  |  |
|----------|-----------------------|----------------------------------------------|-----------------|--|--|
| FLAP     |                       | WEIGHT                                       |                 |  |  |
| POSITION | AT OR BELOW 117000 LB | ABOVE 117000 LB AND<br>AT OR BELOW 138500 LB | ABOVE 138500 LB |  |  |
| UP       | 210                   | 220                                          | 230             |  |  |
| 1        | 190                   | 200                                          | 210             |  |  |
| 5        | 170                   | 180                                          | 190             |  |  |
| 10       | 160                   | 170                                          | 180             |  |  |
| 15       | 150                   | 160                                          | 170             |  |  |
| 25       | 140                   | 150                                          | 160             |  |  |

737 Flight Crew Operations Manual

## ALL ENGINES

#### ADVISORY INFORMATION

#### Slush/Standing Water Takeoff Weight Adjustment (1000 LB)

| DRY FIELD/   |           | SLUSH/STANDING WATER DEPTH |       |                     |              |          |  |  |  |  |  |  |
|--------------|-----------|----------------------------|-------|---------------------|--------------|----------|--|--|--|--|--|--|
| OBSTACLE     | 0.2       | 5 INCHES (6 m              | m)    | 0.50 INCHES (13 mm) |              |          |  |  |  |  |  |  |
| LIMIT WEIGHT | F         | PRESS ALT (FT              | )     | P                   | RESS ALT (FT | <u>)</u> |  |  |  |  |  |  |
| (1000 LB)    | S.L.      | 4000                       | 8000  | S.L.                | 4000         | 8000     |  |  |  |  |  |  |
| 140          | -10.0     | -11.1                      | -12.4 | -21.8               | -25.6        | -30.8    |  |  |  |  |  |  |
| 130          | -8.4      | -10.6                      | -12.6 | -19.2               | -23.2        | -29.2    |  |  |  |  |  |  |
| 120          | -7.3      | -8.9                       | -11.1 | -16.0               | -20.0        | -26.1    |  |  |  |  |  |  |
| 110          | -5.8      | -7.3                       | -10.0 | -12.5               | -16.5        | -22.5    |  |  |  |  |  |  |
| 100          | -4.5      | -6.1                       | -8.7  | -9.4                | -13.0        | -18.4    |  |  |  |  |  |  |
| 90           | -3.7 -5.0 |                            | -6.4  | -6.7                | -9.5         | -14.0    |  |  |  |  |  |  |
| 80           | -2.0      | -3.5                       | -4.2  | -4.2                | -5.9         | -8.7     |  |  |  |  |  |  |

For flaps 10, 15 and 25 increase allowable weight limit on slush/standing water by 1000 lb (0.25 in) or 2000 lb (0.50 in).

Interpolate as required using dry runway as zero slush/standing water depth.

#### 737 Flight Crew Operations Manual

#### **Takeoff EPR**

#### Based on engine bleed for packs on and anti-ice on or off

|     | RT OAT |       | I    |      | AIRPOF |      |      |      | DE (ET | )    |      |      |
|-----|--------|-------|------|------|--------|------|------|------|--------|------|------|------|
| °F  | °C     | -1000 | 0    | 1000 | 2000   | 3000 | 4000 | 5000 | 5660   | 6000 | 7000 | 8000 |
| -   |        |       |      |      |        |      |      |      |        |      |      |      |
| 120 | 49     | 1.82  | 1.82 | 1.82 | 1.82   | 1.82 | 1.82 | 1.82 | 1.82   | 1.82 | 1.82 | 1.82 |
| 104 | 40     | 1.91  | 1.91 | 1.91 | 1.91   | 1.91 | 1.91 | 1.91 | 1.91   | 1.91 | 1.91 | 1.91 |
| 95  | 35     | 1.95  | 1.95 | 1.95 | 1.95   | 1.95 | 1.95 | 1.95 | 1.95   | 1.95 | 1.95 | 1.95 |
| 86  | 30     | 1.96  | 2.00 | 2.00 | 2.00   | 2.00 | 2.00 | 2.00 | 2.00   | 2.00 | 2.00 | 2.00 |
| 77  | 25     | 1.96  | 2.01 | 2.01 | 2.01   | 2.01 | 2.01 | 2.01 | 2.01   | 2.01 | 2.01 | 2.01 |
| 68  | 20     | 1.96  | 2.01 | 2.01 | 2.01   | 2.01 | 2.01 | 2.01 | 2.01   | 2.01 | 2.01 | 2.01 |
| 59  | 15     | 1.96  | 2.01 | 2.01 | 2.01   | 2.01 | 2.01 | 2.01 | 2.01   | 2.01 | 2.01 | 2.01 |
| 50  | 10     | 1.96  | 2.01 | 2.04 | 2.04   | 2.04 | 2.04 | 2.04 | 2.04   | 2.04 | 2.04 | 2.04 |
| 41  | 5      | 1.96  | 2.01 | 2.06 | 2.07   | 2.07 | 2.07 | 2.07 | 2.07   | 2.07 | 2.07 | 2.07 |
| 32  | 0      | 1.96  | 2.01 | 2.06 | 2.11   | 2.11 | 2.11 | 2.11 | 2.11   | 2.11 | 2.11 | 2.11 |
| 23  | -5     | 1.96  | 2.01 | 2.06 | 2.11   | 2.14 | 2.14 | 2.14 | 2.14   | 2.14 | 2.14 | 2.14 |
| 14  | -10    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.17 | 2.17 | 2.17   | 2.17 | 2.17 | 2.17 |
| 5   | -15    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.19 | 2.19 | 2.19   | 2.19 | 2.19 | 2.19 |
| -4  | -20    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.22 | 2.22 | 2.22   | 2.22 | 2.22 | 2.22 |
| -13 | -25    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.22 | 2.24 | 2.24   | 2.24 | 2.24 | 2.24 |
| -22 | -30    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.22 | 2.27 | 2.27   | 2.27 | 2.27 | 2.27 |
| -31 | -35    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.22 | 2.27 | 2.29   | 2.29 | 2.29 | 2.29 |
| -40 | -40    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.22 | 2.27 | 2.31   | 2.31 | 2.31 | 2.31 |
| -49 | -45    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.22 | 2.27 | 2.31   | 2.31 | 2.31 | 2.31 |
| -65 | -54    | 1.96  | 2.01 | 2.06 | 2.11   | 2.16 | 2.22 | 2.27 | 2.31   | 2.31 | 2.31 | 2.31 |

#### **EPR Adjustments for Engine Bleeds**

| BLEED         | AIRPORT PRESSURE ALTITUDE (FT) |      |  |  |  |  |  |  |  |
|---------------|--------------------------------|------|--|--|--|--|--|--|--|
| CONFIGURATION | -1000                          | 8000 |  |  |  |  |  |  |  |
| PACKS OFF     | 0.03                           | 0.03 |  |  |  |  |  |  |  |

#### %N1 vs EPR Crosscheck (Takeoff and Go-around)

| AIRF           | PORT |      |      | Т    | ARGET %N | 1    |      |      |
|----------------|------|------|------|------|----------|------|------|------|
| O <sub>4</sub> | AT   |      |      |      | EPR      |      |      |      |
| °F             | °C   | 1.70 | 1.80 | 1.90 | 2.00     | 2.10 | 2.20 | 2.30 |
| 130            | 54   | 90   | 93   | 96   | 99       | 102  | 107  | 111  |
| 122            | 50   | 89   | 92   | 95   | 98       | 102  | 106  | 110  |
| 104            | 40   | 88   | 91   | 94   | 97       | 100  | 104  | 108  |
| 86             | 30   | 87   | 90   | 92   | 95       | 99   | 102  | 106  |
| 68             | 20   | 85   | 88   | 91   | 94       | 97   | 101  | 105  |
| 50             | 10   | 84   | 87   | 89   | 92       | 95   | 99   | 103  |
| 32             | 0    | 82   | 85   | 88   | 90       | 94   | 97   | 101  |
| 14             | -10  | 81   | 84   | 86   | 89       | 92   | 95   | 99   |
| -4             | -20  | 79   | 82   | 84   | 87       | 90   | 94   | 97   |
| -22            | -30  | 78   | 80   | 83   | 85       | 88   | 92   | 95   |
| -40            | -40  | 76   | 78   | 81   | 84       | 87   | 90   | 94   |
| -58            | -50  | 75   | 77   | 79   | 82       | 85   | 88   | 92   |
| -65            | -54  | 74   | 76   | 78   | 81       | 84   | 87   | 91   |

Use scheduled Takeoff or Go-around EPR.

Use actual OAT only.

%N1 operating tolerance ±2%

%N1 limit 102.45%

A/C on or off

For engine anti-icing on, increase %N1 by 1%.

#### 737 Flight Crew Operations Manual

#### Reduced Takeoff EPR Based on engine bleed for packs on or off 1000 FT Pressure Altitude and Below Takeoff EPR Reduction

|                   |    |                 |                | 1              | FIELD          | LENG           | TH LIN         | MITED          | 1              |                |                 |                                 |
|-------------------|----|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|---------------------------------|
|                   |    |                 |                |                |                | O/             | ٨T             |                |                |                |                 |                                 |
| SURPLUS<br>WEIGHT | °C | -10<br>TO<br>-6 | -5<br>TO<br>-1 | 0<br>TO<br>4   | 5<br>TO<br>9   | 10<br>TO<br>14 | 15<br>TO<br>19 | 20<br>TO<br>24 | 25<br>TO<br>29 | 30<br>TO<br>33 | 34 AND<br>ABOVE | CLIMB<br>LIMITED<br>(ALL TEMPS) |
| (LB)              | °F | 14<br>TO<br>22  | 23<br>TO<br>31 | 32<br>TO<br>40 | 41<br>TO<br>49 | 50<br>TO<br>58 | 59<br>TO<br>67 | 68<br>TO<br>76 | 77<br>TO<br>85 | 86<br>TO<br>92 | 93 AND<br>ABOVE | (ALL TEMIS)                     |
| 1000 TO 1999      |    |                 |                |                |                |                |                |                |                |                | 0.01            | 0.00                            |
| 2000 TO 2999      |    |                 |                |                |                |                |                |                |                | 0.01           | 0.03            | 0.01                            |
| 3000 TO 3999      |    |                 |                |                |                |                |                |                | 0.01           | 0.03           | 0.04            | 0.02                            |
| 4000 TO 4999      |    |                 |                |                |                |                |                | 0.02           | 0.03           | 0.04           | 0.06            | 0.03                            |
| 5000 TO 5999      |    |                 |                |                |                | 0.01           | 0.02           | 0.03           | 0.05           | 0.06           | 0.08            | 0.04                            |
| 6000 TO 6999      |    |                 |                |                | 0.01           | 0.03           | 0.04           | 0.05           | 0.06           | 0.08           | 0.10            | 0.05                            |
| 7000 TO 7999      |    |                 |                | 0.02           | 0.03           | 0.04           | 0.05           | 0.07           | 0.08           | 0.09           | 0.11            | 0.06                            |
| 8000 TO 8999      |    |                 | 0.02           | 0.03           | 0.05           | 0.06           | 0.07           | 0.08           | 0.10           | 0.11           | 0.13            | 0.07                            |
| 9000 TO 9999      | 0  | 0.02            | 0.03           | 0.05           | 0.06           | 0.08           | 0.09           | 0.10           | 0.11           | 0.13           | 0.15            | 0.08                            |
| 10000 TO 10999    | 0  | 0.04            | 0.05           | 0.07           | 0.08           | 0.09           | 0.10           | 0.12           | 0.13           | 0.14           | 0.16            | 0.09                            |
| 11000 TO 11999    | 0  | 0.05            | 0.07           | 0.08           | 0.10           | 0.11           | 0.12           | 0.13           | 0.15           | 0.16           | 0.18            | 0.10                            |
| 12000 TO 12999    | 0  | 0.07            | 0.08           | 0.10           | 0.11           | 0.13           | 0.14           | 0.15           | 0.16           | 0.18           | 0.20            | 0.11                            |
| 13000 TO 13999    | 0  | 0.09            | 0.10           | 0.12           | 0.13           | 0.14           | 0.16           | 0.17           | 0.18           | 0.19           | 0.21            | 0.12                            |
| 14000 TO 14999    | 0  | 0.10            | 0.12           | 0.13           | 0.15           | 0.16           | 0.17           | 0.18           | 0.20           | 0.21           | 0.23            | 0.13                            |
| 15000 TO 15999    | 0  | ).12            | 0.14           | 0.15           | 0.16           | 0.18           | 0.19           | 0.20           | 0.21           | 0.23           | 0.25            | 0.14                            |
| 16000 TO 16999    | 0  | ).14            | 0.15           | 0.17           | 0.18           | 0.19           | 0.21           | 0.22           | 0.23           | 0.24           | 0.26            | 0.14                            |
| 17000 TO 17999    | 0  | ).15            | 0.17           | 0.18           | 0.20           | 0.21           | 0.22           | 0.24           | 0.25           | 0.26           | 0.28            | 0.15                            |
| 18000 TO 18999    | 0  | ).17            | 0.19           | 0.20           | 0.21           | 0.23           | 0.24           | 0.25           | 0.27           | 0.28           | 0.30            | 0.16                            |
| 19000 TO 19999    | 0  | ).19            | 0.20           | 0.22           | 0.23           | 0.24           | 0.26           | 0.27           | 0.28           | 0.29           | 0.30            | 0.17                            |
| 20000 TO 20999    | 0  | 0.20            | 0.22           | 0.23           | 0.25           | 0.26           | 0.27           | 0.29           | 0.30           | 0.30           | 0.30            | 0.18                            |
| 21000 TO 21999    | 0  | ).22            | 0.24           | 0.25           | 0.26           | 0.28           | 0.29           | 0.30           | 0.30           | 0.30           | 0.30            | 0.19                            |
| 22000 TO 22999    | 0  | ).24            | 0.25           | 0.27           | 0.28           | 0.29           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.20                            |
| 23000 TO 23999    | 0  | ).25            | 0.27           | 0.28           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.21                            |
| 24000 TO 24999    | 0  | ).27            | 0.29           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.22                            |
| 25000 TO 25999    | 0  | ).29            | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.23                            |
| 26000 TO 26779    | 0  | 0.30            | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.24                            |
| 26780 TO 27859    | 0  | 0.30            | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.25                            |
| 27860 TO 28929    | 0  | 0.30            | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.26                            |
| 28930 TO 29999    | 0  | 0.30            | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.27                            |
| 30000 TO 31069    | 0  | 0.30            | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.28                            |
| 31070 TO 32149    | 0  | 0.30            | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.29                            |
| 32150 AND ABOVE   | 0  | 0.30            | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30           | 0.30            | 0.30                            |

#### **Minimum EPR**

|                                         | PRESSURE ALTITUDE (1000 FT) |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------------------|-----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 13.5 |                             |      |      |      |      |      |      |      |      |      |      | 13.5 |      |      |      |
| 1.82                                    | 1.82                        | 1.82 | 1.82 | 1.83 | 1.85 | 1.86 | 1.88 | 1.90 | 1.92 | 1.99 | 2.01 | 2.01 | 2.01 | 2.01 | 2.01 |

Increase Minimum EPR by 0.03 for bleeds off.

Use actual weight and OAT to determine takeoff speeds. Increase V1 and VR by 1 kt for each 0.10 EPR reduction, except when speeds are found in shaded area of the Takeoff Speeds chart.

If V1 prior to adjustment is found in the shaded area of the Takeoff Speeds chart, find the lightest weight above the shaded area and using the weight as the actual weight recalculate the surplus weight and the Takeoff EPR reduction.

#### 737 Flight Crew Operations Manual

#### Based on engine bleed for packs on or off Above 1000 FT Pressure Altitude Takeoff EPR Reduction

|                 |    |      |      | I    | FIELD | LENG | TH LIN | MITED | )    |      |        |             |
|-----------------|----|------|------|------|-------|------|--------|-------|------|------|--------|-------------|
|                 |    |      |      |      |       | 0A   | ΑT     |       |      |      |        |             |
|                 |    | -10  | -5   | 0    | 5     | 10   | 15     | 20    | 25   | 30   | 34 AND | CLIMB       |
| SURPLUS         | °C | TO   | ТО   | TO   | TO    | ТО   | ТО     | TO    | ТО   | TO   | ABOVE  | LIMITED     |
| WEIGHT          |    | -6   | -1   | 4    | 9     | 14   | 19     | 24    | 29   | 33   | ADOVE  | (ALL TEMPS) |
| (LB)            |    | 14   | 23   | 32   | 41    | 50   | 59     | 68    | 77   | 86   | 93 AND | (           |
|                 | °F | TO   | TO   | TO   | TO    | TO   | TO     | TO    | TO   | TO   | ABOVE  |             |
|                 |    | 22   | 31   | 40   | 49    | 58   | 67     | 76    | 85   | 92   |        |             |
| 1000 TO 1999    |    |      |      |      | 0.02  | 0.02 |        |       |      | 0.01 | 0.01   | 0.00        |
| 2000 TO 2999    |    |      |      | 0.02 | 0.04  | 0.02 |        |       |      | 0.03 | 0.02   | 0.01        |
| 3000 TO 3999    |    |      | 0.02 | 0.04 | 0.04  | 0.02 |        |       |      | 0.04 | 0.04   | 0.02        |
| 4000 TO 4999    |    | 0.02 | 0.04 | 0.04 | 0.05  | 0.03 |        |       |      | 0.06 | 0.05   | 0.03        |
| 5000 TO 5999    |    | 0.04 | 0.04 | 0.04 | 0.05  | 0.03 |        |       | 0.02 | 0.07 | 0.07   | 0.04        |
| 6000 TO 6999    | -  | 0.04 | 0.05 | 0.05 | 0.05  | 0.03 | 0.01   | 0.02  | 0.04 | 0.09 | 0.08   | 0.05        |
| 7000 TO 7999    |    | 0.04 | 0.05 | 0.05 | 0.05  | 0.04 | 0.03   | 0.04  | 0.05 | 0.10 | 0.09   | 0.07        |
| 8000 TO 8999    |    | 0.05 | 0.05 | 0.05 | 0.06  | 0.06 | 0.05   | 0.05  | 0.07 | 0.12 | 0.11   | 0.08        |
| 9000 TO 9999    | 0  | 0.05 | 0.08 | 0.06 | 0.08  | 0.07 | 0.06   | 0.07  | 0.08 | 0.13 | 0.12   | 0.09        |
| 10000 TO 10999  | 0  | 0.05 | 0.06 | 0.08 | 0.10  | 0.09 | 0.07   | 0.08  | 0.10 | 0.14 | 0.14   | 0.10        |
| 11000 TO 11999  | 0  | 0.06 | 0.08 | 0.09 | 0.11  | 0.10 | 0.09   | 0.10  | 0.11 | 0.16 | 0.15   | 0.12        |
| 12000 TO 12999  | 0  | 0.08 | 0.10 | 0.11 | 0.13  | 0.12 | 0.10   | 0.11  | 0.12 | 0.17 | 0.16   | 0.13        |
| 13000 TO 13999  | 0  | 0.10 | 0.11 | 0.12 | 0.14  | 0.13 | 0.12   | 0.13  | 0.14 | 0.19 | 0.18   | 0.14        |
| 14000 TO 14999  | 0  | ).11 | 0.13 | 0.14 | 0.16  | 0.14 | 0.13   | 0.14  | 0.15 | 0.20 | 0.19   | 0.15        |
| 15000 TO 15999  | 0  | ).12 | 0.14 | 0.15 | 0.17  | 0.16 | 0.14   | 0.15  | 0.17 | 0.22 | 0.21   | 0.16        |
| 16000 TO 16999  | 0  | ).14 | 0.16 | 0.17 | 0.18  | 0.17 | 0.16   | 0.17  | 0.18 | 0.23 | 0.22   | 0.18        |
| 17000 TO 17999  | 0  | ).15 | 0.17 | 0.18 | 0.20  | 0.19 | 0.17   | 0.18  | 0.19 | 0.24 | 0.23   | 0.19        |
| 18000 TO 18999  | 0  | ).17 | 0.18 | 0.19 | 0.21  | 0.20 | 0.19   | 0.20  | 0.21 | 0.26 | 0.25   | 0.20        |
| 19000 TO 19999  | 0  | ).18 | 0.20 | 0.21 | 0.23  | 0.21 | 0.20   | 0.21  | 0.22 | 0.27 | 0.26   | 0.21        |
| 20000 TO 20999  | 0  | 0.20 | 0.21 | 0.22 | 0.24  | 0.23 | 0.21   | 0.22  | 0.24 | 0.29 | 0.28   | 0.22        |
| 21000 TO 21999  | 0  | ).21 | 0.23 | 0.24 | 0.25  | 0.24 | 0.23   | 0.24  | 0.25 | 0.30 | 0.29   | 0.23        |
| 22000 TO 22999  | 0  | ).22 | 0.24 | 0.25 | 0.27  | 0.26 | 0.24   | 0.25  | 0.26 | 0.30 | 0.30   | 0.25        |
| 23000 TO 23999  | 0  | ).24 | 0.25 | 0.26 | 0.28  | 0.27 | 0.26   | 0.27  | 0.28 | 0.30 | 0.30   | 0.26        |
| 24000 TO 24999  | 0  | ).25 | 0.27 | 0.28 | 0.30  | 0.29 | 0.27   | 0.28  | 0.29 | 0.30 | 0.30   | 0.27        |
| 25000 TO 25999  | 0  | ).27 | 0.28 | 0.29 | 0.30  | 0.30 | 0.29   | 0.30  | 0.30 | 0.30 | 0.30   | 0.28        |
| 26000 TO 26999  | 0  | ).28 | 0.30 | 0.30 | 0.30  | 0.30 | 0.30   | 0.30  | 0.30 | 0.30 | 0.30   | 0.29        |
| 27000 AND ABOVE | 0  | 0.30 | 0.30 | 0.30 | 0.30  | 0.30 | 0.30   | 0.30  | 0.30 | 0.30 | 0.30   | 0.30        |

#### Minimum EPR

|      | PRESSURE ALTITUDE (1000 FT)             |  |  |  |  |  |  |  |  |  |
|------|-----------------------------------------|--|--|--|--|--|--|--|--|--|
| -1   | -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 13.5 |  |  |  |  |  |  |  |  |  |
| 1.82 |                                         |  |  |  |  |  |  |  |  |  |

Increase Minimum EPR by 0.03 for bleeds off.

Use actual weight and OAT to determine takeoff speeds. Increase V1 and VR by 1 kt for each 0.10 EPR reduction, except when speeds are found in shaded area of the Takeoff Speeds chart.

If V1 prior to adjustment is found in the shaded area of the Takeoff Speeds chart, find the lightest weight above the shaded area and using the weight as the actual weight recalculate the surplus weight and the Takeoff EPR reduction.

#### 737 Flight Crew Operations Manual

#### Max Climb EPR

#### Based on engine bleed for packs on and anti-ice off

|      |      |      |      | -     |       |         |          |        |       |       |      |      |      |
|------|------|------|------|-------|-------|---------|----------|--------|-------|-------|------|------|------|
| TAT  |      |      | PRE  | SSURE | ALTIT | UDE (10 | )00 FT). | /SPEED | (KIAS | OR MA | CH)  |      |      |
| (°C) | 0    | 1    | 2    | 3     | 4     | 5.66    | 10       | 15     | 20    | 25    | 30   | 35   | 37   |
| ( C) | 320  | 320  | 320  | 320   | 320   | 320     | 320      | 320    | 320   | .70   | .70  | .70  | .70  |
| 50   | 1.64 | 1.64 | 1.64 | 1.64  | 1.64  | 1.64    | 1.64     | 1.64   | 1.64  | 1.64  | 1.64 |      |      |
| 45   | 1.67 | 1.67 | 1.67 | 1.67  | 1.67  | 1.67    | 1.67     | 1.67   | 1.67  | 1.67  | 1.67 |      |      |
| 40   | 1.70 | 1.70 | 1.70 | 1.70  | 1.70  | 1.70    | 1.70     | 1.70   | 1.70  | 1.70  | 1.70 |      |      |
| 35   | 1.73 | 1.73 | 1.73 | 1.73  | 1.73  | 1.73    | 1.73     | 1.73   | 1.73  | 1.73  | 1.73 |      |      |
| 30   | 1.76 | 1.76 | 1.76 | 1.76  | 1.76  | 1.76    | 1.76     | 1.76   | 1.76  | 1.76  | 1.76 |      |      |
| 25   | 1.79 | 1.79 | 1.79 | 1.79  | 1.79  | 1.79    | 1.79     | 1.79   | 1.79  | 1.79  | 1.79 |      |      |
| 20   | 1.82 | 1.82 | 1.82 | 1.82  | 1.82  | 1.82    | 1.82     | 1.82   | 1.82  | 1.82  | 1.82 |      |      |
| 15   | 1.86 | 1.86 | 1.86 | 1.86  | 1.86  | 1.86    | 1.86     | 1.86   | 1.86  | 1.86  | 1.86 |      |      |
| 10   | 1.90 | 1.90 | 1.90 | 1.90  | 1.90  | 1.90    | 1.90     | 1.90   | 1.90  | 1.90  | 1.90 |      |      |
| 5    | 1.94 | 1.94 | 1.94 | 1.94  | 1.94  | 1.94    | 1.94     | 1.94   | 1.94  | 1.94  | 1.94 | 1.92 | 1.92 |
| 0    | 1.99 | 1.99 | 1.99 | 1.99  | 1.99  | 1.99    | 1.99     | 1.99   | 1.99  | 1.99  | 1.99 | 1.97 | 1.97 |
| -5   | 1.98 | 2.04 | 2.04 | 2.04  | 2.04  | 2.04    | 2.04     | 2.04   | 2.04  | 2.04  | 2.04 | 2.02 | 2.02 |
| -10  | 1.98 | 2.04 | 2.09 | 2.09  | 2.09  | 2.09    | 2.09     | 2.09   | 2.09  | 2.09  | 2.09 | 2.07 | 2.07 |
| -15  | 1.98 | 2.04 | 2.09 | 2.12  | 2.12  | 2.12    | 2.12     | 2.12   | 2.12  | 2.12  | 2.12 | 2.11 | 2.11 |
| -20  | 1.98 | 2.04 | 2.09 | 2.14  | 2.15  | 2.15    | 2.15     | 2.15   | 2.15  | 2.15  | 2.15 | 2.14 | 2.14 |
| -25  | 1.98 | 2.04 | 2.09 | 2.14  | 2.18  | 2.18    | 2.18     | 2.18   | 2.18  | 2.18  | 2.18 | 2.17 | 2.17 |
| -30  | 1.98 | 2.04 | 2.09 | 2.14  | 2.20  | 2.21    | 2.21     | 2.21   | 2.21  | 2.21  | 2.21 | 2.20 | 2.20 |
| -35  | 1.98 | 2.04 | 2.09 | 2.14  | 2.20  | 2.23    | 2.23     | 2.23   | 2.23  | 2.23  | 2.23 | 2.22 | 2.22 |
| -40  | 1.98 | 2.04 | 2.09 | 2.14  | 2.20  | 2.25    | 2.25     | 2.25   | 2.25  | 2.25  | 2.25 | 2.24 | 2.24 |

#### **EPR Adjustments for Engine Bleeds**

| BLEED                         | PRESSURE A | LTITUDE (FT) |
|-------------------------------|------------|--------------|
| CONFIGURATION                 | 0          | 37000        |
| PACKS OFF                     | 0.04       | 0.04         |
| ENGINE ANTI-ICE ON            | -0.08      | -0.08        |
| ENGINE AND WING ANTI-ICE ON*  | -0.04      | -0.04        |
| ENGINE AND WING ANTI-ICE ON** | -0.06      | -0.06        |

\*Dual Bleed Source

\*\*Single Bleed Source

#### 737 Flight Crew Operations Manual

#### **Go-around EPR**

#### Based on engine bleed for packs on, wing anti-ice off

|        | REPORTED OAT TAT AIRPORT PRESSURE ALTITUDE (FT) |      |       |      |      |        |        |       |       |      |      |      |
|--------|-------------------------------------------------|------|-------|------|------|--------|--------|-------|-------|------|------|------|
| REPORT | ED OAT                                          | TAT  |       |      | AIR  | PORT P | RESSUI | REALT | ITUDE | (FT) |      |      |
| °F     | °C                                              | (°C) | -1000 | 0    | 1000 | 2000   | 3000   | 4000  | 5000  | 5660 | 6000 | 8000 |
| 119    | 48                                              | 50   | 1.80  | 1.80 | 1.80 | 1.80   | 1.80   | 1.80  | 1.80  | 1.80 | 1.80 | 1.80 |
| 100    | 38                                              | 40   | 1.90  | 1.90 | 1.90 | 1.90   | 1.90   | 1.90  | 1.90  | 1.90 | 1.90 | 1.90 |
| 91     | 33                                              | 35   | 1.93  | 1.94 | 1.94 | 1.94   | 1.94   | 1.94  | 1.94  | 1.94 | 1.94 | 1.94 |
| 83     | 28                                              | 30   | 1.93  | 1.98 | 1.98 | 1.98   | 1.98   | 1.98  | 1.98  | 1.98 | 1.98 | 1.98 |
| 73     | 23                                              | 25   | 1.93  | 1.98 | 1.98 | 1.98   | 1.98   | 1.98  | 1.98  | 1.98 | 1.98 | 1.98 |
| 64     | 18                                              | 20   | 1.93  | 1.98 | 1.98 | 1.98   | 1.98   | 1.98  | 1.98  | 1.98 | 1.98 | 1.98 |
| 55     | 13                                              | 15   | 1.93  | 1.98 | 2.00 | 2.00   | 2.00   | 2.00  | 2.00  | 2.00 | 2.00 | 2.00 |
| 47     | 8                                               | 10   | 1.93  | 1.98 | 2.04 | 2.04   | 2.04   | 2.04  | 2.04  | 2.04 | 2.04 | 2.04 |
| 38     | 3                                               | 5    | 1.93  | 1.98 | 2.04 | 2.07   | 2.07   | 2.07  | 2.07  | 2.07 | 2.07 | 2.07 |
| 27     | -3                                              | 0    | 1.93  | 1.98 | 2.04 | 2.09   | 2.10   | 2.10  | 2.10  | 2.10 | 2.10 | 2.10 |
| 18     | -8                                              | -5   | 1.93  | 1.98 | 2.04 | 2.09   | 2.13   | 2.13  | 2.13  | 2.13 | 2.13 | 2.13 |
| 10     | -13                                             | -10  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.16  | 2.16  | 2.16 | 2.16 | 2.16 |
| 0      | -18                                             | -15  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.19  | 2.19  | 2.19 | 2.19 | 2.19 |
| -10    | -23                                             | -20  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.20  | 2.21  | 2.21 | 2.21 | 2.21 |
| -17    | -27                                             | -25  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.20  | 2.24  | 2.24 | 2.24 | 2.24 |
| -25    | -32                                             | -30  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.20  | 2.26  | 2.26 | 2.26 | 2.26 |
| -36    | -37                                             | -35  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.20  | 2.26  | 2.29 | 2.29 | 2.29 |
| -43    | -42                                             | -40  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.20  | 2.26  | 2.30 | 2.30 | 2.30 |
| -52    | -47                                             | -45  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.20  | 2.26  | 2.30 | 2.30 | 2.30 |
| -61    | -52                                             | -50  | 1.93  | 1.98 | 2.04 | 2.09   | 2.15   | 2.20  | 2.26  | 2.30 | 2.30 | 2.30 |

#### **EPR Adjustments for Engine Bleeds**

| BLEED                         | AIRPORT PRESSU | RE ALTITUDE (FT) |
|-------------------------------|----------------|------------------|
| CONFIGURATION                 | -1000          | 8000             |
| A/C PACKS OFF                 | 0.03           | 0.03             |
| ENGINE ANTI-ICE ON            | 0              | 0                |
| ENGINE AND WING ANTI-ICE ON*  | -0.04          | -0.04            |
| ENGINE AND WING ANTI-ICE ON** | -0.06          | -0.06            |

\*Dual Bleed Source

**\*\*Single Bleed Source** 

737 Flight Crew Operations Manual

#### Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Climb (280/.70)

#### Flaps Up, Set Max Climb Thrust

| PRES      | SURE         |      | WEIGHT (1000 LB) |      |
|-----------|--------------|------|------------------|------|
| ALTITU    | JDE (FT)     | 80   | 100              | 120  |
| 35000     | PITCH ATT    | 6.0  | 6.0              |      |
| 33000     | V/S (FT/MIN) | 1300 | 600              |      |
| 30000     | PITCH ATT    | 6.0  | 6.0              | 6.0  |
| 30000     | V/S (FT/MIN) | 2000 | 1300             | 700  |
| 27000     | PITCH ATT    | 6.0  | 6.0              | 6.0  |
| 27000     | V/S (FT/MIN) | 2100 | 1500             | 1000 |
| 25000     | PITCH ATT    | 5.0  | 5.0              | 6.0  |
| 23000     | V/S (FT/MIN) | 1900 | 1400             | 900  |
| 20000     | PITCH ATT    | 6.0  | 6.0              | 6.0  |
| 20000     | V/S (FT/MIN) | 2600 | 1800             | 1300 |
| 15000     | PITCH ATT    | 7.0  | 7.0              | 7.0  |
| 15000     | V/S (FT/MIN) | 2900 | 2100             | 1700 |
| 5000      | PITCH ATT    | 10.0 | 9.0              | 8.0  |
| 5000      | V/S (FT/MIN) | 3900 | 2900             | 2300 |
| SEA LEVEL | PITCH ATT    | 11.0 | 10.0             | 9.0  |
| SEA LEVEL | V/S (FT/MIN) | 4500 | 3500             | 2700 |

#### Cruise (.70/280) Flaps Up, EPR for Level Flight

| PRESSURE |           |      | WEIGHT (1000 LB) |      |      |  |  |  |  |
|----------|-----------|------|------------------|------|------|--|--|--|--|
| ALTITU   | JDE (FT)  | 80   | 90               | 100  | 110  |  |  |  |  |
| 30000    | PITCH ATT | 2.8  | 3.4              | 3.9  | 4.4  |  |  |  |  |
| 30000    | EPR       | 1.68 | 1.71             | 1.78 | 1.84 |  |  |  |  |
| 10000    | PITCH ATT | 2.2  | 2.6              | 3.0  | 3.4  |  |  |  |  |
| 10000    | EPR       | 1.31 | 1.33             | 1.35 | 1.37 |  |  |  |  |

#### Descent (.70/280) Flaps Up, Set Idle Thrust

| PRES          | SSURE        |       | WEIGHT (1000 LB) |       |  |  |  |  |  |
|---------------|--------------|-------|------------------|-------|--|--|--|--|--|
| ALTITUDE (FT) |              | 80    | 90               | 100   |  |  |  |  |  |
| 30000         | PITCH ATT    | -0.8  | -0.3             | 0.5   |  |  |  |  |  |
| 30000         | V/S (FT/MIN) | -2500 | -2400            | -2300 |  |  |  |  |  |
| 10000         | PITCH ATT    | -1.9  | -1.2             | -0.6  |  |  |  |  |  |
| 10000         | V/S (FT/MIN) | -2300 | -2200            | -2000 |  |  |  |  |  |

### Holding

#### Flaps Up, EPR for Level Flight

| PRESSURE      |           |      | WEIGHT (1000 LB) |      |      |  |  |  |  |
|---------------|-----------|------|------------------|------|------|--|--|--|--|
| ALTITUDE (FT) |           | 80   | 90               | 100  | 110  |  |  |  |  |
|               | PITCH ATT | 4.8  | 4.8              | 4.8  | 4.8  |  |  |  |  |
| 10000         | EPR       | 1.22 | 1.26             | 1.29 | 1.33 |  |  |  |  |
|               | KIAS      | 210  | 225              | 235  | 245  |  |  |  |  |

#### 737 Flight Crew Operations Manual

#### Terminal Area (0 to 10000 FT) EPR for Level Flight

| FLAP POSITIO         | N         |      | WEIGHT (1000 LB) |      |      |  |  |  |  |
|----------------------|-----------|------|------------------|------|------|--|--|--|--|
| (SPEED)              | 70        | 80   | 90               | 100  |      |  |  |  |  |
| FLAPS UP (GEAR UP)   | PITCH ATT | 4.0  | 4.8              | 5.5  | 6.3  |  |  |  |  |
| (210 KIAS)           | EPR       | 1.21 | 1.24             | 1.27 | 1.29 |  |  |  |  |
| FLAPS 1 (GEAR UP)    | PITCH ATT | 4.1  | 4.8              | 5.6  | 6.4  |  |  |  |  |
| (190 KIAS)           | EPR       | 1.27 | 1.30             | 1.33 | 1.35 |  |  |  |  |
| FLAPS 5 (GEAR UP)    | PITCH ATT | 4.2  | 5.1              | 6.1  | 7.0  |  |  |  |  |
| (170 KIAS)           | EPR       | 1.28 | 1.31             | 1.35 | 1.40 |  |  |  |  |
| FLAPS 15 (GEAR DOWN) | PITCH ATT | 4.1  | 5.2              | 6.4  | 7.5  |  |  |  |  |
| (150 KIAS)           | EPR       | 1.41 | 1.46             | 1.51 | 1.57 |  |  |  |  |
| FLAPS 25 (GEAR DOWN) | PITCH ATT | 3.9  | 5.1              | 6.4  | 7.7  |  |  |  |  |
| (140 KIAS)           | EPR       | 1.41 | 1.47             | 1.53 | 1.60 |  |  |  |  |

#### Final Approach (0 to 10000 FT) Gear Down, EPR for 3° Glideslope

|          | OSITION   |      | WEIGHT (1000 LB) |      |      |  |  |  |  |
|----------|-----------|------|------------------|------|------|--|--|--|--|
| FLAF FO  | JSITION   | 70   | 80               | 90   | 100  |  |  |  |  |
|          | PITCH ATT | 0.0  | 0.0              | 0.0  | 0.0  |  |  |  |  |
| FLAPS 40 | EPR       | 1.25 | 1.29             | 1.33 | 1.38 |  |  |  |  |
|          | KIAS      | 115  | 123              | 130  | 137  |  |  |  |  |
|          | PITCH ATT | 2.6  | 2.6              | 2.6  | 2.6  |  |  |  |  |
| FLAPS 30 | EPR       | 1.17 | 1.20             | 1.23 | 1.26 |  |  |  |  |
|          | KIAS      | 118  | 125              | 133  | 141  |  |  |  |  |
|          | PITCH ATT | 4.5  | 4.5              | 4.5  | 4.5  |  |  |  |  |
| FLAPS 15 | EPR       | 1.13 | 1.15             | 1.17 | 1.18 |  |  |  |  |
|          | KIAS      | 125  | 133              | 140  | 148  |  |  |  |  |

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Performance Inflight All Engines

Chapter PI Section 31

#### Long Range Cruise Maximum Operating Altitude

#### Max Cruise Thrust ISA + 10°C and Below

|   | WEIGHT    | OPTIMUM  | TAT  | MAR        | GIN TO INIT | AL BUFFET ' | G' (BANK AN | GLE)       |  |  |  |  |  |  |
|---|-----------|----------|------|------------|-------------|-------------|-------------|------------|--|--|--|--|--|--|
|   | (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)  | 1.30 (39°)  | 1.40 (44°)  | 1.50 (48°) |  |  |  |  |  |  |
| 1 | 130       | 28400    | -6   | 26900*     | 26900*      | 26900*      | 26900*      | 26900*     |  |  |  |  |  |  |
|   | 120       | 30200    | -10  | 31500*     | 31500*      | 31500*      | 31500*      | 30200      |  |  |  |  |  |  |
|   | 110       | 32100    | -14  | 35400*     | 35400*      | 35100       | 33600       | 32100      |  |  |  |  |  |  |
|   | 100       | 34100    | -19  | 37000      | 37000       | 37000       | 35600       | 34200      |  |  |  |  |  |  |
|   | 90        | 36300    | -23  | 37000      | 37000       | 37000       | 37000       | 36400      |  |  |  |  |  |  |
|   | 80        | 37000    | -23  | 37000      | 37000       | 37000       | 37000       | 37000      |  |  |  |  |  |  |
|   | 70        | 37000    | -23  | 37000      | 37000       | 37000       | 37000       | 37000      |  |  |  |  |  |  |
|   | 60        | 37000    | -19  | 37000      | 37000       | 37000       | 37000       | 37000      |  |  |  |  |  |  |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

#### ISA+15°C

| WEIGHT    | OPTIMUM  | TAT  | MAF        | RGIN TO INIT | AL BUFFET ' | G' (BANK AN | GLE)       |
|-----------|----------|------|------------|--------------|-------------|-------------|------------|
| (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)   | 1.30 (39°)  | 1.40 (44°)  | 1.50 (48°) |
| 130       | 28400    | -1   | 24100*     | 24100*       | 24100*      | 24100*      | 24100*     |
| 120       | 30200    | -5   | 27400*     | 27400*       | 27400*      | 27400*      | 27400*     |
| 110       | 32100    | -9   | 34500*     | 34500*       | 34500*      | 33600       | 32100      |
| 100       | 34100    | -13  | 36800*     | 36800*       | 36800*      | 35600       | 34200      |
| 90        | 36300    | -18  | 37000      | 37000        | 37000       | 37000       | 36400      |
| 80        | 37000    | -18  | 37000      | 37000        | 37000       | 37000       | 37000      |
| 70        | 37000    | -17  | 37000      | 37000        | 37000       | 37000       | 37000      |
| 60        | 37000    | -13  | 37000      | 37000        | 37000       | 37000       | 37000      |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

#### ISA + 20°C

| WEIGHT    | OPTIMUM  | TAT  | MAF        | RGIN TO INIT | AL BUFFET ' | G' (BANK AN | GLE)       |
|-----------|----------|------|------------|--------------|-------------|-------------|------------|
| (1000 LB) | ALT (FT) | (°C) | 1.20 (33°) | 1.25 (36°)   | 1.30 (39°)  | 1.40 (44°)  | 1.50 (48°) |
| 130       | 28400    | 5    | 18100*     | 18100*       | 18100*      | 18100*      | 18100*     |
| 120       | 30200    | 1    | 23900*     | 23900*       | 23900*      | 23900*      | 23900*     |
| 110       | 32100    | -3   | 29000*     | 29000*       | 29000*      | 29000*      | 29000*     |
| 100       | 34100    | -8   | 36200*     | 36200*       | 36200*      | 35600       | 34200      |
| 90        | 36300    | -12  | 37000      | 37000        | 37000       | 37000       | 36400      |
| 80        | 37000    | -12  | 37000      | 37000        | 37000       | 37000       | 37000      |
| 70        | 37000    | -11  | 37000      | 37000        | 37000       | 37000       | 37000      |
| 60        | 37000    | -8   | 37000      | 37000        | 37000       | 37000       | 37000      |

\*Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

#### 737 Flight Crew Operations Manual

#### Long Range Cruise Control

| WE   | IGHT   |      |      | P    | RESSURE | ALTITUD | E (1000 F | Г)   |      |      |
|------|--------|------|------|------|---------|---------|-----------|------|------|------|
| (100 | 00 LB) | 21   | 23   | 25   | 27      | 29      | 31        | 33   | 35   | 37   |
|      | EPR    | 1.70 | 1.76 | 1.81 | 1.88    | 1.97    | 2.07      |      |      |      |
| 130  | MACH   | .684 | .698 | .709 | .716    | .720    | .717      |      |      |      |
| 130  | KIAS   | 310  | 304  | 296  | 287     | 277     | 264       |      |      |      |
|      | FF/ENG | 3527 | 3470 | 3420 | 3385    | 3365    | 3398      |      |      |      |
|      | EPR    | 1.66 | 1.71 | 1.76 | 1.82    | 1.89    | 1.98      | 2.09 |      |      |
| 120  | MACH   | .670 | .685 | .699 | .710    | .717    | .720      | .716 |      |      |
| 120  | KIAS   | 303  | 298  | 292  | 285     | 276     | 265       | 252  |      |      |
|      | FF/ENG | 3292 | 3240 | 3185 | 3141    | 3109    | 3096      | 3140 |      |      |
|      | EPR    | 1.61 | 1.65 | 1.71 | 1.76    | 1.82    | 1.89      | 1.98 | 2.10 |      |
| 110  | MACH   | .653 | .669 | .685 | .699    | .710    | .717      | .720 | .715 |      |
| 110  | KIAS   | 295  | 291  | 286  | 280     | 273     | 264       | 253  | 241  |      |
|      | FF/ENG | 3052 | 3006 | 2956 | 2907    | 2866    | 2839      | 2830 | 2877 |      |
|      | EPR    | 1.56 | 1.60 | 1.65 | 1.70    | 1.76    | 1.82      | 1.89 | 1.98 | 2.10 |
| 100  | MACH   | .633 | .651 | .668 | .684    | .698    | .709      | .717 | .720 | .715 |
| 100  | KIAS   | 285  | 282  | 278  | 273     | 268     | 261       | 252  | 242  | 230  |
|      | FF/ENG | 2811 | 2769 | 2724 | 2678    | 2633    | 2595      | 2573 | 2564 | 2619 |
|      | EPR    | 1.51 | 1.55 | 1.59 | 1.64    | 1.69    | 1.75      | 1.81 | 1.88 | 1.97 |
| 90   | MACH   | .611 | .629 | .647 | .665    | .681    | .696      | .708 | .716 | .720 |
| 90   | KIAS   | 275  | 272  | 269  | 265     | 261     | 255       | 249  | 241  | 231  |
|      | FF/ENG | 2569 | 2530 | 2488 | 2445    | 2404    | 2361      | 2327 | 2308 | 2309 |
|      | EPR    | 1.46 | 1.50 | 1.54 | 1.58    | 1.62    | 1.67      | 1.73 | 1.79 | 1.86 |
| 80   | MACH   | .586 | .604 | .622 | .641    | .659    | .676      | .692 | .705 | .715 |
| 00   | KIAS   | 263  | 261  | 258  | 255     | 252     | 248       | 243  | 237  | 229  |
|      | FF/ENG | 2329 | 2287 | 2250 | 2204    | 2169    | 2133      | 2095 | 2068 | 2056 |
|      | EPR    | 1.41 | 1.44 | 1.48 | 1.52    | 1.55    | 1.60      | 1.65 | 1.70 | 1.76 |
| 70   | MACH   | .558 | .575 | .594 | .613    | .632    | .651      | .669 | .686 | .700 |
| 70   | KIAS   | 250  | 248  | 246  | 243     | 241     | 238       | 234  | 230  | 224  |
|      | FF/ENG | 2096 | 2047 | 2007 | 1970    | 1929    | 1904      | 1870 | 1838 | 1828 |
|      | EPR    | 1.36 | 1.39 | 1.42 | 1.45    | 1.49    | 1.53      | 1.57 | 1.61 | 1.67 |
| 60   | MACH   | .527 | .543 | .561 | .580    | .599    | .618      | .638 | .657 | .675 |
| 50   | KIAS   | 236  | 234  | 232  | 230     | 227     | 225       | 222  | 219  | 216  |
|      | FF/ENG | 1866 | 1822 | 1776 | 1744    | 1705    | 1672      | 1651 | 1621 | 1598 |

Shaded area approximates optimum altitude.

#### Long Range Cruise Enroute Fuel and Time - Low Altitudes Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | E (NM)  |      | GROUND   |                          | AIR D | ISTANCE | E (NM) |      |
|------|--------|---------|---------|------|----------|--------------------------|-------|---------|--------|------|
| HE.  | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TAILWIND COMPONENT (KTS) |       |         |        |      |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20                       | 40    | 60      | 80     | 100  |
| 286  | 264    | 244     | 227     | 213  | 200      | 190                      | 181   | 173     | 166    | 159  |
| 575  | 529    | 489     | 455     | 426  | 400      | 381                      | 363   | 347     | 332    | 319  |
| 866  | 797    | 736     | 684     | 640  | 600      | 571                      | 544   | 520     | 498    | 479  |
| 1159 | 1066   | 983     | 914     | 854  | 800      | 762                      | 727   | 694     | 665    | 638  |
| 1453 | 1335   | 1231    | 1143    | 1068 | 1000     | 952                      | 908   | 867     | 830    | 797  |
| 1750 | 1607   | 1480    | 1374    | 1282 | 1200     | 1142                     | 1089  | 1040    | 996    | 956  |
| 2050 | 1880   | 1730    | 1605    | 1497 | 1400     | 1333                     | 1270  | 1213    | 1161   | 1114 |
| 2352 | 2156   | 1982    | 1836    | 1712 | 1600     | 1522                     | 1451  | 1385    | 1325   | 1272 |
| 2656 | 2432   | 2234    | 2068    | 1926 | 1800     | 1712                     | 1631  | 1557    | 1490   | 1430 |

#### 737 Flight Crew Operations Manual

#### **Reference Fuel and Time Required at Check Point**

| ATD         |           |          |           | PRESS    | SURE ALT  | ITUDE (10 | 00 FT)    |          |           |          |
|-------------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|----------|
| AIR<br>DIST | 1         | 0        | 14        |          | 2         | 0         | 2         | 4        | 2         | .8       |
| (NM)        | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME      | FUEL      | TIME     | FUEL      | TIME     |
| (14141)     | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN)  | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |
| 200         | 3.4       | 0:40     | 3.0       | 0:39     | 2.6       | 0:38      | 2.4       | 0:37     | 2.1       | 0:36     |
| 400         | 6.8       | 1:17     | 6.2       | 1:15     | 5.4       | 1:11      | 4.9       | 1:08     | 4.5       | 1:06     |
| 600         | 10.2      | 1:55     | 9.3       | 1:50     | 8.1       | 1:44      | 7.4       | 1:40     | 6.9       | 1:37     |
| 800         | 13.5      | 2:33     | 12.3      | 2:27     | 10.8      | 2:17      | 9.9       | 2:12     | 9.2       | 2:08     |
| 1000        | 16.8      | 3:11     | 15.3      | 3:03     | 13.4      | 2:51      | 12.4      | 2:44     | 11.5      | 2:38     |
| 1200        | 20.0      | 3:51     | 18.3      | 3:41     | 16.0      | 3:26      | 14.8      | 3:17     | 13.7      | 3:10     |
| 1400        | 23.2      | 4:30     | 21.2      | 4:18     | 18.6      | 4:01      | 17.2      | 3:50     | 15.9      | 3:41     |
| 1600        | 26.3      | 5:11     | 24.1      | 4:57     | 21.1      | 4:36      | 19.5      | 4:24     | 18.1      | 4:13     |
| 1800        | 29.4      | 5:52     | 26.9      | 5:36     | 23.6      | 5:12      | 21.8      | 4:58     | 20.2      | 4:45     |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED | WEIGHT AT CHECK POINT (1000 LB) |      |     |     |     |     |  |  |  |  |
|-------------------------|---------------------------------|------|-----|-----|-----|-----|--|--|--|--|
| (1000 LB)               | 70                              | 80   | 90  | 100 | 110 | 120 |  |  |  |  |
| 5                       | -0.4                            | -0.2 | 0.0 | 0.2 | 0.5 | 0.8 |  |  |  |  |
| 10                      | -0.8                            | -0.4 | 0.0 | 0.6 | 1.2 | 1.8 |  |  |  |  |
| 15                      | -1.2                            | -0.6 | 0.0 | 0.9 | 1.8 | 2.8 |  |  |  |  |
| 20                      | -1.7                            | -0.8 | 0.0 | 1.2 | 2.5 | 3.8 |  |  |  |  |
| 25                      | -2.1                            | -1.0 | 0.0 | 1.5 | 3.1 | 4.8 |  |  |  |  |
| 30                      | -2.5                            | -1.3 | 0.0 | 1.9 | 3.8 | 5.8 |  |  |  |  |

#### Long Range Cruise Enroute Fuel and Time - High Altitudes Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | E (NM)  |      | GROUND   |      | AIR D  | ISTANCE | E (NM)   |      |
|------|--------|---------|---------|------|----------|------|--------|---------|----------|------|
| HE.  | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | NENT (KT | (S)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80       | 100  |
| 272  | 254    | 237     | 223     | 211  | 200      | 191  | 182    | 174     | 167      | 160  |
| 538  | 504    | 472     | 446     | 422  | 400      | 381  | 364    | 348     | 334      | 321  |
| 805  | 754    | 708     | 668     | 632  | 600      | 572  | 546    | 522     | 501      | 482  |
| 1073 | 1006   | 945     | 891     | 843  | 800      | 763  | 729    | 697     | 669      | 643  |
| 1342 | 1258   | 1181    | 1114    | 1054 | 1000     | 954  | 911    | 872     | 836      | 804  |
| 1611 | 1509   | 1418    | 1337    | 1265 | 1200     | 1144 | 1093   | 1046    | 1003     | 965  |
| 1881 | 1762   | 1655    | 1560    | 1476 | 1400     | 1335 | 1275   | 1220    | 1170     | 1125 |
| 2152 | 2016   | 1892    | 1784    | 1688 | 1600     | 1526 | 1458   | 1395    | 1337     | 1286 |
| 2424 | 2270   | 2130    | 2008    | 1899 | 1800     | 1717 | 1640   | 1569    | 1505     | 1446 |
| 2697 | 2525   | 2369    | 2232    | 2111 | 2000     | 1908 | 1822   | 1744    | 1672     | 1607 |
| 2971 | 2780   | 2607    | 2456    | 2322 | 2200     | 2098 | 2004   | 1918    | 1839     | 1767 |
| 3246 | 3036   | 2846    | 2681    | 2534 | 2400     | 2289 | 2186   | 2091    | 2005     | 1927 |
| 3522 | 3293   | 3086    | 2906    | 2746 | 2600     | 2479 | 2367   | 2265    | 2171     | 2087 |
| 3799 | 3551   | 3327    | 3131    | 2958 | 2800     | 2670 | 2549   | 2439    | 2338     | 2247 |
| 4078 | 3810   | 3568    | 3357    | 3170 | 3000     | 2860 | 2731   | 2612    | 2504     | 2406 |
| 4358 | 4070   | 3810    | 3583    | 3382 | 3200     | 3050 | 2912   | 2785    | 2669     | 2565 |
| 4639 | 4330   | 4052    | 3809    | 3595 | 3400     | 3240 | 3093   | 2958    | 2835     | 2724 |
| 4921 | 4591   | 4295    | 4036    | 3807 | 3600     | 3431 | 3274   | 3131    | 3000     | 2883 |
| 5205 | 4854   | 4538    | 4263    | 4020 | 3800     | 3621 | 3456   | 3304    | 3166     | 3041 |
| 5491 | 5118   | 4782    | 4490    | 4233 | 4000     | 3811 | 3637   | 3477    | 3331     | 3199 |

#### 737 Flight Crew Operations Manual

#### **Reference Fuel and Time Required at Check Point**

| AID         | PRESSURE ALTITUDE (1000 FT) |          |           |          |           |          |           |          |           |          |  |  |
|-------------|-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|--|--|
| AIR<br>DIST | 2                           | 9        | 3         | 1        | 3         | 3        | 3         | 5        | 3         | 7        |  |  |
| (NM)        | FUEL                        | TIME     | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME     |  |  |
| (1111)      | (1000 LB)                   | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |  |  |
| 200         | 2.1                         | 0:36     | 2.0       | 0:36     | 2.0       | 0:36     | 1.9       | 0:36     | 1.8       | 0:36     |  |  |
| 400         | 4.4                         | 1:06     | 4.3       | 1:05     | 4.2       | 1:05     | 4.1       | 1:05     | 4.0       | 1:05     |  |  |
| 600         | 6.8                         | 1:36     | 6.6       | 1:35     | 6.4       | 1:34     | 6.2       | 1:34     | 6.2       | 1:34     |  |  |
| 800         | 9.0                         | 2:07     | 8.7       | 2:05     | 8.5       | 2:04     | 8.3       | 2:03     | 8.3       | 2:03     |  |  |
| 1000        | 11.3                        | 2:37     | 10.9      | 2:35     | 10.6      | 2:33     | 10.4      | 2:33     | 10.3      | 2:32     |  |  |
| 1200        | 13.5                        | 3:08     | 13.1      | 3:05     | 12.7      | 3:03     | 12.4      | 3:02     | 12.3      | 3:01     |  |  |
| 1400        | 15.7                        | 3:39     | 15.2      | 3:36     | 14.7      | 3:33     | 14.5      | 3:32     | 14.3      | 3:31     |  |  |
| 1600        | 17.8                        | 4:11     | 17.2      | 4:07     | 16.7      | 4:04     | 16.4      | 4:02     | 16.2      | 4:00     |  |  |
| 1800        | 19.9                        | 4:43     | 19.3      | 4:38     | 18.7      | 4:34     | 18.3      | 4:32     | 18.1      | 4:30     |  |  |
| 2000        | 22.0                        | 5:15     | 21.3      | 5:09     | 20.7      | 5:05     | 20.2      | 5:02     | 20.0      | 4:59     |  |  |
| 2200        | 24.0                        | 5:47     | 23.3      | 5:41     | 22.6      | 5:36     | 22.1      | 5:32     | 21.8      | 5:29     |  |  |
| 2400        | 26.0                        | 6:20     | 25.2      | 6:13     | 24.5      | 6:07     | 23.9      | 6:03     | 23.6      | 5:59     |  |  |
| 2600        | 28.0                        | 6:53     | 27.2      | 6:45     | 26.4      | 6:38     | 25.7      | 6:33     | 25.4      | 6:29     |  |  |
| 2800        | 30.0                        | 7:27     | 29.0      | 7:18     | 28.2      | 7:10     | 27.5      | 7:05     | 27.1      | 7:00     |  |  |
| 3000        | 31.9                        | 8:00     | 30.9      | 7:50     | 30.0      | 7:42     | 29.3      | 7:36     | 28.8      | 7:30     |  |  |
| 3200        | 33.8                        | 8:35     | 32.7      | 8:24     | 31.8      | 8:14     | 31.0      | 8:07     | 30.4      | 8:01     |  |  |
| 3400        | 35.7                        | 9:09     | 34.5      | 8:57     | 33.5      | 8:47     | 32.7      | 8:39     | 32.1      | 8:32     |  |  |
| 3600        | 37.5                        | 9:45     | 36.3      | 9:31     | 35.3      | 9:20     | 34.4      | 9:11     | 33.7      | 9:03     |  |  |
| 3800        | 39.4                        | 10:20    | 38.1      | 10:06    | 37.0      | 9:53     | 36.0      | 9:44     | 35.3      | 9:35     |  |  |
| 4000        | 41.2                        | 10:56    | 39.8      | 10:41    | 38.7      | 10:27    | 37.7      | 10:16    | 36.9      | 10:07    |  |  |

#### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED |      | WEIGH | IT AT CHEC | K POINT (10 | 000 LB) |      |
|-------------------------|------|-------|------------|-------------|---------|------|
| (1000 LB)               | 70   | 80    | 90         | 100         | 110     | 120  |
| 5                       | -0.5 | -0.2  | 0.0        | 0.3         | 1.2     | 2.8  |
| 10                      | -1.2 | -0.6  | 0.0        | 0.7         | 2.4     | 5.1  |
| 15                      | -1.8 | -0.9  | 0.0        | 1.2         | 3.5     | 7.0  |
| 20                      | -2.4 | -1.2  | 0.0        | 1.6         | 4.5     | 8.6  |
| 25                      | -2.9 | -1.5  | 0.0        | 2.1         | 5.4     | 10.0 |
| 30                      | -3.5 | -1.8  | 0.0        | 2.5         | 6.1     | 11.0 |
| 35                      | -4.0 | -2.1  | 0.0        | 2.8         | 6.7     | 11.7 |
| 40                      | -4.5 | -2.3  | 0.0        | 3.2         | 7.2     | 12.1 |
| 45                      | -4.9 | -2.5  | 0.0        | 3.6         | 7.6     | 12.2 |

#### Long Range Cruise Wind-Altitude Trade

| PRESSURE              |     |     |     | CRU | ISE WEIG | GHT (1000 | ) LB) | -  |     |     |
|-----------------------|-----|-----|-----|-----|----------|-----------|-------|----|-----|-----|
| ALTITUDE<br>(1000 FT) | 115 | 110 | 105 | 100 | 95       | 90        | 85    | 80 | 75  | 70  |
| 37                    |     |     |     | 6   | 2        | 0         | 0     | 0  | 2   | 5   |
| 35                    |     | 6   | 2   | 0   | 0        | 0         | 2     | 5  | 8   | 13  |
| 33                    | 2   | 0   | 0   | 0   | 2        | 5         | 8     | 13 | 18  | 23  |
| 31                    | 0   | 0   | 2   | 5   | 8        | 13        | 18    | 23 | 29  | 36  |
| 29                    | 2   | 5   | 8   | 13  | 18       | 23        | 29    | 36 | 43  | 50  |
| 27                    | 8   | 13  | 18  | 23  | 29       | 36        | 43    | 50 | 58  | 67  |
| 25                    | 18  | 23  | 29  | 36  | 43       | 50        | 58    | 67 | 77  | 88  |
| 23                    | 29  | 36  | 43  | 50  | 58       | 67        | 77    | 88 | 102 | 118 |

The above wind factor tables are for calculation of wind required to maintain present range capability at new pressure altitude, i.e., break-even wind.

#### Method:

- 1. Read wind factors for present and new altitudes from table.
- 2. Determine difference (new altitude wind factor minus present altitude wind factor); This
- difference may be negative or positive.
- 3. Break-even wind at new altitude is present altitude wind plus difference from step 2.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

D6-27370-200A-TBC

### 737 Flight Crew Operations Manual

#### Descent at .70/280/250

| PRESSURE ALT (1000 FT) | 21 | 23 | 25 | 27 | 29  | 31  | 33  | 35  | 37  |
|------------------------|----|----|----|----|-----|-----|-----|-----|-----|
| DISTANCE (NM)          | 79 | 85 | 92 | 98 | 103 | 109 | 114 | 119 | 125 |
| TIME (MINUTES)         | 17 | 18 | 19 | 20 | 20  | 21  | 22  | 23  | 23  |

#### Holding

Flaps Up

| W   | EIGHT   |      |      |       | PRESSU | RE ALTIT | UDE (FT) |       |       |       |
|-----|---------|------|------|-------|--------|----------|----------|-------|-------|-------|
| (10 | 000 LB) | 1500 | 5000 | 10000 | 15000  | 20000    | 25000    | 30000 | 35000 | 37000 |
|     | EPR     | 1.29 | 1.34 | 1.41  | 1.51   | 1.63     | 1.79     | 2.02  |       |       |
| 130 | KIAS    | 243  | 246  | 246   | 247    | 250      | 253      | 246   |       |       |
|     | FF/ENG  | 3310 | 3270 | 3170  | 3120   | 3100     | 3180     | 3330  |       |       |
|     | EPR     | 1.27 | 1.31 | 1.38  | 1.47   | 1.58     | 1.73     | 1.93  |       |       |
| 120 | KIAS    | 232  | 236  | 236   | 237    | 239      | 243      | 241   |       |       |
|     | FF/ENG  | 3080 | 3040 | 2940  | 2880   | 2850     | 2900     | 3000  |       |       |
|     | EPR     | 1.24 | 1.28 | 1.34  | 1.43   | 1.53     | 1.66     | 1.84  | 2.11  |       |
| 110 | KIAS    | 220  | 223  | 227   | 227    | 228      | 232      | 233   | 222   |       |
|     | FF/ENG  | 2860 | 2800 | 2720  | 2650   | 2610     | 2630     | 2690  | 2880  |       |
|     | EPR     | 1.21 | 1.25 | 1.31  | 1.38   | 1.48     | 1.60     | 1.76  | 1.98  | 2.11  |
| 100 | KIAS    | 210  | 211  | 216   | 216    | 217      | 219      | 223   | 218   | 211   |
|     | FF/ENG  | 2650 | 2570 | 2500  | 2420   | 2370     | 2360     | 2400  | 2520  | 2630  |
|     | EPR     | 1.19 | 1.22 | 1.27  | 1.34   | 1.43     | 1.54     | 1.68  | 1.87  | 1.97  |
| 90  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 211   | 210   |
|     | FF/ENG  | 2480 | 2390 | 2300  | 2220   | 2160     | 2120     | 2120  | 2200  | 2270  |
|     | EPR     | 1.17 | 1.19 | 1.24  | 1.30   | 1.38     | 1.48     | 1.60  | 1.76  | 1.84  |
| 80  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2340 | 2240 | 2140  | 2070   | 2000     | 1950     | 1920  | 1950  | 2000  |
|     | EPR     | 1.15 | 1.17 | 1.21  | 1.27   | 1.34     | 1.42     | 1.53  | 1.67  | 1.74  |
| 70  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2220 | 2110 | 2010  | 1940   | 1860     | 1810     | 1760  | 1780  | 1790  |
|     | EPR     | 1.13 | 1.15 | 1.19  | 1.24   | 1.30     | 1.38     | 1.48  | 1.59  | 1.65  |
| 60  | KIAS    | 210  | 210  | 210   | 210    | 210      | 210      | 210   | 210   | 210   |
|     | FF/ENG  | 2120 | 2000 | 1900  | 1820   | 1750     | 1680     | 1640  | 1630  | 1630  |

This table includes 5% additional fuel for holding in a racetrack pattern.



Intentionally Blank

### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Performance Inflight Advisory Information

## Chapter PI Section 32

### ADVISORY INFORMATION

#### Normal Configuration Landing Distance - Autobrake System Flaps 15 Dry Runway

LANDING DISTANCE AND ADJUSTMENT (FT) REVERSE REF WT ALT WIND ADJ SLOPE ADJ TEMP ADJ VREF THRUST DIST ADJ ADJ PER 10 KTS PER 1% PER 10°F ADJ ADJ PER PER PER 100000 LB 1000 FT HEAD TAIL DOWN UP BRAKING 5000 LB ABV BLW 10 KTS ONE NO LANDING ABOVE WIND WIND HILL HILL CONFIGURATION ABV/BLW ISA ISA ABOVE REV REV WEIGHT SEA 100000 LB VREF15 LEVEI MAX MANUAL 2820 180/-11090 -140 510 30 -30 50 -50 330 90 200 150/-140 90 -50 400 MAX AUTO 3730 -150520 0 0 50 0 0 MED AUTO 4730 210/-190 120 -210 720 0 0 70 -70 550 0 0 MIN AUTO 6090 350/-300 220 -300 1050 160 -18090 -90 500 920 1010

#### **Good Reported Braking Action**

| MAX MANUAL | 3600 | 150/-130 | 90  | -150 | 550  | 70  | -70  | 40 | -40 | 270 | 280 | 710  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3770 | 160/-140 | 90  | -160 | 570  | 40  | -10  | 50 | -50 | 400 | 130 | 550  |
| MED AUTO   | 4730 | 210/-190 | 120 | -210 | 730  | 0   | 0    | 70 | -70 | 550 | 0   | 80   |
| MIN AUTO   | 6090 | 350/-300 | 220 | -300 | 1050 | 160 | -180 | 90 | -90 | 500 | 920 | 1010 |

#### **Medium Reported Braking Action**

|   | -          |      | -        |     |      |      |     |      |    |     |     |     |      |
|---|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| Г | MAX MANUAL | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760 | 2260 |
| Γ | MAX AUTO   | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760 | 2260 |
| Γ | MED AUTO   | 4930 | 220/-200 | 140 | -240 | 890  | 100 | -60  | 70 | -70 | 500 | 470 | 1960 |
| L | MIN AUTO   | 6090 | 350/-300 | 220 | -300 | 1090 | 170 | -180 | 90 | -90 | 500 | 960 | 1570 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 57 | 700 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|---------|-----|
| MAX AUTO   | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 57 | 700 |
| MED AUTO   | 5650 | 300/-260 | 190 | -300 | 1250 | 250 | -180 | 80 | -80 | 470 | 1430 56 | 540 |
| MIN AUTO   | 6220 | 360/-310 | 230 | -330 | 1340 | 260 | -220 | 90 | -90 | 500 | 1400 51 | 130 |

Reference distance is for sea level, standard day, no wind or slope, VREF15 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).



737 Flight Crew Operations Manual

#### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Autobrake System Flaps 30 Dry Runway

|                          |                                | L                                      | ANDING       | DISTA | NCE A          | ND AD        | JUSTI | MENT | (FT)          |                                  |                   |     |
|--------------------------|--------------------------------|----------------------------------------|--------------|-------|----------------|--------------|-------|------|---------------|----------------------------------|-------------------|-----|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ   |       | O ADJ<br>0 KTS | SLOPE<br>PER |       |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE<br>SEA | HEAD  | TAIL<br>WIND   | DOWN<br>HILL |       |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF30 | REV               |     |
| MAX MANUAL               | 2560                           | 170/-80                                | 80           | -100  | 520            | 30           | -30   | 40   | -40           | 330                              | 60                | 140 |
| MAX AUTO                 | 3410                           | 140/-120                               | 80           | -140  | 490            | 0            | 0     | 40   | -40           | 370                              | 0                 | 0   |
| MED AUTO                 | 4290                           | 200/-170                               | 110          | -200  | 680            | 0            | 0     | 60   | -60           | 510                              | 0                 | 0   |
| MIN AUTO                 | 5430                           | 300/-260                               | 190          | -280  | 980            | 150          | -160  | 70   | -80           | 420                              | 800               | 930 |

#### **Good Reported Braking Action**

| MAX MANUAL | 3350 | 140/-120 | 80  | -150 | 530 | 70  | -60  | 40 | -40 | 270 | 250 | 620 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|-----|
| MAX AUTO   | 3450 | 140/-120 | 80  | -150 | 540 | 50  | -20  | 40 | -40 | 360 | 140 | 520 |
| MED AUTO   | 4290 | 200/-170 | 110 | -200 | 680 | 0   | 0    | 60 | -60 | 510 | 0   | 70  |
| MIN AUTO   | 5430 | 300/-260 | 190 | -280 | 980 | 150 | -160 | 70 | -80 | 420 | 800 | 930 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
| MED AUTO   | 4460 | 210/-180 | 120 | -220 | 840  | 100 | -50  | 60 | -70 | 470 | 410 | 1670 |
| MIN AUTO   | 5440 | 300/-260 | 190 | -280 | 1020 | 160 | -160 | 70 | -80 | 420 | 840 | 1410 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
| MED AUTO   | 5080 | 270/-230 | 170 | -280 | 1190 | 220 | -160 | 70 | -70 | 420 | 1190 | 4600 |
| MIN AUTO   | 5560 | 320/-270 | 200 | -310 | 1270 | 230 | -200 | 80 | -80 | 420 | 1230 | 4240 |

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

### **ADVISORY INFORMATION**

### Normal Configuration Landing Distance - Autobrake System Flaps 40 Dry Runway

|                          |                                | L                                      | ANDING                         | DISTA | NCE A        | ND AD        | JUSTI | MENT | (FT)          |                                  |                   |     |
|--------------------------|--------------------------------|----------------------------------------|--------------------------------|-------|--------------|--------------|-------|------|---------------|----------------------------------|-------------------|-----|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT WIND ADJ<br>ADJ PER 10 KTS |       |              | SLOPE<br>PER |       |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVI<br>THR<br>AI | UST |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE<br>SEA                   | HEAD  | TAIL<br>WIND | DOWN<br>HILL |       |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF40 | REV               |     |
| MAX MANUAL               | 2480                           | 160/-70                                | 80                             | -90   | 510          | 30           | -20   | 40   | -30           | 320                              | 50                | 120 |
| MAX AUTO                 | 3300                           | 130/-120                               | 80                             | -140  | 480          | 0            | 0     | 40   | -40           | 370                              | 0                 | 0   |
| MED AUTO                 | 4140                           | 180/-160                               | 100                            | -190  | 660          | 0            | 0     | 60   | -60           | 490                              | 0                 | 0   |
| MIN AUTO                 | 5120                           | 270/-240                               | 170                            | -270  | 950          | 150          | -150  | 70   | -70           | 370                              | 750               | 970 |

### **Good Reported Braking Action**

| MAX MANUAL | 3250 | 130/-110 | 80  | -140 | 520 | 70  | -60  | 40 | -40 | 260 | 230 | 580 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|-----|
| MAX AUTO   | 3350 | 130/-120 | 80  | -150 | 530 | 50  | -20  | 40 | -40 | 350 | 140 | 490 |
| MED AUTO   | 4140 | 180/-160 | 100 | -190 | 670 | 0   | 0    | 60 | -60 | 490 | 0   | 70  |
| MIN AUTO   | 5120 | 270/-240 | 170 | -270 | 950 | 150 | -150 | 70 | -70 | 370 | 750 | 970 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4050 | 190/-170 | 120 | -200 | 790 | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4050 | 190/-160 | 120 | -200 | 790 | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
| MED AUTO   | 4280 | 190/-170 | 110 | -220 | 830 | 90  | -40  | 60 | -60 | 470 | 370 | 1510 |
| MIN AUTO   | 5130 | 270/-240 | 170 | -270 | 990 | 160 | -160 | 70 | -70 | 370 | 780 | 1400 |

### **Poor Reported Braking Action**

| MAX MANUAL | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 4100 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----------|
| MAX AUTO   | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 4100 |
| MED AUTO   | 4830 | 240/-210 | 150 | -270 | 1160 | 200 | -150 | 70 | -70 | 380 | 1060 4040 |
| MIN AUTO   | 5240 | 280/-250 | 180 | -300 | 1230 | 230 | -190 | 70 | -80 | 370 | 1140 3810 |

Reference distance is for sea level, standard day, no wind or slope, VREF40 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Digital Autobrake System Flaps 15 Dry Punway

Dry Runway

|                          |                                | L         | ANDING     | DISTA | NCE A          | ND AD        | JUSTI | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|-----------|------------|-------|----------------|--------------|-------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ | ALT<br>ADJ |       | O ADJ<br>0 KTS | SLOPE<br>PER |       |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | 5000 L B  | ABOVE      | HEAD  | TAIL<br>WIND   | DOWN<br>HILL |       |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF15 | REV               |      |
| MAX MANUAL               | 2820                           | 180/-110  | 90         | -140  | 510            | 30           | -30   | 50   | -50           | 330                              | 90                | 200  |
| MAX AUTO                 | 3840                           | 150/-140  | 90         | -150  | 520            | 10           | -10   | 50   | -50           | 380                              | 0                 | 0    |
| MED AUTO                 | 5380                           | 250/-240  | 150        | -250  | 840            | 40           | -70   | 80   | -80           | 530                              | 50                | 50   |
| MIN AUTO                 | 6170                           | 350/-310  | 230        | -310  | 1080           | 200          | -200  | 90   | -90           | 470                              | 1070              | 1250 |

### **Good Reported Braking Action**

| MAX MANUAL | 3600 | 150/-130 | 90  | -150 | 550  | 70  | -70  | 40 | -40 | 270 | 280  | 710  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 3890 | 160/-140 | 90  | -160 | 580  | 40  | -20  | 50 | -50 | 380 | 170  | 630  |
| MED AUTO   | 5380 | 250/-240 | 150 | -250 | 840  | 40  | -70  | 80 | -80 | 530 | 50   | 50   |
| MIN AUTO   | 6170 | 350/-310 | 230 | -310 | 1080 | 200 | -200 | 90 | -90 | 470 | 1070 | 1250 |

### **Medium Reported Braking Action**

| MAX MANUAL | 4630 | 230/-200 | 140 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 760  | 2260 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 4680 | 230/-200 | 150 | -220 | 850  | 150 | -130 | 60 | -70 | 350 | 770  | 2290 |
| MED AUTO   | 5450 | 260/-250 | 160 | -260 | 960  | 80  | -90  | 80 | -80 | 530 | 280  | 1610 |
| MIN AUTO   | 6170 | 350/-310 | 230 | -310 | 1110 | 210 | -210 | 90 | -90 | 470 | 1100 | 1710 |

### **Poor Reported Braking Action**

| MAX MANUAL | 5580 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 5700 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----------|
| MAX AUTO   | 5590 | 310/-270 | 200 | -300 | 1240 | 270 | -210 | 80 | -80 | 410 | 1500 5710 |
| MED AUTO   | 5830 | 310/-280 | 200 | -310 | 1270 | 240 | -180 | 80 | -90 | 470 | 1270 5490 |
| MIN AUTO   | 6280 | 360/-320 | 240 | -330 | 1350 | 280 | -240 | 90 | -90 | 470 | 1500 5160 |

Reference distance is for sea level, standard day, no wind or slope, VREF15 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



### **ADVISORY INFORMATION**

### Normal Configuration Landing Distance - Digital Autobrake System Flaps 30

Dry Runway

|                          |                                | L                                      | ANDING     | DISTA        | NCE A        | NDAD         | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|----------------------------------------|------------|--------------|--------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ | J PER 10 KTS |              | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVE<br>THR<br>AI | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB |            | HEAD         | TAIL<br>WIND | DOWN<br>HILL | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF30 | REV               |      |
| MAX MANUAL               | 2560                           | 170/-80                                | 80         | -100         | 520          | 30           | -30        | 40   | -40           | 330                              | 60                | 140  |
| MAX AUTO                 | 3500                           | 140/-120                               | 80         | -140         | 490          | 10           | -10        | 40   | -40           | 350                              | 0                 | 0    |
| MED AUTO                 | 4830                           | 230/-210                               | 130        | -230         | 790          | 40           | -60        | 70   | -70           | 480                              | 50                | 50   |
| MIN AUTO                 | 5480                           | 310/-260                               | 190        | -290         | 1010         | 180          | -170       | 80   | -80           | 410                              | 910               | 1130 |

### **Good Reported Braking Action**

| MAX MANUAL | 3350 | 140/-120 | 80  | -150 | 530  | 70  | -60  | 40 | -40 | 270 | 250 | 620  |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3560 | 140/-130 | 80  | -150 | 550  | 50  | -30  | 40 | -40 | 340 | 180 | 580  |
| MED AUTO   | 4830 | 230/-210 | 130 | -230 | 790  | 40  | -60  | 70 | -70 | 480 | 50  | 60   |
| MIN AUTO   | 5480 | 310/-260 | 190 | -290 | 1010 | 180 | -170 | 80 | -80 | 410 | 910 | 1130 |

#### **Medium Reported Braking Action**

| MAX MANUAL | 4230 | 200/-180 | 130 | -210 | 810  | 140 | -120 | 60 | -60 | 330 | 640 | 1910 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4260 | 210/-180 | 130 | -210 | 810  | 140 | -110 | 60 | -60 | 330 | 650 | 1930 |
| MED AUTO   | 4890 | 240/-210 | 140 | -240 | 910  | 80  | -80  | 70 | -70 | 480 | 260 | 1380 |
| MIN AUTO   | 5480 | 310/-260 | 190 | -290 | 1040 | 190 | -170 | 80 | -80 | 410 | 940 | 1530 |

#### **Poor Reported Braking Action**

| MAX MANUAL | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4650 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 5030 | 270/-230 | 170 | -280 | 1180 | 240 | -190 | 70 | -70 | 370 | 1250 | 4660 |
| MED AUTO   | 5230 | 270/-240 | 170 | -290 | 1210 | 220 | -160 | 70 | -80 | 420 | 1070 | 4480 |
| MIN AUTO   | 5590 | 320/-270 | 200 | -310 | 1270 | 250 | -210 | 80 | -80 | 410 | 1290 | 4270 |

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.



### **ADVISORY INFORMATION**

#### Normal Configuration Landing Distance - Digital Autobrake System Flaps 40 Dry Punway

Dry Runway

|                          |                                | L                                      | ANDING     | DISTA | NCE A          | ND AD        | JUSTI      | MENT | (FT)          |                                  |                   |      |
|--------------------------|--------------------------------|----------------------------------------|------------|-------|----------------|--------------|------------|------|---------------|----------------------------------|-------------------|------|
|                          | REF<br>DIST                    | WT<br>ADJ                              | ALT<br>ADJ |       | O ADJ<br>0 KTS | SLOPE<br>PER |            |      | P ADJ<br>10°F | VREF<br>ADJ                      | REVI<br>THR<br>AI | UST  |
| BRAKING<br>CONFIGURATION | 100000 LB<br>LANDING<br>WEIGHT | PER<br>5000 LB<br>ABV/BLW<br>100000 LB | ABOVE      | HEAD  |                |              | UP<br>HILL |      | ISA           | PER<br>10 KTS<br>ABOVE<br>VREF40 | REV               |      |
| MAX MANUAL               | 2480                           | 160/-70                                | 80         | -90   | 510            | 30           | -20        | 40   | -30           | 320                              | 50                | 120  |
| MAX AUTO                 | 3370                           | 130/-120                               | 70         | -140  | 480            | 10           | -10        | 40   | -40           | 340                              | 0                 | 0    |
| MED AUTO                 | 4600                           | 210/-200                               | 130        | -220  | 760            | 50           | -60        | 70   | -70           | 440                              | 70                | 70   |
| MIN AUTO                 | 5160                           | 270/-240                               | 180        | -270  | 970            | 160          | -160       | 70   | -70           | 370                              | 820               | 1140 |

### **Good Reported Braking Action**

| MAX MANUAL | 3250 | 130/-110 | 80  | -140 | 520 | 70  | -60  | 40 | -40 | 260 | 230 | 580  |
|------------|------|----------|-----|------|-----|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 3430 | 140/-120 | 80  | -150 | 540 | 50  | -30  | 40 | -40 | 330 | 180 | 550  |
| MED AUTO   | 4600 | 210/-200 | 130 | -220 | 760 | 50  | -60  | 70 | -70 | 440 | 70  | 70   |
| MIN AUTO   | 5160 | 270/-240 | 180 | -270 | 970 | 160 | -160 | 70 | -70 | 370 | 820 | 1140 |

### **Medium Reported Braking Action**

| MAX MANUAL | 4050 | 190/-170 | 120 | -200 | 790  | 130 | -110 | 50 | -60 | 310 | 590 | 1730 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|-----|------|
| MAX AUTO   | 4080 | 190/-170 | 120 | -210 | 790  | 130 | -110 | 50 | -60 | 310 | 590 | 1740 |
| MED AUTO   | 4670 | 220/-200 | 130 | -240 | 880  | 80  | -80  | 70 | -70 | 440 | 270 | 1250 |
| MIN AUTO   | 5160 | 270/-240 | 180 | -270 | 1000 | 170 | -160 | 70 | -70 | 370 | 840 | 1500 |

### **Poor Reported Braking Action**

| MAX MANUAL | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 | 4100 |
|------------|------|----------|-----|------|------|-----|------|----|-----|-----|------|------|
| MAX AUTO   | 4770 | 250/-210 | 160 | -270 | 1150 | 220 | -170 | 70 | -70 | 340 | 1120 | 4100 |
| MED AUTO   | 4950 | 250/-220 | 160 | -280 | 1180 | 200 | -150 | 70 | -70 | 420 | 960  | 3940 |
| MIN AUTO   | 5260 | 280/-250 | 180 | -300 | 1240 | 240 | -190 | 70 | -80 | 370 | 1170 | 3850 |

Reference distance is for sea level, standard day, no wind or slope, VREF40 approach speed and two engine detent reverse thrust.

Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

### **ADVISORY INFORMATION**

### Non-Normal Configuration Landing Distance Dry Runway

|                                                                      |           |                                | LANDING                         | AND A                         | DJUST         | MENT | (FT)         |     |                             |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------------------------|-------------------------------|---------------|------|--------------|-----|-----------------------------|
|                                                                      |           | REF DIST<br>FOR                | WT ADJ<br>PER                   | ALT ADJ<br>PER                | WINI<br>PER 1 |      | SLOPE<br>PER |     | APPROACH<br>SPEED           |
| LANDING<br>CONFIGURATION                                             | VREF      | 100000 LB<br>LANDING<br>WEIGHT | 5000 LB<br>ABV/BLW<br>100000 LB | 1000 FT<br>ABOVE<br>SEA LEVEL |               |      | DOWN<br>HILL |     | PER 10 KTS<br>ABOVE<br>VREF |
| ALL FLAPS UP                                                         | VREF40+55 | 4400                           | 370 / -210                      | 440                           | -200          | 810  | 60           | -60 | 420                         |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 3640                           | 135 / -120                      | 75                            | -160          | 560  | 60           | -55 | 275                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 3400                           | 220 / -150                      | 190                           | -170          | 620  | 60           | -50 | 440                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 3100                           | 190 / -130                      | 130                           | -150          | 570  | 40           | -40 | 360                         |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 3850                           | 260 / -170                      | 230                           | -200          | 710  | 80           | -70 | 530                         |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 2800                           | 170 / -110                      | 150                           | -140          | 500  | 30           | -30 | 310                         |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 2800                           | 170 / -110                      | 150                           | -140          | 500  | 30           | -30 | 310                         |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 3050                           | 190 / -130                      | 180                           | -160          | 520  | 40           | -40 | 320                         |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 2850                           | 190 / -120                      | 160                           | -150          | 540  | 40           | -30 | 350                         |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 3700                           | 260 / -180                      | 290                           | -160          | 640  | 50           | -40 | 330                         |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 3400                           | 220 / -170                      | 230                           | -150          | 570  | 40           | -40 | 300                         |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

### 737 Flight Crew Operations Manual

### **ADVISORY INFORMATION**

### Non-Normal Configuration Landing Distance Good Reported Braking Action

|                                                                      |           |                                | LANDING       | DISTANCE                      | AND A         | DJUST | MENT         | (FT) |                             |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------|-------------------------------|---------------|-------|--------------|------|-----------------------------|
|                                                                      |           | REF DIST<br>FOR                | WT ADJ<br>PER | ALT ADJ<br>PER                | WINI<br>PER 1 |       | SLOPE<br>PER |      | APPROACH<br>SPEED           |
| LANDING<br>CONFIGURATION                                             | VREF      | 100000 LB<br>LANDING<br>WEIGHT |               | 1000 FT<br>ABOVE<br>SEA LEVEL |               | WIND  | DOWN<br>HILL |      | PER 10 KTS<br>ABOVE<br>VREF |
| ALL FLAPS UP                                                         | VREF40+55 | 4900                           | 170 / -170    | 410                           | -180          | 630   | 80           | -80  | 280                         |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 4270                           | 180 / -155    | 105                           | -215          | 800   | 115          | -90  | 305                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 4000                           | 160 / -150    | 210                           | -170          | 590   | 90           | -80  | 350                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 3620                           | 150 / -130    | 150                           | -150          | 540   | 70           | -60  | 280                         |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 4200                           | 190 / -160    | 230                           | -170          | 610   | 100          | -90  | 400                         |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 3500                           | 140 / -120    | 170                           | -150          | 530   | 60           | -60  | 250                         |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 3500                           | 140 / -120    | 170                           | -150          | 530   | 60           | -60  | 250                         |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 3750                           | 160 / -130    | 200                           | -160          | 550   | 70           | -70  | 290                         |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 3750                           | 150 / -140    | 190                           | -160          | 580   | 80           | -80  | 290                         |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 4300                           | 160 / -150    | 290                           | -160          | 580   | 70           | -70  | 250                         |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 4050                           | 150 / -100    | 250                           | -160          | 560   | 70           | -60  | 250                         |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

### **ADVISORY INFORMATION**

### Non-Normal Configuration Landing Distance Medium Reported Braking Action

|                                                                      |           |                                | LANDING                         | DISTANCE A                    | AND A         | DJUST | MENT         | (FT) |                             |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------------------------|-------------------------------|---------------|-------|--------------|------|-----------------------------|
|                                                                      |           | REF DIST<br>FOR                | WT ADJ<br>PER                   | ALT ADJ<br>PER                | WINI<br>PER 1 |       | SLOPE<br>PER |      | APPROACH<br>SPEED           |
| LANDING<br>CONFIGURATION                                             | VREF      | 100000 LB<br>LANDING<br>WEIGHT | 5000 LB<br>ABV/BLW<br>100000 LB | 1000 FT<br>ABOVE<br>SEA LEVEL |               |       | DOWN<br>HILL |      | PER 10 KTS<br>ABOVE<br>VREF |
| ALL FLAPS UP                                                         | VREF40+55 | 6200                           | 280 / -240                      | 530                           | -260          | 940   | 160          | -150 | 360                         |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 4880                           | 225 / -195                      | 135                           | -280          | 1135  | 265          | -145 | 330                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 4950                           | 230 / -210                      | 260                           | -230          | 870   | 150          | -140 | 400                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 4510                           | 210 / -190                      | 190                           | -220          | 820   | 130          | -110 | 340                         |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 5150                           | 250 / -220                      | 290                           | -240          | 890   | 170          | -150 | 450                         |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 4400                           | 200 / -180                      | 220                           | -210          | 800   | 120          | -110 | 310                         |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 4400                           | 200 / -180                      | 220                           | -210          | 800   | 120          | -110 | 310                         |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 4730                           | 230 / -190                      | 260                           | -220          | 840   | 140          | -120 | 350                         |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 5000                           | 240 / -210                      | 270                           | -250          | 940   | 190          | -160 | 390                         |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 5450                           | 240 / -210                      | 380                           | -230          | 870   | 140          | -120 | 320                         |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 5100                           | 230 / -200                      | 320                           | -230          | 850   | 130          | -120 | 320                         |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

### 737 Flight Crew Operations Manual

### **ADVISORY INFORMATION**

### Non-Normal Configuration Landing Distance Poor Reported Braking Action

|                                                                      |           |                                | LANDING                         | DISTANCE                      | AND A         | DJUST | MENT         | (FT) |                             |
|----------------------------------------------------------------------|-----------|--------------------------------|---------------------------------|-------------------------------|---------------|-------|--------------|------|-----------------------------|
|                                                                      |           | REF DIST<br>FOR                | WT ADJ<br>PER                   | ALT ADJ<br>PER                | WINI<br>PER 1 |       | SLOPE<br>PER |      | APPROACH<br>SPEED           |
| LANDING<br>CONFIGURATION                                             |           | 100000 LB<br>LANDING<br>WEIGHT | 5000 LB<br>ABV/BLW<br>100000 LB | 1000 FT<br>ABOVE<br>SEA LEVEL |               | WIND  | DOWN<br>HILL |      | PER 10 KTS<br>ABOVE<br>VREF |
| ALL FLAPS UP                                                         | VREF40+55 | 7400                           | 360 / -330                      | 650                           | -340          | 1330  | 270          | -230 | 410                         |
| ANTI-SKID<br>INOPERATIVE                                             | VREF40    | 5630                           | 280 / -245                      | 170                           | -390          | 1865  | 1140         | -265 | 350                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM A<br>(FLAPS 15)                     | VREF15    | 5700                           | 310 / -250                      | 310                           | -300          | 1230  | 250          | -210 | 430                         |
| HYDRAULICS-<br>LOSS OF<br>SYSTEM B<br>(FLAPS 15)                     | VREF15    | 5290                           | 280 / -240                      | 220                           | -290          | 1180  | 220          | -180 | 380                         |
| HYDRAULICS-<br>MANUAL<br>REVERSION<br>(LOSS OF BOTH<br>SYSTEM A & B) | VREF15    | 5950                           | 320 / -280                      | 340                           | -310          | 1250  | 260          | -220 | 470                         |
| STABILIZER<br>TRIM<br>INOPERATIVE                                    | VREF15    | 5150                           | 270 / -230                      | 260                           | -280          | 1160  | 210          | -170 | 350                         |
| JAMMED OR<br>RESTRICTED<br>FLIGHT<br>CONTROLS                        | VREF15    | 5150                           | 270 / -230                      | 260                           | -280          | 1160  | 210          | -170 | 350                         |
| LEADING EDGE<br>FLAPS TRANSIT                                        | VREF15+5  | 5570                           | 300 / -250                      | 310                           | -300          | 1200  | 230          | -190 | 400                         |
| ONE ENGINE<br>INOPERATIVE                                            | VREF15    | 6300                           | 330 / -300                      | 340                           | -360          | 1430  | 380          | -300 | 460                         |
| TRAILING EDGE<br>FLAP<br>ASYMMETRY<br>(1≤ FLAPS <15)                 | VREF40+30 | 6450                           | 310 / -280                      | 460                           | -310          | 1250  | 240          | -200 | 370                         |
| TRAILING EDGE<br>FLAPS UP<br>(FLAPS < 1)                             | VREF40+40 | 6080                           | 300 / -260                      | 390                           | -300          | 1220  | 230          | -190 | 370                         |

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

### ADVISORY INFORMATION

### Brake Cooling Schedule Reference Brake Energy (Millions of Foot Pounds)

|           |      |     |       |     |     |       | BRA  | KES O | N SPE | EED (k | (IAS) |       |      |      |       |      |
|-----------|------|-----|-------|-----|-----|-------|------|-------|-------|--------|-------|-------|------|------|-------|------|
|           |      |     | 60    |     |     | 80    |      |       | 100   |        |       | 120   |      |      | 140   |      |
| WEIGHT    | OAT  | PR  | ESS A | LT  | PR  | ESS A | LT   | PR    | ESS A | LT     | PR    | ESS A | LT.  | PR   | ESS A | LT.  |
| (1000 LB) | (°F) | 0   | 2     | 4   | 0   | 2     | 4    | 0     | 2     | 4      | 0     | 2     | 4    | 0    | 2     | 4    |
|           | 40   | 4.8 | 5.2   | 5.7 | 8.5 | 9.2   | 9.9  | 13.0  | 14.1  | 15.3   | 18.3  | 19.9  | 21.5 | 22.2 | 24.0  | 25.9 |
| 130       | 80   | 5.2 | 5.7   | 6.1 | 9.2 | 10.0  | 10.7 | 14.1  | 15.3  | 16.5   | 19.8  | 21.4  | 23.2 | 23.9 | 25.9  | 27.9 |
|           | 120  | 5.6 | 6.1   | 6.6 | 9.9 | 10.7  | 11.5 | 15.1  | 16.4  | 17.7   | 21.2  | 23.0  | 24.9 | 25.7 | 27.8  | 30.0 |
|           | 40   | 4.5 | 4.9   | 5.3 | 7.9 | 8.6   | 9.2  | 12.0  | 13.0  | 14.0   | 15.8  | 17.2  | 18.6 | 20.4 | 22.2  | 24.0 |
| 120       | 80   | 4.9 | 5.3   | 5.8 | 8.6 | 9.3   | 10.0 | 12.9  | 14.0  | 15.2   | 17.0  | 18.6  | 20.0 | 22.0 | 24.0  | 25.9 |
|           | 120  | 5.2 | 5.7   | 6.2 | 9.2 | 10.0  | 10.8 | 13.8  | 15.1  | 16.3   | 18.3  | 19.9  | 21.5 | 23.6 | 25.7  | 27.8 |
|           | 40   | 4.2 | 4.5   | 4.9 | 7.2 | 7.8   | 8.5  | 11.1  | 12.1  | 13.0   | 15.1  | 16.5  | 17.8 | 18.5 | 20.1  | 21.7 |
| 110       | 80   | 4.5 | 4.9   | 5.3 | 7.8 | 8.5   | 9.2  | 12.0  | 13.0  | 14.1   | 16.3  | 17.8  | 19.2 | 20.0 | 21.7  | 23.4 |
|           | 120  | 4.8 | 5.2   | 5.6 | 8.4 | 9.1   | 9.9  | 12.8  | 14.0  | 15.2   | 17.5  | 19.0  | 20.6 | 21.4 | 23.3  | 25.2 |
|           | 40   | 3.9 | 4.2   | 4.5 | 6.6 | 7.1   | 7.7  | 10.0  | 10.9  | 11.8   | 13.5  | 14.7  | 15.8 | 16.8 | 18.2  | 19.7 |
| 100       | 80   | 4.2 | 4.5   | 4.9 | 7.1 | 7.7   | 8.3  | 10.8  | 11.8  | 12.7   | 14.6  | 15.8  | 17.0 | 18.1 | 19.6  | 21.2 |
|           | 120  | 4.5 | 4.9   | 5.2 | 7.6 | 8.3   | 9.0  | 11.6  | 12.6  | 13.6   | 15.7  | 17.0  | 18.3 | 19.4 | 21.1  | 22.7 |
|           | 40   | 3.4 | 3.7   | 4.0 | 6.0 | 6.5   | 7.1  | 9.0   | 9.7   | 10.5   | 11.8  | 12.8  | 13.8 | 14.8 | 16.1  | 17.4 |
| 90        | 80   | 3.6 | 4.0   | 4.3 | 6.5 | 7.0   | 7.6  | 9.7   | 10.5  | 11.4   | 12.7  | 13.8  | 14.9 | 16.0 | 17.4  | 18.8 |
|           | 120  | 3.9 | 4.2   | 4.6 | 6.9 | 7.5   | 8.2  | 10.4  | 11.3  | 12.2   | 13.6  | 14.9  | 16.1 | 17.2 | 18.7  | 20.2 |
|           | 40   | 3.1 | 3.4   | 3.7 | 5.2 | 5.7   | 6.2  | 7.9   | 8.6   | 9.2    | 10.0  | 10.9  | 11.8 | 13.0 | 14.1  | 15.3 |
| 80        | 80   | 3.3 | 3.6   | 3.9 | 5.6 | 6.1   | 6.6  | 8.5   | 9.3   | 10.0   | 10.8  | 11.8  | 12.7 | 14.1 | 15.3  | 16.5 |
|           | 120  | 3.6 | 3.9   | 4.2 | 6.0 | 6.6   | 7.1  | 9.2   | 10.0  | 10.8   | 11.6  | 12.6  | 13.6 | 15.1 | 16.4  | 17.7 |

To correct for wind, enter table with the brakes on speed minus one half the headwind or plus 1.5 times the tailwind.

If ground speed is used for brakes on speed, ignore wind, altitude, and OAT effects.

#### Adjusted Brake Energy per Brake (Millions of Foot Pounds)

|             | REF | FERENCE | E BRAKE | ENERG | Y PER B | RAKE (N | <b>IILLION</b> | S OF FOC | DT POUN | DS)  |
|-------------|-----|---------|---------|-------|---------|---------|----------------|----------|---------|------|
| EVENT       | 2   | 4       | 6       | 8     | 10      | 12      | 14             | 16       | 18      | 20   |
| RTO MAX MAN | 2   | 4       | 6       | 8     | 10      | 12      | 14             | 16       | 18      | 20   |
| MAX AUTO    | 1.8 | 3.5     | 5.3     | 7.1   | 8.7     | 10.2    | 11.7           | 13.1     | 14.4    | 15.7 |
| MED AUTO    | 1.5 | 3.2     | 4.8     | 6.3   | 7.6     | 8.8     | 10.0           | 10.8     | 11.7    | 12.5 |
| MIN AUTO    | 1.4 | 3.0     | 4.0     | 4.9   | 5.8     | 6.2     | 6.6            | 7.5      | 7.5     | 7.6  |

### **Cooling Time (Minutes)**

|                       | ADJUSTED                | BRAK | E ENER | GY PER | BRAKE | E (MILL | JONS OF FOO | T POUNDS)              |
|-----------------------|-------------------------|------|--------|--------|-------|---------|-------------|------------------------|
|                       | 6 & BELOW               | 8    | 10     | 12     | 14    | 15.9    | 16 TO 20    | 20 & ABOVE             |
| INFLIGHT<br>GEAR DOWN | NO SPECIAL<br>PROCEDURE | 1.0  | 2.9    | 4.9    | 7.0   | 8.8     | CAUTION     | FUSE PLUG<br>MELT ZONE |
| GROUND                | REQUIRED                | 15   | 28     | 38     | 48    | 56      |             | MELI ZONE              |

Observe maximum quick turnaround limit.

Table does not consider the benefit of reverse thrust.

Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added.

Add 1.0 million foot pounds for each taxi mile.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after 30 minutes. If overheat occurs after takeoff, extend gear soon for at least 9 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not approach gear or attempt to taxi for 50 minutes. Alert fire equipment.



Intentionally Blank

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight** Engine Inoperative

## Chapter PI Section 33

## ENGINE INOP

### Max Continuous EPR

Based on engine bleed for packs on, engine and wing anti-ice off

| T    | _    |      |      | -    |      |      |      |        |       |       |       |       |       |       |
|------|------|------|------|------|------|------|------|--------|-------|-------|-------|-------|-------|-------|
| TAT  |      |      |      |      |      |      |      | LTITUI | · · · |       |       |       |       |       |
| (°C) | 0    | 1000 | 1500 | 2000 | 3000 | 4000 | 5660 | 10000  | 15000 | 20000 | 25000 | 30000 | 35000 | 37000 |
| 50   | 1.64 | 1.64 | 1.66 | 1.66 | 1.66 | 1.66 | 1.66 | 1.66   | 1.66  | 1.66  | 1.64  | 1.64  |       |       |
| 45   | 1.67 | 1.67 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71 | 1.71   | 1.71  | 1.71  | 1.67  | 1.67  |       |       |
| 40   | 1.70 | 1.70 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75   | 1.75  | 1.75  | 1.70  | 1.70  |       |       |
| 35   | 1.73 | 1.73 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81   | 1.81  | 1.81  | 1.73  | 1.73  |       |       |
| 30   | 1.76 | 1.76 | 1.86 | 1.86 | 1.86 | 1.86 | 1.86 | 1.86   | 1.86  | 1.86  | 1.76  | 1.76  |       |       |
| 25   | 1.79 | 1.79 | 1.91 | 1.91 | 1.91 | 1.91 | 1.91 | 1.91   | 1.91  | 1.91  | 1.79  | 1.79  |       |       |
| 20   | 1.82 | 1.82 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95   | 1.95  | 1.95  | 1.82  | 1.82  |       |       |
| 15   | 1.86 | 1.86 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00   | 2.00  | 2.00  | 1.86  | 1.86  |       |       |
| 10   | 1.90 | 1.90 | 2.04 | 2.04 | 2.04 | 2.04 | 2.04 | 2.04   | 2.04  | 2.04  | 1.90  | 1.90  |       |       |
| 5    | 1.94 | 1.94 | 2.06 | 2.07 | 2.07 | 2.07 | 2.07 | 2.07   | 2.07  | 2.07  | 1.94  | 1.94  | 1.92  | 1.92  |
| 0    | 1.98 | 1.99 | 2.06 | 2.09 | 2.10 | 2.10 | 2.10 | 2.10   | 2.10  | 2.10  | 1.99  | 1.99  | 1.97  | 1.97  |
| -5   | 1.98 | 2.04 | 2.06 | 2.09 | 2.13 | 2.13 | 2.13 | 2.13   | 2.13  | 2.13  | 2.04  | 2.04  | 2.02  | 2.02  |
| -10  | 1.98 | 2.04 | 2.06 | 2.09 | 2.14 | 2.16 | 2.16 | 2.16   | 2.16  | 2.16  | 2.09  | 2.09  | 2.07  | 2.07  |
| -15  | 1.98 | 2.04 | 2.06 | 2.09 | 2.14 | 2.19 | 2.19 | 2.19   | 2.19  | 2.19  | 2.12  | 2.12  | 2.11  | 2.11  |
| -20  | 1.98 | 2.04 | 2.06 | 2.09 | 2.14 | 2.20 | 2.21 | 2.21   | 2.21  | 2.21  | 2.15  | 2.15  | 2.14  | 2.14  |
| -25  | 1.98 | 2.04 | 2.06 | 2.09 | 2.14 | 2.20 | 2.24 | 2.24   | 2.24  | 2.24  | 2.18  | 2.18  | 2.17  | 2.17  |
| -30  | 1.98 | 2.04 | 2.06 | 2.09 | 2.14 | 2.20 | 2.26 | 2.26   | 2.26  | 2.26  | 2.21  | 2.21  | 2.20  | 2.20  |
| -35  | 1.98 | 2.04 | 2.06 | 2.09 | 2.14 | 2.20 | 2.28 | 2.28   | 2.28  | 2.28  | 2.23  | 2.23  | 2.22  | 2.22  |
| -40  | 1.98 | 2.04 | 2.06 | 2.09 | 2.14 | 2.20 | 2.30 | 2.30   | 2.30  | 2.30  | 2.25  | 2.25  | 2.24  | 2.24  |

### **EPR Adjustments for Engine Bleeds**

| BLEED                         | PRESSURE A               | LTITUDE (FT)    |
|-------------------------------|--------------------------|-----------------|
| CONFIGURATION                 | BELOW 1500 & ABOVE 20000 | 1500 THRU 20000 |
| ENGINE ANTI-ICE ON            | 0.08                     | 0.08            |
| ENGINE AND WING ANTI-ICE ON*  | 0.12                     | 0.12            |
| ENGINE AND WING ANTI-ICE ON** | 0.14                     | 0.15            |

\*Dual Bleed Source

\*\*Single Bleed Source

737 Flight Crew Operations Manual

## ENGINE INOP

### MAX CONTINUOUS THRUST

### Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

| WEIGHT                 | (1000 LB)    | OPTIMUM                      | LEVE                  | EL OFF ALTITUDE | E (FT)     |
|------------------------|--------------|------------------------------|-----------------------|-----------------|------------|
| START<br>DRIFT<br>DOWN | LEVEL<br>OFF | DRIFTDOWN<br>SPEED<br>(KIAS) | ISA + 10°C<br>& BELOW | ISA + 15°C      | ISA + 20°C |
| 130                    | 122          | 231                          | 10300                 | 8700            | 6700       |
| 120                    | 113          | 222                          | 13100                 | 11800           | 10300      |
| 110                    | 104          | 213                          | 16000                 | 14900           | 13600      |
| 100                    | 95           | 203                          | 18900                 | 18000           | 17000      |
| 90                     | 84           | 193                          | 20500                 | 19900           | 20000      |
| 80                     | 75           | 182                          | 24300                 | 23200           | 21800      |
| 70                     | 66           | 170                          | 28200                 | 27400           | 26400      |
| 60                     | 57           | 158                          | 32300                 | 31600           | 30900      |

### Driftdown/LRC Cruise Range Capability Ground to Air Miles Conversion

| 1    | AIR D  | ISTANCE | E (NM)  |      | GROUND   |      | AIR D  | ISTANCE | E (NM)   |      |
|------|--------|---------|---------|------|----------|------|--------|---------|----------|------|
| HE.  | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | VENT (KI | (S)  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80       | 100  |
| 302  | 274    | 251     | 231     | 214  | 200      | 187  | 176    | 166     | 157      | 150  |
| 602  | 547    | 501     | 462     | 429  | 400      | 375  | 353    | 333     | 315      | 300  |
| 893  | 813    | 747     | 691     | 642  | 600      | 563  | 530    | 501     | 475      | 452  |
| 1179 | 1077   | 991     | 918     | 855  | 800      | 752  | 709    | 671     | 636      | 605  |
| 1463 | 1339   | 1234    | 1145    | 1068 | 1000     | 940  | 888    | 840     | 798      | 760  |
| 1747 | 1601   | 1477    | 1372    | 1280 | 1200     | 1129 | 1066   | 1010    | 960      | 914  |
| 2034 | 1865   | 1722    | 1599    | 1493 | 1400     | 1318 | 1245   | 1179    | 1121     | 1067 |
| 2326 | 2133   | 1969    | 1828    | 1707 | 1600     | 1506 | 1422   | 1348    | 1280     | 1219 |
| 2627 | 2406   | 2219    | 2059    | 1921 | 1800     | 1693 | 1599   | 1514    | 1438     | 1369 |

### Driftdown/Cruise Fuel and Time

| AIR  |      |      | FUEL R     | EQUIRED (1  | 000 LB)   |        |      | TIME         |
|------|------|------|------------|-------------|-----------|--------|------|--------------|
| DIST |      | WEIG | HT AT STAF | RT OF DRIFT | FDOWN (10 | 00 LB) |      | (HR:MIN)     |
| (NM) | 70   | 80   | 90         | 100         | 110       | 120    | 130  | (IIIC.WIIIV) |
| 200  | 2.1  | 2.3  | 2.4        | 2.7         | 2.9       | 3.1    | 3.4  | 0:41         |
| 400  | 4.5  | 5.1  | 5.6        | 5.9         | 6.7       | 7.3    | 7.9  | 1:20         |
| 600  | 6.7  | 7.5  | 8.4        | 9.0         | 10.1      | 11.0   | 11.9 | 1:58         |
| 800  | 8.8  | 9.9  | 11.1       | 12.0        | 13.3      | 14.6   | 15.8 | 2:34         |
| 1000 | 10.8 | 12.3 | 13.7       | 14.9        | 16.5      | 18.1   | 19.6 | 3:10         |
| 1200 | 12.8 | 14.5 | 16.3       | 17.7        | 19.6      | 21.5   | 23.3 | 3:45         |
| 1400 | 14.7 | 16.8 | 18.8       | 20.4        | 22.6      | 24.8   | 26.9 | 4:22         |
| 1600 | 16.6 | 18.9 | 21.2       | 23.1        | 25.6      | 28.0   | 30.5 | 4:60         |
| 1800 | 18.5 | 21.0 | 23.6       | 25.8        | 28.5      | 31.2   | 33.9 | 5:40         |

Includes APU fuel burn.

Driftdown at optimum driftdown speed and cruise at LRC speed.

737 Flight Crew Operations Manual

### Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

| WEIGHT    |                       | PRESSURE ALTITUDE (FT) |            |
|-----------|-----------------------|------------------------|------------|
| (1000 LB) | ISA + 10°C<br>& BELOW | ISA+15°C               | ISA + 20°C |
| 120       | 5700                  | 2300                   |            |
| 110       | 10300                 | 7600                   | 4200       |
| 100       | 14000                 | 12200                  | 9900       |
| 90        | 17800                 | 16400                  | 14700      |
| 80        | 20000                 | 20000                  | 19600      |
| 70        | 23900                 | 22200                  | 20000      |
| 60        | 29000                 | 27800                  | 26400      |

### Long Range Cruise Control

| WE   | IGHT   |      | .97  |      |      |      |      |      |      |      |      |      |
|------|--------|------|------|------|------|------|------|------|------|------|------|------|
| (100 | 00 LB) | 10   | 13   | 15   | 17   | 19   | 21   | 23   | 25   | 27   | 29   | 31   |
|      | EPR    | 1.97 |      |      |      |      |      |      |      |      |      |      |
| 120  | MACH   | .521 |      |      |      |      |      |      |      |      |      |      |
| 120  | KIAS   | 289  |      |      |      |      |      |      |      |      |      |      |
|      | FF/ENG | 6538 |      |      |      |      |      |      |      |      |      |      |
|      | EPR    | 1.89 | 2.00 |      |      |      |      |      |      |      |      |      |
| 110  | MACH   | .502 | .529 |      |      |      |      |      |      |      |      |      |
| 110  | KIAS   | 278  | 277  |      |      |      |      |      |      |      |      |      |
|      | FF/ENG | 5898 | 5982 |      |      |      |      |      |      |      |      |      |
|      | EPR    | 1.81 | 1.91 | 1.99 | 2.07 |      |      |      |      |      |      |      |
| 100  | MACH   | .482 | .507 | .525 | .545 |      |      |      |      |      |      |      |
| 100  | KIAS   | 266  | 265  | 265  | 265  |      |      |      |      |      |      |      |
|      | FF/ENG | 5294 | 5332 | 5383 | 5454 |      |      |      |      |      |      |      |
|      | EPR    | 1.73 | 1.82 | 1.89 | 1.96 | 2.04 |      |      |      |      |      |      |
| 90   | MACH   | .461 | .484 | .501 | .519 | .539 |      |      |      |      |      |      |
| 90   | KIAS   | 255  | 253  | 252  | 252  | 251  |      |      |      |      |      |      |
|      | FF/ENG | 4727 | 4728 | 4746 | 4780 | 4844 |      |      |      |      |      |      |
|      | EPR    | 1.64 | 1.73 | 1.79 | 1.86 | 1.93 | 2.01 | 2.10 |      |      |      |      |
| 80   | MACH   | .440 | .461 | .476 | .493 | .511 | .531 | .553 |      |      |      |      |
| 80   | KIAS   | 243  | 241  | 240  | 239  | 238  | 238  | 238  |      |      |      |      |
|      | FF/ENG | 4202 | 4169 | 4162 | 4166 | 4191 | 4253 | 4339 |      |      |      |      |
|      | EPR    | 1.57 | 1.63 | 1.69 | 1.75 | 1.81 | 1.88 | 1.96 | 2.05 | 2.14 |      |      |
| 70   | MACH   | .418 | .437 | .451 | .466 | .483 | .500 | .519 | .540 | .564 |      |      |
| 70   | KIAS   | 231  | 228  | 227  | 225  | 224  | 223  | 223  | 223  | 223  |      |      |
|      | FF/ENG | 3719 | 3656 | 3628 | 3610 | 3606 | 3631 | 3678 | 3736 | 3805 |      |      |
|      | EPR    | 1.49 | 1.55 | 1.59 | 1.64 | 1.69 | 1.76 | 1.83 | 1.91 | 1.99 | 2.09 | 2.18 |
| 60   | MACH   | .395 | .412 | .425 | .438 | .453 | .471 | .491 | .511 | .532 | .555 | .579 |
| 00   | KIAS   | 218  | 215  | 213  | 211  | 210  | 210  | 210  | 210  | 210  | 210  | 210  |
|      | FF/ENG | 3271 | 3184 | 3137 | 3101 | 3078 | 3094 | 3129 | 3167 | 3203 | 3252 | 3319 |

### 737 Flight Crew Operations Manual

### Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

|      | AIR D  | ISTANCE | E (NM)  |      | GROUND   |      | AIR D  | ISTANCE | E (NM)   |          |  |
|------|--------|---------|---------|------|----------|------|--------|---------|----------|----------|--|
| HE   | ADWIND | COMPO   | NENT (K | TS)  | DISTANCE | TA   | ILWIND | COMPON  | VENT (KI | NT (KTS) |  |
| 100  | 80     | 60      | 40      | 20   | (NM)     | 20   | 40     | 60      | 80       | 100      |  |
| 306  | 277    | 252     | 232     | 215  | 200      | 190  | 181    | 173     | 166      | 159      |  |
| 620  | 561    | 509     | 467     | 431  | 400      | 380  | 362    | 345     | 330      | 316      |  |
| 938  | 846    | 766     | 701     | 647  | 600      | 570  | 542    | 516     | 493      | 473      |  |
| 1258 | 1133   | 1025    | 937     | 864  | 800      | 759  | 722    | 687     | 656      | 629      |  |
| 1581 | 1423   | 1285    | 1174    | 1081 | 1000     | 949  | 901    | 858     | 820      | 785      |  |
| 1908 | 1715   | 1547    | 1412    | 1299 | 1200     | 1138 | 1081   | 1029    | 982      | 940      |  |
| 2238 | 2008   | 1810    | 1649    | 1517 | 1400     | 1327 | 1259   | 1198    | 1143     | 1094     |  |
| 2572 | 2305   | 2074    | 1888    | 1735 | 1600     | 1516 | 1438   | 1368    | 1304     | 1248     |  |
| 2910 | 2604   | 2339    | 2128    | 1953 | 1800     | 1704 | 1616   | 1536    | 1464     | 1401     |  |

### **Reference Fuel and Time Required at Check Point**

| AIR    | PRESSURE ALTITUDE (1000 FT) |          |           |          |           |          |           |          |           |          |
|--------|-----------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|
| DIST   | 1                           | 0        | 1         | 4        | 1         | 8        | 2         | 2        | 2         | 6        |
| (NM)   | FUEL                        | TIME     | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME     |
| (1111) | (1000 LB)                   | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |
| 200    | 3.3                         | 0:44     | 3.0       | 0:42     | 2.7       | 0:40     | 2.6       | 0:39     | 2.4       | 0:37     |
| 400    | 6.6                         | 1:26     | 6.1       | 1:22     | 5.7       | 1:18     | 5.4       | 1:14     | 5.2       | 1:09     |
| 600    | 9.8                         | 2:08     | 9.1       | 2:02     | 8.6       | 1:56     | 8.2       | 1:50     | 7.9       | 1:43     |
| 800    | 13.0                        | 2:51     | 12.1      | 2:43     | 11.4      | 2:34     | 11.0      | 2:25     | 10.6      | 2:16     |
| 1000   | 16.1                        | 3:35     | 15.0      | 3:24     | 14.2      | 3:13     | 13.6      | 3:02     | 13.2      | 2:51     |
| 1200   | 19.2                        | 4:19     | 17.9      | 4:06     | 16.9      | 3:53     | 16.2      | 3:39     | 15.8      | 3:25     |
| 1400   | 22.2                        | 5:04     | 20.7      | 4:49     | 19.5      | 4:33     | 18.8      | 4:17     | 18.2      | 4:01     |
| 1600   | 25.1                        | 5:50     | 23.5      | 5:32     | 22.1      | 5:14     | 21.2      | 4:56     | 20.6      | 4:37     |
| 1800   | 28.0                        | 6:36     | 26.2      | 6:16     | 24.6      | 5:56     | 23.7      | 5:35     | 23.0      | 5:13     |

### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED | WEIGHT AT CHECK POINT (1000 LB) |      |      |     |     |     |     |  |  |
|-------------------------|---------------------------------|------|------|-----|-----|-----|-----|--|--|
| (1000 LB)               | 60                              | 70   | 80   | 90  | 100 | 110 | 120 |  |  |
| 5                       | -0.7                            | -0.4 | -0.2 | 0.0 | 0.2 | 1.0 | 2.3 |  |  |
| 10                      | -1.4                            | -1.0 | -0.5 | 0.0 | 0.7 | 2.1 | 4.2 |  |  |
| 15                      | -2.1                            | -1.5 | -0.7 | 0.0 | 1.2 | 3.1 | 5.9 |  |  |
| 20                      | -2.8                            | -2.0 | -1.0 | 0.0 | 1.7 | 4.1 | 7.3 |  |  |
| 25                      | -3.4                            | -2.4 | -1.2 | 0.0 | 2.1 | 5.0 | 8.5 |  |  |
| 30                      | -4.1                            | -2.9 | -1.5 | 0.0 | 2.6 | 5.7 | 9.4 |  |  |

737 Flight Crew Operations Manual

### Holding Flaps Up

| W   | EIGHT   |      |      | PRESSU | JRE ALTITU | DE (FT) |       |       |
|-----|---------|------|------|--------|------------|---------|-------|-------|
| (10 | 000 LB) | 1500 | 5000 | 10000  | 15000      | 20000   | 25000 | 30000 |
|     | EPR     | 1.67 | 1.78 | 1.96   |            |         |       |       |
| 130 | KIAS    | 243  | 246  | 246    |            |         |       |       |
|     | FF/ENG  | 6160 | 6220 | 6370   |            |         |       |       |
|     | EPR     | 1.61 | 1.71 | 1.88   | 2.09       |         |       |       |
| 120 | KIAS    | 232  | 236  | 236    | 237        |         |       |       |
|     | FF/ENG  | 5620 | 5670 | 5760   | 6010       |         |       |       |
|     | EPR     | 1.55 | 1.64 | 1.80   | 1.99       |         |       |       |
| 110 | KIAS    | 220  | 223  | 227    | 227        |         |       |       |
|     | FF/ENG  | 5110 | 5130 | 5180   | 5360       |         |       |       |
|     | EPR     | 1.50 | 1.57 | 1.71   | 1.90       | 2.11    |       |       |
| 100 | KIAS    | 210  | 211  | 216    | 216        | 217     |       |       |
|     | FF/ENG  | 4630 | 4610 | 4640   | 4750       | 4970    |       |       |
|     | EPR     | 1.44 | 1.51 | 1.64   | 1.80       | 2.00    |       |       |
| 90  | KIAS    | 210  | 210  | 210    | 210        | 210     |       |       |
|     | FF/ENG  | 4250 | 4200 | 4170   | 4220       | 4350    |       |       |
|     | EPR     | 1.40 | 1.46 | 1.57   | 1.71       | 1.89    | 2.11  |       |
| 80  | KIAS    | 210  | 210  | 210    | 210        | 210     | 210   |       |
|     | FF/ENG  | 3920 | 3870 | 3820   | 3820       | 3890    | 4100  |       |
|     | EPR     | 1.36 | 1.41 | 1.51   | 1.64       | 1.80    | 2.00  |       |
| 70  | KIAS    | 210  | 210  | 210    | 210        | 210     | 210   |       |
|     | FF/ENG  | 3650 | 3590 | 3530   | 3500       | 3530    | 3670  |       |
|     | EPR     | 1.33 | 1.38 | 1.47   | 1.58       | 1.73    | 1.91  | 2.13  |
| 60  | KIAS    | 210  | 210  | 210    | 210        | 210     | 210   | 210   |
|     | FF/ENG  | 3420 | 3360 | 3290   | 3240       | 3240    | 3330  | 3450  |

This table includes 5% additional fuel for holding in a racetrack pattern.



Intentionally Blank

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight**

### **Gear Down**

Chapter PI Section 34

## GEAR DOWN

### 220 KIAS Cruise Altitude Capability Max Cruise Thrust, 100 ft/min residual rate of climb

| WEIGHT    |                       | PRESSURE ALTITUDE (FT) |                     |
|-----------|-----------------------|------------------------|---------------------|
| (1000 LB) | ISA + 10°C<br>& BELOW | ISA+15°C               | $ISA + 20^{\circ}C$ |
| 130       | 7900                  |                        |                     |
| 125       | 9500                  |                        |                     |
| 120       | 10900                 | 5200                   |                     |
| 115       | 12300                 | 7800                   |                     |
| 110       | 13800                 | 10000                  |                     |
| 105       | 15300                 | 11700                  |                     |
| 100       | 16700                 | 13200                  |                     |
| 95        | 17800                 | 14500                  | 9500                |
| 90        | 18900                 | 15800                  | 11700               |
| 85        | 19800                 | 16900                  | 13200               |
| 80        | 20600                 | 17800                  | 14400               |
| 75        | 21300                 | 18700                  | 15400               |
| 70        | 22000                 | 19600                  | 16300               |
| 65        | 22600                 | 20300                  | 17100               |
| 60        | 23100                 | 21100                  | 17900               |

### 737 Flight Crew Operations Manual

### 220 KIAS Cruise Control

| WE   | IGHT   |      |      |      | PRE  | SSURE | ALTITUI | DE (1000 | ) FT) |      |      |      |
|------|--------|------|------|------|------|-------|---------|----------|-------|------|------|------|
| (100 | 00 LB) | 6    | 8    | 10   | 12   | 13    | 15      | 17       | 19    | 21   | 23   | 25   |
|      | EPR    | 1.62 | 1.67 | 1.74 | 1.81 | 1.84  | 1.92    |          |       |      |      |      |
| 130  | MACH   | .370 | .384 | .399 | .414 | .422  | .438    |          |       |      |      |      |
| 150  | KIAS   | 220  | 220  | 220  | 220  | 220   | 220     |          |       |      |      |      |
|      | FF/ENG | 4556 | 4554 | 4564 | 4602 | 4626  | 4686    |          |       |      |      |      |
|      | EPR    | 1.58 | 1.63 | 1.69 | 1.76 | 1.79  | 1.87    | 1.95     |       |      |      |      |
| 120  | MACH   | .370 | .384 | .399 | .414 | .422  | .438    | .456     |       |      |      |      |
| 120  | KIAS   | 220  | 220  | 220  | 220  | 220   | 220     | 220      |       |      |      |      |
|      | FF/ENG | 4331 | 4321 | 4323 | 4349 | 4366  | 4410    | 4465     |       |      |      |      |
|      | EPR    | 1.55 | 1.60 | 1.65 | 1.71 | 1.75  | 1.82    | 1.89     | 1.97  |      |      |      |
| 110  | MACH   | .370 | .384 | .399 | .414 | .422  | .438    | .456     | .474  |      |      |      |
| 110  | KIAS   | 220  | 220  | 220  | 220  | 220   | 220     | 220      | 220   |      |      |      |
|      | FF/ENG | 4131 | 4115 | 4107 | 4123 | 4135  | 4167    | 4208     | 4268  |      |      |      |
|      | EPR    | 1.52 | 1.57 | 1.62 | 1.67 | 1.70  | 1.77    | 1.84     | 1.92  | 2.00 |      |      |
| 100  | MACH   | .370 | .384 | .399 | .414 | .422  | .438    | .456     | .474  | .493 |      |      |
| 100  | KIAS   | 220  | 220  | 220  | 220  | 220   | 220     | 220      | 220   | 220  |      |      |
|      | FF/ENG | 3957 | 3938 | 3921 | 3929 | 3936  | 3958    | 3987     | 4033  | 4111 |      |      |
|      | EPR    | 1.49 | 1.54 | 1.59 | 1.64 | 1.67  | 1.73    | 1.80     | 1.88  | 1.96 |      |      |
| 90   | MACH   | .370 | .384 | .399 | .414 | .422  | .438    | .456     | .474  | .493 |      |      |
| 90   | KIAS   | 220  | 220  | 220  | 220  | 220   | 220     | 220      | 220   | 220  |      |      |
|      | FF/ENG | 3812 | 3792 | 3770 | 3770 | 3773  | 3786    | 3808     | 3842  | 3906 |      |      |
|      | EPR    | 1.47 | 1.51 | 1.56 | 1.61 | 1.64  | 1.70    | 1.77     | 1.84  | 1.92 | 2.00 |      |
| 80   | MACH   | .370 | .384 | .399 | .414 | .422  | .438    | .456     | .474  | .493 | .513 |      |
| 80   | KIAS   | 220  | 220  | 220  | 220  | 220   | 220     | 220      | 220   | 220  | 220  |      |
|      | FF/ENG | 3692 | 3670 | 3646 | 3639 | 3639  | 3646    | 3661     | 3687  | 3740 | 3826 |      |
|      | EPR    | 1.45 | 1.50 | 1.54 | 1.59 | 1.62  | 1.67    | 1.74     | 1.81  | 1.88 | 1.97 |      |
| 70   | MACH   | .370 | .384 | .399 | .414 | .422  | .438    | .456     | .474  | .493 | .513 |      |
| 70   | KIAS   | 220  | 220  | 220  | 220  | 220   | 220     | 220      | 220   | 220  | 220  |      |
|      | FF/ENG | 3589 | 3565 | 3542 | 3528 | 3526  | 3528    | 3537     | 3557  | 3601 | 3678 |      |
|      | EPR    | 1.44 | 1.48 | 1.52 | 1.57 | 1.60  | 1.65    | 1.71     | 1.78  | 1.86 | 1.94 | 2.03 |
| 60   | MACH   | .370 | .384 | .399 | .414 | .422  | .438    | .456     | .474  | .493 | .513 | .534 |
| 00   | KIAS   | 220  | 220  | 220  | 220  | 220   | 220     | 220      | 220   | 220  | 220  | 220  |
|      | FF/ENG | 3509 | 3484 | 3460 | 3443 | 3439  | 3436    | 3442     | 3457  | 3494 | 3563 | 3648 |

### **220 KIAS Enroute Fuel and Time** Ground to Air Miles Conversion

|      | AIR D                    | ISTANCE | E (NM) |      | GROUND   |                        | AIR D | ISTANCE | E (NM) |      |
|------|--------------------------|---------|--------|------|----------|------------------------|-------|---------|--------|------|
| HE   | HEADWIND COMPONENT (KTS) |         |        |      | DISTANCE | TAILWIND COMPONENT (KT |       |         |        | (S)  |
| 100  | 80                       | 60      | 40     | 20   | (NM)     | 20                     | 40    | 60      | 80     | 100  |
| 323  | 288                      | 259     | 236    | 217  | 200      | 189                    | 180   | 171     | 162    | 155  |
| 652  | 582                      | 521     | 474    | 434  | 400      | 378                    | 358   | 340     | 324    | 310  |
| 982  | 876                      | 784     | 711    | 652  | 600      | 567                    | 537   | 510     | 485    | 464  |
| 1311 | 1169                     | 1047    | 949    | 870  | 800      | 756                    | 716   | 679     | 647    | 618  |
| 1640 | 1462                     | 1309    | 1187   | 1087 | 1000     | 945                    | 895   | 850     | 809    | 773  |
| 1970 | 1756                     | 1572    | 1425   | 1305 | 1200     | 1134                   | 1074  | 1019    | 970    | 927  |
| 2299 | 2049                     | 1834    | 1663   | 1523 | 1400     | 1323                   | 1253  | 1189    | 1132   | 1082 |
| 2629 | 2342                     | 2096    | 1900   | 1740 | 1600     | 1512                   | 1431  | 1359    | 1293   | 1236 |
| 2958 | 2636                     | 2358    | 2138   | 1958 | 1800     | 1701                   | 1611  | 1529    | 1455   | 1390 |

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. PI.34.2 D6-27370-200A-TBC April 3, 2015

### 737 Flight Crew Operations Manual

### Reference Fuel and Time Required at Check Point

| AIR    |           |          |           | PRESS    | SURE ALT  | ITUDE (10 | 00 FT)    |          |           |          |
|--------|-----------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|----------|
| DIST   | 10 12     |          |           |          | 1         | 16        |           | 20       |           | 4        |
| (NM)   | FUEL      | TIME     | FUEL      | TIME     | FUEL      | TIME      | FUEL      | TIME     | FUEL      | TIME     |
| (1111) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN)  | (1000 LB) | (HR:MIN) | (1000 LB) | (HR:MIN) |
| 200    | 5.7       | 0:50     | 5.4       | 0:48     | 5.0       | 0:46      | 4.7       | 0:44     | 4.5       | 0:42     |
| 400    | 11.4      | 1:37     | 11.0      | 1:34     | 10.4      | 1:29      | 9.8       | 1:24     | 9.5       | 1:20     |
| 600    | 17.1      | 2:24     | 16.5      | 2:20     | 15.6      | 2:12      | 14.8      | 2:05     | 14.4      | 1:58     |
| 800    | 22.7      | 3:11     | 22.0      | 3:06     | 20.7      | 2:55      | 19.7      | 2:45     | 19.2      | 2:36     |
| 1000   | 28.2      | 3:58     | 27.3      | 3:51     | 25.7      | 3:38      | 24.5      | 3:25     | 23.9      | 3:13     |
| 1200   | 33.7      | 4:45     | 32.6      | 4:37     | 30.7      | 4:21      | 29.2      | 4:06     | 28.6      | 3:51     |
| 1400   | 39.1      | 5:32     | 37.8      | 5:23     | 35.6      | 5:04      | 33.9      | 4:46     | 33.2      | 4:29     |
| 1600   | 44.4      | 6:20     | 43.0      | 6:09     | 40.5      | 5:47      | 38.6      | 5:27     | 37.7      | 5:07     |
| 1800   | 49.7      | 7:07     | 48.1      | 6:54     | 45.4      | 6:30      | 43.2      | 6:07     | 42.2      | 5:45     |

### Fuel Required Adjustment (1000 LB)

| REFERENCE FUEL REQUIRED |      | WE   | IGHT AT C | HECK PO | INT (1000 | LB) |     |
|-------------------------|------|------|-----------|---------|-----------|-----|-----|
| (1000 LB)               | 60   | 70   | 80        | 90      | 100       | 110 | 120 |
| 5                       | -0.3 | -0.2 | -0.1      | 0.0     | 0.2       | 0.5 | 0.8 |
| 10                      | -0.6 | -0.5 | -0.3      | 0.0     | 0.5       | 1.0 | 1.8 |
| 15                      | -1.0 | -0.7 | -0.4      | 0.0     | 0.7       | 1.6 | 2.6 |
| 20                      | -1.2 | -0.9 | -0.5      | 0.0     | 0.9       | 2.1 | 3.4 |
| 25                      | -1.5 | -1.1 | -0.6      | 0.0     | 1.1       | 2.5 | 4.1 |
| 30                      | -1.7 | -1.3 | -0.7      | 0.0     | 1.3       | 2.9 | 4.7 |
| 35                      | -1.9 | -1.4 | -0.8      | 0.0     | 1.4       | 3.2 | 5.2 |
| 40                      | -2.0 | -1.5 | -0.9      | 0.0     | 1.5       | 3.4 | 5.7 |
| 45                      | -2.1 | -1.6 | -0.9      | 0.0     | 1.6       | 3.6 | 6.0 |

### **Descent at 220 KIAS**

| PRESSURE ALT (1000 FT) | 5  | 10 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 |
|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| DISTANCE (NM)          | 18 | 28 | 37 | 40 | 44 | 47 | 51 | 55 | 58 | 62 | 66 | 69 |
| TIME (MINUTES)         | 7  | 9  | 11 | 12 | 13 | 13 | 14 | 15 | 15 | 16 | 17 | 17 |

737 Flight Crew Operations Manual

### Holding Flaps Up

| WEIGHT |         | PRESSURE ALTITUDE (FT) |      |       |       |       |       |  |  |  |  |
|--------|---------|------------------------|------|-------|-------|-------|-------|--|--|--|--|
| (10    | 000 LB) | 1500                   | 5000 | 10000 | 15000 | 20000 | 25000 |  |  |  |  |
|        | EPR     | 1.56                   | 1.66 | 1.81  |       |       |       |  |  |  |  |
| 130    | KIAS    | 243                    | 246  | 246   |       |       |       |  |  |  |  |
|        | FF/ENG  | 5300                   | 5380 | 5410  |       |       |       |  |  |  |  |
|        | EPR     | 1.50                   | 1.60 | 1.74  | 1.93  |       |       |  |  |  |  |
| 120    | KIAS    | 232                    | 236  | 236   | 237   |       |       |  |  |  |  |
|        | FF/ENG  | 4830                   | 4910 | 4920  | 5060  |       |       |  |  |  |  |
|        | EPR     | 1.45                   | 1.53 | 1.67  | 1.84  |       |       |  |  |  |  |
| 110    | KIAS    | 220                    | 223  | 227   | 227   |       |       |  |  |  |  |
|        | FF/ENG  | 4390                   | 4420 | 4470  | 4540  |       |       |  |  |  |  |
|        | EPR     | 1.41                   | 1.47 | 1.60  | 1.75  | 1.95  |       |  |  |  |  |
| 100    | KIAS    | 210                    | 211  | 216   | 216   | 217   |       |  |  |  |  |
|        | FF/ENG  | 4010                   | 3960 | 4020  | 4060  | 4180  |       |  |  |  |  |
|        | EPR     | 1.39                   | 1.44 | 1.55  | 1.69  | 1.87  |       |  |  |  |  |
| 90     | KIAS    | 210                    | 210  | 210   | 210   | 210   |       |  |  |  |  |
|        | FF/ENG  | 3840                   | 3780 | 3720  | 3710  | 3780  |       |  |  |  |  |
|        | EPR     | 1.37                   | 1.42 | 1.52  | 1.65  | 1.82  | 2.03  |  |  |  |  |
| 80     | KIAS    | 210                    | 210  | 210   | 210   | 210   | 210   |  |  |  |  |
|        | FF/ENG  | 3700                   | 3640 | 3570  | 3550  | 3590  | 3760  |  |  |  |  |
|        | EPR     | 1.35                   | 1.40 | 1.50  | 1.62  | 1.78  | 1.98  |  |  |  |  |
| 70     | KIAS    | 210                    | 210  | 210   | 210   | 210   | 210   |  |  |  |  |
|        | FF/ENG  | 3590                   | 3520 | 3450  | 3420  | 3440  | 3590  |  |  |  |  |
|        | EPR     | 1.34                   | 1.39 | 1.48  | 1.60  | 1.75  | 1.94  |  |  |  |  |
| 60     | KIAS    | 210                    | 210  | 210   | 210   | 210   | 210   |  |  |  |  |
|        | FF/ENG  | 3490                   | 3430 | 3350  | 3310  | 3320  | 3440  |  |  |  |  |

This table includes 5% additional fuel for holding in a racetrack pattern.

#### 737-200ADV/JT8D-9 FAA

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Performance Inflight**

### Text

Chapter PI Section 35

## Introduction

This chapter contains information required to complete a normal flight. In the event of conflict between data presented in this chapter and that contained in the Approved Flight Manual, the Flight Manual shall always take precedence.

## General

## **Takeoff Speeds**

The speeds presented in the Takeoff Speeds table can be used for all performance conditions except where adjustments must be made to V1 for clearway, stopway, anti-skid inoperative, improved climb, contaminated runway situations or brake energy limitations. These speeds may be used for weights less than or equal to the performance limited weight.

Normal takeoff speeds, V1, VR and V2, with anti-skid on, are read from the table by entering with station pressure altitude and moving horizontally to the appropriate outside air temperature (OAT) column. Proceed down and read V1, VR and V2 for the anticipated takeoff weight and flap setting. Slope and wind adjustments to V1 are obtained by entering the V1 Adjustments chart. Adjusted V1 must not exceed VR.

## VMCG

Regulations prohibit scheduling takeoff with a V1 less than minimum V1 for control on the ground, VMCG. Therefore compare the adjusted V1 to the VMCG. To find VMCG, enter the VMCG table with the airport pressure altitude and actual OAT. If VR is less than VMCG, set VR equal to VMCG, and determine a new V2 by adding the difference between the normal VR and VMCG to the normal V2.

## **Clearway and Stopway V1 Adjustments**

Takeoff speed adjustments are to be applied to V1 speed when using takeoff weights based on the use of clearway and stopway.

Adjust V1 speed by the amount shown in the appropriate column. The adjusted V1 speed must not exceed VR.

Maximum allowable clearway limits are provided for guidance when more precise data is not available.

#### Performance Inflight Text



## Stab Trim

To find takeoff stabilizer trim setting, enter the Stab Trim Setting table with takeoff flap setting and center of gravity (C.G. % MAC) and read required stabilizer trim units.

## VREF

The Reference Speed table contains flaps 40, 30 and 15 landing speeds for a given weight. Apply wind adjustments shown as required.

## **Flap Maneuver Speeds**

This table provides the flap speed schedule for recommended maneuvering speed. The speed schedule is a function of weight and will provide adequate maneuver margin above stall at all weights.

During flap retraction/extension, movement of the flap to the next position should be initiated when reaching the maneuver speed for the existing flap.

## **Slush/Standing Water Takeoff**

Experience has shown that aircraft performance may deteriorate significantly on runways covered with snow, slush, standing water or ice. Therefore, reductions in field/obstacle limited takeoff weight and revised takeoff speeds are necessary. The tables are intended for guidance in accordance with advisory material and are based on all engines operating throughout the takeoff.

The entire runway is assumed to be completely covered by a contaminant of uniform thickness and density. Therefore this information is conservative when operating under typical colder weather conditions where patches of slush exist and some degree of sanding is common. Takeoffs in slush/standing water depths greater than 0.50 inches (13 mm) are not recommended because of possible airplane damage as a result of slush/standing water impingement on the airplane structure. The use of assumed temperature method for reduced thrust is not allowed on contaminated runways. Interpolation for slush/standing water depths between the values shown is permitted.

Takeoff weight determination:

Instructions for Using Tables:

1. Determine the dry field/obstacle limit weight for the anticipated flap setting.

2. Enter the Weight Adjustment table with the dry field/obstacle limit weight to obtain the slush/standing water weight adjustment for the slush depth and airport pressure altitude.

737 Flight Crew Operations Manual

3. Determine takeoff speeds VR and V2 for the actual brake release weight from the Takeoff Speeds chart.

Interpolate for intermediate slush depths as required using the dry runway condition as zero slush depth.

## **Anti-skid Inoperative**

For anti-skid inoperative, the runway limited maximum gross weight at brake release and the V1 speed must be reduced to allow for the effect on accelerate-stop performance as detailed in the Approved Airplane Flight Manual. Obstacle clearance capability must also be considered since the reduced V1 speed will increase the distance required to achieve a given height above the runway following engine failure. A simplified method which conservatively accounts for the effects of anti-skid inoperative is shown below. Reduce the dry runway/obstacle limited weight at brake release obtained from the takeoff performance charts in this section or from the specific airport analysis and the associated V1 (i.e., V1 for the runway/obstacle limited weight at brake release) by the weight and V1 values shown in the table below. (Note that the resulting V1 must not be less than VMCG value.)

For takeoff below the anti-skid inoperative limited weight it is only necessary to ensure that the V1 speed set does not exceed the anti-skid limited V1 value.

|                |                | ANTI-SKID V | /1 ADJUSTMI | ENTS     |          |          |  |  |  |  |  |
|----------------|----------------|-------------|-------------|----------|----------|----------|--|--|--|--|--|
| RUNWAY         | V1 ADJUSTMENTS |             |             |          |          |          |  |  |  |  |  |
| LENGTH<br>(FT) | FLAPS 1        | FLAPS 2     | FLAPS 5     | FLAPS 10 | FLAPS 15 | FLAPS 25 |  |  |  |  |  |
| 5000           |                |             | -25         | -22      |          |          |  |  |  |  |  |
| 5500*          |                |             | -24         | -21      | -19      | -19*     |  |  |  |  |  |
| 6000           |                | -22         | -22         | -20      | -18      | -18      |  |  |  |  |  |
| 6500           |                | -21         | -21         | -20      | -18      | -18      |  |  |  |  |  |
| 7000           | -20            | -20         | -20         | -19      |          |          |  |  |  |  |  |
| 8000           | -20            | -19         | -18         |          |          |          |  |  |  |  |  |
| 9000           | -18            | -17         |             |          |          |          |  |  |  |  |  |
| 10000          | -16            |             |             |          |          |          |  |  |  |  |  |

\*Minimum anti-skid inop runway length at flaps 25 Decrease weight by 10000 lb for all flaps shown above.

If the resulting V1 is less than minimum V1, takeoff is permitted with V1 set equal to VMCG.

Detailed analysis for the specific case from the AFM may yield a less restrictive penalty.

## DO NOT USE FOR FLIGHT 737 Flight Crew Operations Manual

## **Takeoff EPR**

To find Takeoff EPR based on normal engine bleed for air conditioning packs on, enter Takeoff EPR table with airport pressure altitude and airport OAT and read EPR. For packs off operation, apply the EPR adjustment shown below the table. No takeoff EPR adjustment is required for wing anti-ice operation.

## Reduced Takeoff EPR

The tables present the allowable Takeoff EPR Reduction as a function of Actual OAT and Surplus Weight which is defined as the difference between the Performance Limited TOGW and the Actual TOGW. These tables are valid for engine A/C bleed on or off, any flap setting. They are not valid when the maximum takeoff weight is limited by obstacles, brake energy or tire speed. Since the tables are conservative, larger reductions in EPR may be achieved under some conditions by using the Assumed Temperature Method described in the AFM Appendix.

Enter the Field Length Limited section of the table appropriate for the airplane pressure altitude with the Surplus Weight based on the field length limit (i.e., Field length limited weight minus actual weight). Read the allowable Takeoff EPR Reduction. Then enter the Climb Limited section of the table with the Surplus Weight based on the climb limit and determine the allowable Takeoff EPR Reduction. Use the smaller of the two reductions. Enter the Minimum EPR table with the pressure altitude. The Takeoff EPR, after the reduction is applied, should not be less than this minimum. Apply the noted V1, VR and V2 adjustments.

Takeoff with assumed temperature reduced thrust is not permitted when: runway is contaminated with water, ice, slush or snow; anti-skid is inoperative. Use of this procedure is not recommended if potential windshear conditions exist.

## Max Climb EPR

This table shows Max Climb EPR based on normal engine bleed for packs on and anti-ice off. Enter the table with pressure altitude and TAT and read EPR. EPR adjustments are shown for anti-ice operation.

## Go-around EPR

To find Go-around EPR based on normal engine bleed for packs on and wing anti-ice off, enter the Go-around EPR table with airport pressure altitude and reported OAT or TAT and read EPR. For packs off, apply the EPR adjustment shown below the table. EPR adjustments are also shown for engine and wing anti-ice operations.

### Flight with Unreliable Airspeed / Turbulent Air Penetration

Pitch attitude and average EPR information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration.

Pitch attitude is shown in bold type for emphasis since altitude and/or vertical speed indications may also be unreliable.

## All Engines

## Long Range Cruise Maximum Operating Altitude

Maximum altitudes are shown for a given cruise weight and maneuver capability. This table considers both thrust and buffet limits, providing the more limiting of the two. Any data that is thrust limited is denoted by an asterisk and represents only a thrust limited condition in level flight with 100 ft/min residual rate of climb. Flying above these altitudes with sustained banks in excess of approximately 15° may cause the airplane to lose speed and/or altitude.

Note that the altitudes shown in the table are limited to the maximum certified altitude of 37000 ft.

## Long Range Cruise Control

These tables provide target EPR, Long Range Cruise Mach number, KIAS and standard day fuel flow per engine for the airplane weight and pressure altitude. As indicated by the shaded area, at optimum altitude .72M approximates the Long Range Cruise Mach schedule.

## Long Range Cruise Enroute Fuel and Time

Long Range Cruise Enroute Fuel and Time tables are provided to determine remaining time and fuel required to destination. The data is based on Long Range Cruise and .70/280/250 descent. Tables are presented for low altitudes and high altitudes.

To determine remaining fuel and time required, first enter the Ground to Air Miles Conversion table to convert ground distance and enroute wind to an equivalent still air distance for use with the Reference Fuel and Time tables. Next, enter the Reference Fuel and Time table with air distance from the Ground to Air Miles Conversion table and the desired altitude and read Reference Fuel and Time Required. Lastly, enter the Fuel Required Adjustment table with the Reference Fuel and the actual weight at checkpoint to obtain fuel required to destination.

## Long Range Cruise Wind-Altitude Trade

Wind is a factor which may justify operations considerably below optimum altitude. For example, a favorable wind component may have an effect on ground speed which more than compensates for the loss in air range.

Using this table, it is possible to determine the break-even wind (advantage necessary or disadvantage that can be tolerated) to maintain the same range at another altitude and long range cruise speed. The tables make no allowance for climb or descent time, fuel or distance, and are based on comparing ground fuel mileage.

## Descent

Distance and time for descent are shown for a .70/280/250 descent speed schedule. Enter the table with top of descent pressure altitude and read distance in nautical miles and time in minutes. Data is based on flight idle thrust descent in zero wind. Allowances are included for a straight-in approach with gear down and landing flaps at the outer marker.

## Holding

Target EPR, indicated airspeed and fuel flow per engine information is tabulated for holding with flaps up based on the optimum holding speed schedule. This is the higher of the maximum endurance speed and the maneuvering speed. Small variations in airspeed will not appreciably affect the overall endurance time. Enter the table with weight and pressure altitude to read EPR, KIAS and fuel flow per engine.

## **Advisory Information**

## **Autobrake Landing Distance**

The Autobrake Landing Distance tables are provided as advisory information to assist in the selection of the most desirable autobrake setting for a given field length. It is not to be used to determine required field length. This data reflects actual landing distances on a dry runway for setting MINIMUM through MAXIMUM, from touchdown to full stop, with or without reverse thrust. The tables include typical flare distances from threshold. 737-200ADV/JT8D-9 FAA

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

To use the Autobrake Landing Distance table, determine the appropriate table to use. The Digital Autobrake Landing Distance table is only applicable if Autobrake Control Valve Module, Boeing part number 60800263 is installed. Enter the chart with the estimated approach speed and determine the actual stopping distance from touchdown for a given autobrake setting. If airspeed is used for approach speed, adjust landing distance for pressure altitude and tailwind effects.

Selection of an autobrake setting results in a constant rate of deceleration. Maximum effort manual braking should achieve shorter landing distance than the MAXIMUM setting.

### **Slippery Runway Landing Distance**

Landing distances are the actual landing distances and do not include the 1.67% regulatory factor. Therefore they cannot be used to determine dispatch required landing field length. When landing on slippery runways or runways contaminated with ice, snow, slush or standing water, the reported braking action must be considered. If the surface is affected by water, snow or ice, and the braking action is reported as "good," conditions should not be expected to be as good as on clean dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when landing. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate the airplane weight, and then apply the adjustments for airport pressure altitude and approach speed as required.

### **Non-normal Configuration Landing Distance**

Advisory information is provided to support non-normal configurations that affect landing performance of the airplane. Landing distances are shown for dry runway and good, medium and poor reported braking action. Each non-normal configuration is listed with its recommended approach speed. Landing distance can be determined for the reference landing weight and then adjusted for actual weight and pressure altitude.

## **Brake Cooling Schedule**

Advisory information is provided to assist in avoiding the problems associated with hot brakes. For normal operation, most landings are at weights below the AFM quick turnaround limit weight. Use of the recommended cooling schedule will help avoid brake overheat and fuse plug problems that could result from repeated landings at short time intervals or a rejected takeoff.

Enter the Brake Cooling Schedule table with the airplane weight and brakes on speed, adjusted for wind at the appropriate temperature and altitude condition. Instructions for applying wind adjustments are included below the table. Linear interpolation may be used to obtain intermediate values. The resulting number is the reference brake energy per brake in millions of foot-pounds, and represents the amount of energy absorbed by each brake during a rejected takeoff.

To determine the energy per brake absorbed during landing, enter the Adjusted Brake Energy Per Brake table with the reference brake energy per brake and the type of braking used during landing (RTO Max Man, Max Auto, Med Auto or Min Auto). The resulting number is the adjusted brake energy per brake and represents the energy absorbed in each brake during the landing.

The recommended cooling time is found in the final table by entering with the adjusted brake energy per brake. Times are provided for ground cooling and inflight gear down cooling.

## **Engine Inoperative**

## **Max Continuous EPR**

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude and TAT to read EPR.

It is desirable to maintain engine thrust within the limits of the Max Cruise thrust rating. However, where thrust in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous thrust rating. The Max Continuous thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

## Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb.

The level off altitude is dependent on air temperature (ISA deviation).

## Driftdown/LRC Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to Long Range Cruise speed. Cruise is continued at level off altitude and Long Range Cruise speed.

To determine fuel required, enter the Ground to Air Miles Conversion table with the desired ground distance and adjust for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude are used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Diversion Fuel and Time table.

## Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on Long Range Cruise speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

## Long Range Cruise Control

The table provides target EPR, engine inoperative Long Range Cruise Mach number, KIAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn. To conservatively account for APU fuel burn, add 115 kg/hr to fuel flow values.

## Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .70/280/250 descent. Enter with Air Distance as determined from the Ground to Air Miles Conversion table and read Fuel and Time required at the cruise pressure altitude. Adjust the fuel obtained for deviation from the reference weight at checkpoint as required by entering the Fuel Required Adjustment table with the fuel required for the reference weight at checkpoint.

## Holding

Single engine holding data is provided in the same format as the all engine holding data and is based on the same assumptions.



### Gear Down

This section contains performance data for airplane operation with the landing gear extended. The data include engine bleed effects for normal air conditioning operation; i.e., two packs on at normal flow with all engines operating, and one pack normal flow with engine inoperative.

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.

737 Flight Crew Operations Manual

| Airplane General, Emergency<br>Equipment, Doors, Windows | Chapter 1   |
|----------------------------------------------------------|-------------|
| Table of Contents                                        | Section TOC |
| Dimensions                                               | 1.10        |
| Principal Dimensions                                     |             |
| Ground Maneuver Capability                               | 1.10.2      |
| Instrument Panels                                        | 1.20        |
| Panel Arrangement.                                       |             |
| Aft Flight Deck Overview                                 | 1.20.2      |
| Captain's Instrument Panel                               | 1.20.5      |
| First Officer's Instrument Panel.                        | 1.20.6      |
| Center Instrument Panel and Lightshield                  | 1.20.7      |
| Forward Overhead Panel                                   | 1.20.8      |
| Aft Overhead Panel                                       | 1.20.9      |
| Forward Electronic Panel                                 | 1.20.9      |
| Aft Electronic Panel                                     | 1.20.10     |
| Control Stand                                            | 1.20.11     |
| Auxiliary Panels                                         | 1.20.12     |
| Attendant Panels                                         | 1.20.13     |
| Controls and Indicators                                  | 1.30        |
| Flight Deck Lighting                                     |             |
| Map Light Controls                                       |             |
| Panel and Background Lighting                            |             |
| Overhead/Circuit Breaker Panel Light Controls .          |             |
| Flood and Aft Electronic Panel Lights Controls .         |             |
| Dome Light Control                                       |             |
| Master Lights Test and Dim Switch                        |             |
| Exterior Lighting                                        |             |
| Landing, Runway Turnoff and Taxi Lights                  |             |
| Miscellaneous Exterior Lights                            |             |

## Airplane General, Emergence DO NOT USE FOR FLIGHT Equipment, Doors, Windows Table of Contents

737 Flight Crew Operations Manual

| Emergency Lighting and Passenger Signs        | 1.30.7  |
|-----------------------------------------------|---------|
| Flight Deck                                   | 1.30.7  |
| Passenger Cabin                               | 1.30.8  |
| Doors                                         | 1.30.8  |
| Cabin Door (As Installed)                     | 1.30.8  |
| Flight Deck Door (As Installed)               | 1.30.9  |
| Exterior Door Annunciator Lights              | 1.30.13 |
| Passenger Entry/Galley Service Doors          | 1.30.14 |
| Oxygen                                        | 1.30.15 |
| Oxygen Controls and Indicators                | 1.30.15 |
| Passenger Oxygen Shutoff Valve (As Installed) | 1.30.17 |
| Oxygen Regulator                              | 1.30.18 |
| Forward Airstair                              | 1.30.19 |
| Interior and Exterior Controls                | 1.30.19 |
| Exterior Controls                             | 1.30.21 |
| Cargo Configuration                           | 1.30.22 |
| Main Deck Cargo Door (As Installed)           | 1.30.22 |
| Main Deck Cargo Door                          | 1.30.24 |
| Main Deck Cargo Door Control Panel            | 1.30.25 |
| Cargo Door Operating Instructions Placard     | 1.30.26 |
| Passenger/Cargo Combinations                  | 1.30.26 |
| Aft Entry Door and Airstair                   | 1.30.28 |
| Aft Airstair and Entry Door                   | 1.30.29 |
| Water System Controls.                        | 1.30.33 |
| Lavatory Controls                             | 1.30.34 |
|                                               | 1.40    |
| Systems Description                           |         |
| Introduction                                  |         |
| Lighting Systems                              |         |
| Exterior Lighting                             |         |
| Exterior Lighting Locations                   |         |
| Flight Deck Lighting                          |         |
| Passenger Cabin Lighting                      | 1.40.4  |

-

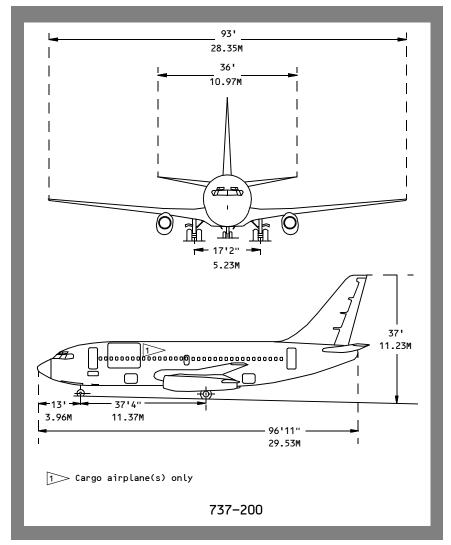
| Power Sources                               |
|---------------------------------------------|
| Emergency Lighting 1.40.5                   |
| Emergency Exit Lighting 1.40.6              |
| Oxygen Systems                              |
| Oxygen System Schematic 1.40.7              |
| Flight Crew Oxygen System 1.40.7            |
| Flight Crew Portable Oxygen 1.40.8          |
| Passenger Oxygen System 1.40.9              |
| Passenger Portable Oxygen 1.40.10           |
| Fire Extinguishers 1.40.11                  |
| Halon (BCF) Fire Extinguishers 1.40.11      |
| Water Fire Extinguishers 1.40.12            |
| Carbon Dioxide Fire Extinguishers 1.40.13   |
| Fire Extinguisher Usage 1.40.14             |
| Emergency Equipment Symbols 1.40.17         |
| Emergency Equipment Locations 1.40.18       |
| Doors and Windows                           |
| Cabin Door                                  |
| Flight Deck Number Two Windows 1.40.23      |
| Lower Cargo Compartments 1.40.24            |
| Lower Cargo Compartments 1.40.25            |
| Emergency Escape                            |
| Emergency Evacuation Routes                 |
| Flight Deck Window Emergency Egress 1.40.26 |
| Escape Slide Detachment Handle 1.40.28      |
| Overwing Escape Straps 1.40.29              |
| Overwing Escape Hatches 1.40.30             |
| Pilot Seat Adjustment 1.40.31               |
| Pilot Seat Adjustment 1.40.31               |
| Galleys 1.40.31                             |
| Electrical Service                          |
| Water Service                               |
| Galleys 1.40.32                             |
|                                             |

## Airplane General, Emergence **DO NOT USE FOR FLIGHT** Equipment, Doors, Windows Table of Contents

.

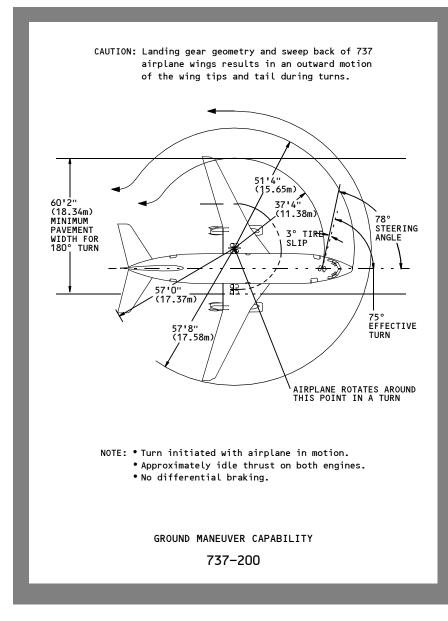
737 Flight Crew Operations Manual

| Water System                                     |
|--------------------------------------------------|
| General                                          |
| Quantity Indication and System Operation 1.40.33 |
| Hot Water                                        |
| Servicing                                        |
| Water System                                     |
| Forward Airstair                                 |
| General                                          |
| Interior Control                                 |
| Exterior Control                                 |
| Airstairs1.40.36                                 |


737 Flight Crew Operations Manual

## Airplane General, Emergency Equipment, Doors, Windows Dimensions

Chapter 1


Section 10

## **Principal Dimensions**

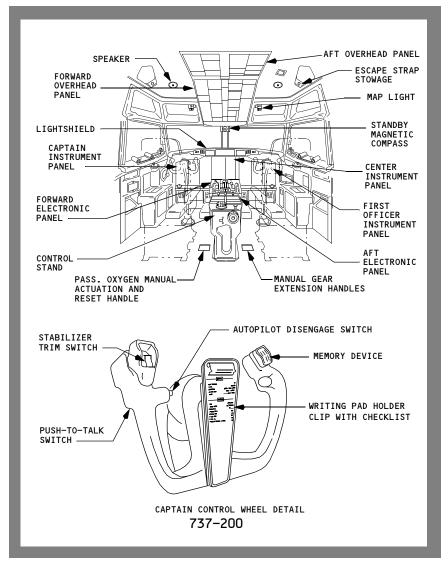


Airplane General, Emergenc Equipment, Doors, Windows Dimensions 737 Flight Crew Operations Manual

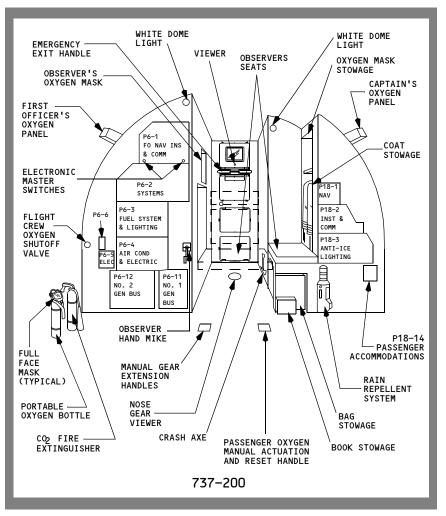
### **Ground Maneuver Capability**



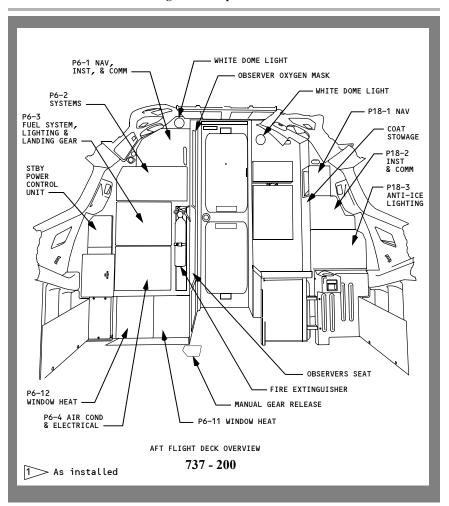
# DO NOT USE FOR FLIGHT


737 Flight Crew Operations Manual

# Airplane General, Emergency Equipment, Doors, Windows Instrument Panels


**Chapter 1** 

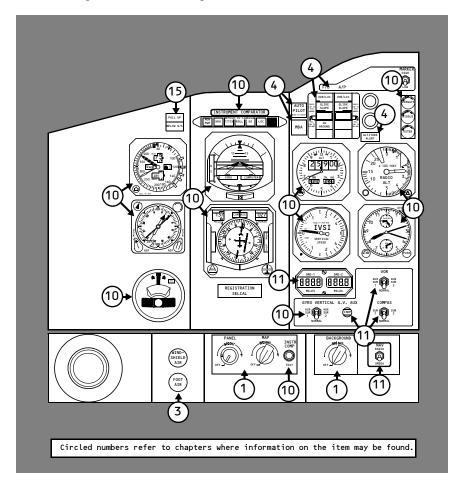
Section 20


# **Panel Arrangement**



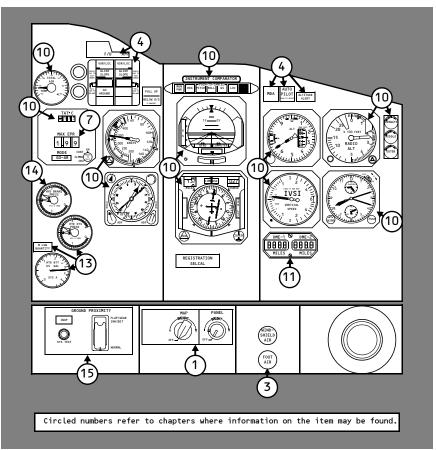
### **Aft Flight Deck Overview**



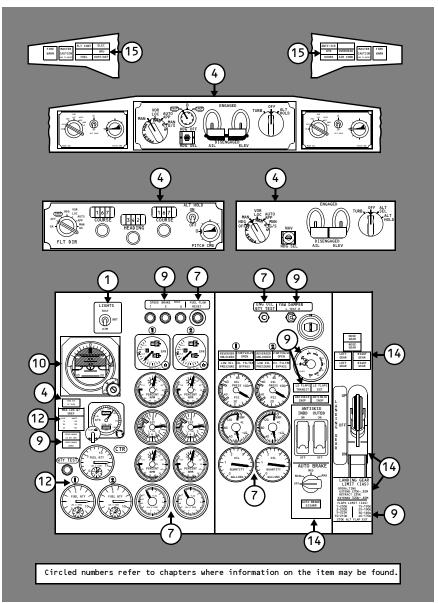

**DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Instrument Panels



Intentionally Blank

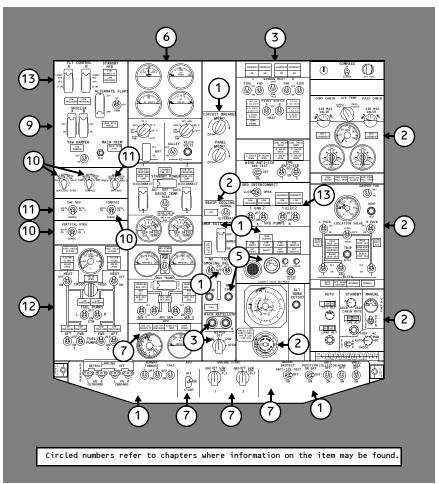

# **Captain's Instrument Panel**

**Note:** The controls, panels and indicators shown in this chapter are representative of installed units and may not exactly reflect the details of the latest configuration. Refer to the corresponding chapter under system descriptions for current chapter information.

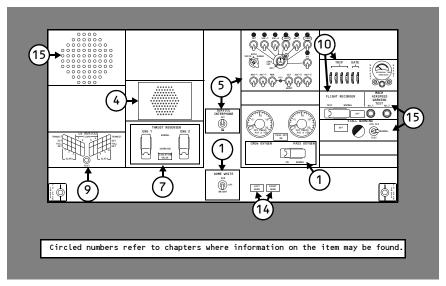



Airplane General, Emergenc Equipment, Doors, Windows Instrument Panels 737 Flight Crew Operations Manual

# **First Officer's Instrument Panel**



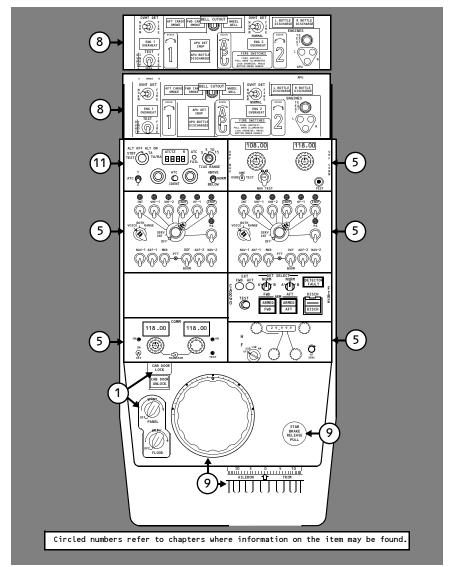

# **Center Instrument Panel and Lightshield**




#### Airplane General, Emergenc Equipment, Doors, Windows Instrument Panels 737 Flight Crew Operations Manual

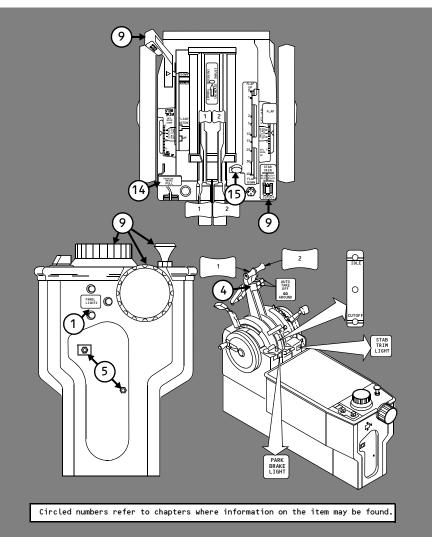
# **Forward Overhead Panel**




# **Aft Overhead Panel**

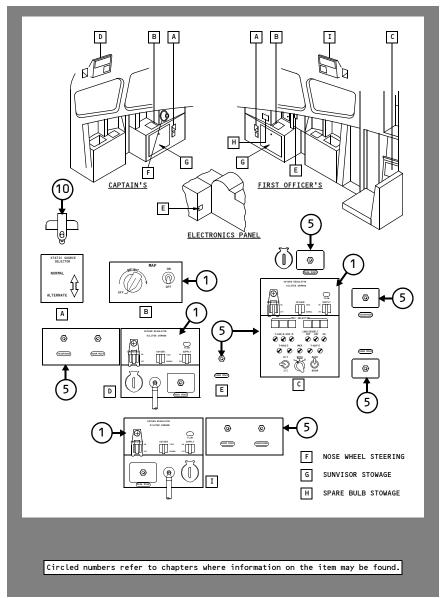


# **Forward Electronic Panel**



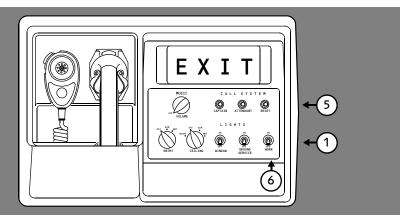

# **Aft Electronic Panel**



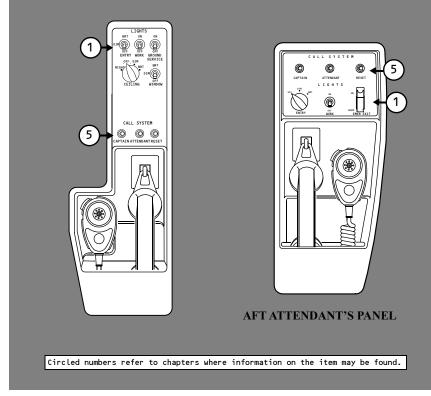

**DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Instrument Panels

# **Control Stand**




Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 9, 2009 D6-27370-200A-TBC 1.20.11

# **Auxiliary Panels**




Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. **1.20.12 D6-27370-200A-TBC April 9, 2009** 

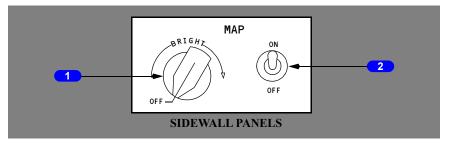
# **Attendant Panels**



FORWARD ATTENDANT'S PANEL



Intentionally Blank


# **DO NOT USE FOR FLIGHT**

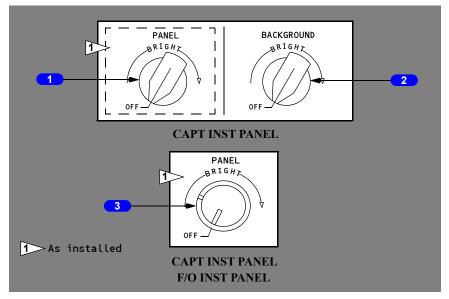
737 Flight Crew Operations Manual

Airplane General, Emergency Equipment, Doors, Windows Controls and Indicators Chapter 1

Section 30

# Flight Deck Lighting Map Light Controls




# MAP Light Control

Rotate - adjusts brightness of Captain/First Officer map lights.

# **2** MAP Light Switch

ON/OFF - controls map light which illuminates control wheel checklists.

# Panel and Background Lighting



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 7, 2000 D6-27370-200A-TBC 1.30.1

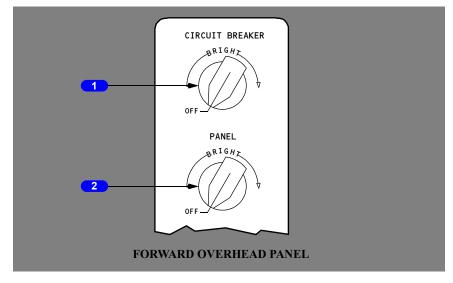
#### PANEL Light Control

Rotate -

- Left panel control regulates the intensity of the integral instrument lights in the Captain's and center instrument panels
- Right panel control regulates the F/O instrument panel and integral instrument lights.

### **2** BACKGROUND Light Control

Rotate -


- Regulates intensity of the incandescent flood lights for the Captain's instrument panel, First Officer's instrument panel, and center instrument panel
- Movement beyond the detent turns on the fluorescent flood lights.

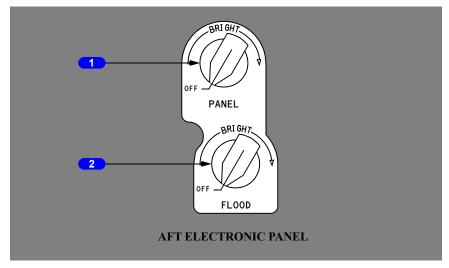
### PANEL Light Control

Rotate -

- Outer knob controls the integral instrument lights
- Inner knob controls the electronic DME indicator lights.

# **Overhead/Circuit Breaker Panel Light Controls**




# **1** CIRCUIT BREAKER Light Control

Rotate – controls brightness of P-6 and P-18 circuit breaker panel lights.

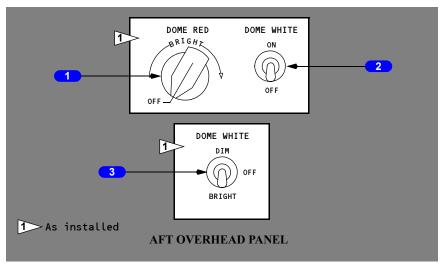
### **2** PANEL Light Control

Rotate - controls brightness of forward and aft overhead panel lights.

# Flood and Aft Electronic Panel Lights Controls



### PANEL Light Control


Rotate - controls brightness of forward and aft electronic control panel lights.

### **2** FLOOD Light Control

Rotate – controls brightness of overhead spotlight directed at thrust lever quadrant.

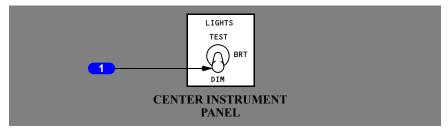
Airplane General, Emergenc DO NOT USE FOR FLIGHT Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

# **Dome Light Control**



# 1 Red DOME Light Control

ROTATE - controls variable intensity red dome lights overhead and on sidewalls.


### **2** White DOME Light Switch

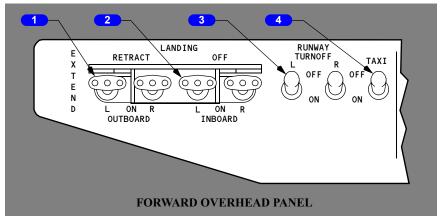
ON-OFF - controls two overhead white lights.

### **3** White DOME Light Control

DIM-OFF-BRIGHT - controls two overhead white lights.

# Master Lights Test and Dim Switch




### **1** Master LIGHTS TEST and DIM Switch

TEST – illuminates all system lights on forward and aft overhead panels, and some lights on Captain's and First Officer's instrument panels to full brightness.

BRT (bright) – sets all system lights on forward and aft overhead panels, and some lights on Captain's and First Officer's panels to full brightness.

DIM – sets all system lights on forward and aft overhead panels, and some lights on Captain's and First Officer's panels to low brightness.

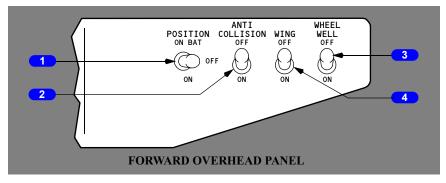
# Exterior Lighting Landing, Runway Turnoff and Taxi Lights



# **1** OUTBOARD LANDING Light Switch (3-position)

RETRACT – outboard landing lights are retracted and extinguished EXTEND – outboard landing lights are extended and extinguished ON – outboard landing lights are extended and illuminated.

- **2** INBOARD LANDING Light Switch
- OFF inboard landing lights are extinguished
- ON inboard landing lights are illuminated.


### **3** RUNWAY TURNOFF Light Switch

- OFF runway turnoff lights located in leading edge of wing root are extinguished.
- ON runway turnoff lights are illuminated.



- OFF nose wheel taxi light extinguished.
- ON nose wheel taxi light illuminated.

# **Miscellaneous Exterior Lights**



### **1** POSITION Light Switch

ON BAT – illuminates the red and green wingtip position lights, the white trailing edge wingtip lights from the battery bus if no other power is available. Battery Switch must be positioned to ON.

OFF - position lights extinguished.

ON – illuminates the red and green wingtip position lights and the white trailing edge wingtip lights.

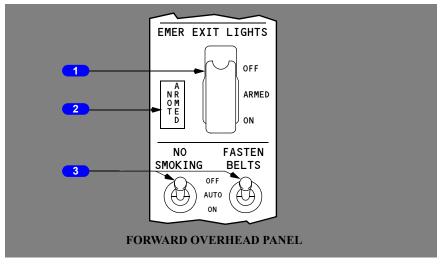
### **2** ANTI–COLLISION Light Switch

OFF - red high intensity strobe lights extinguished.

ON - red high intensity strobe lights on upper and lower fuselage illuminated.

### **3** WHEEL WELL Light Switch

OFF - three wheel well lights extinguished.


ON – wheel well lights illuminated for checking landing gear down and locked stripes.

### **4** WING Illumination Switch

OFF - wing leading edge lights extinguished.

ON - wing leading edge lights on fuselage forward of wing illuminated.

# Emergency Lighting and Passenger Signs Flight Deck



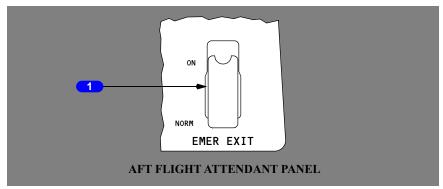
### **1** Emergency Exit Lights (EMER EXIT LIGHTS) Switch (guarded)

OFF – prevents emergency lights system operation if airplane electrical power fails or is turned off.

ARMED - illuminates all interior and exterior emergency lights automatically if DC power fails or is turned off.

ON – all emergency lights illuminate.

**Emergency Exit Lights (EMER EXIT LIGHTS) NOT ARMED Light** Illuminated (amber) – EMER EXIT LIGHTS switch not in ARMED position.


### **3** NO SMOKING/FASTEN SEAT BELTS Light Switches

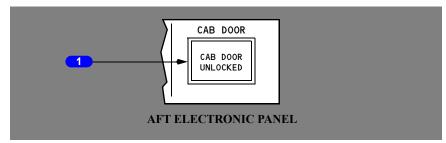
OFF – extinguishes the associated passenger signs.

AUTO - illumination of the associated passenger signs is automatic.

ON - illuminates the associated passenger signs.

# **Passenger Cabin**




### **1** Passenger Cabin Emergency Exit Lights Switch (guarded, red)

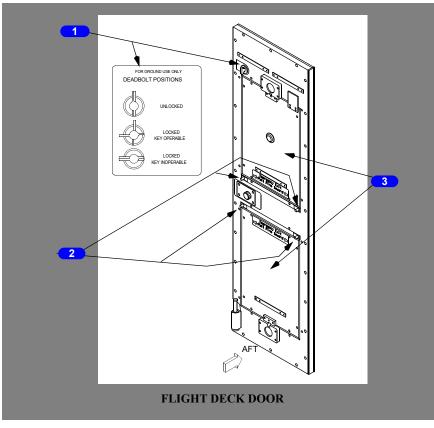
ON – all interior and exterior emergency lights are illuminated. Bypasses flight deck control.

NORM - emergency lights OFF unless activated by the flight deck switch.

**Note:** Whenever these switches are ON, the Emergency Exit Lights are being powered by their own individual NiCad batteries and last approximately 20 minutes.

# Doors Cabin Door (As Installed)




# **1** Cabin Door (CAB DOOR) Lock Switch

Illuminated (amber) - cabin door is unlocked.

Push – with AC power available, locks cabin door.

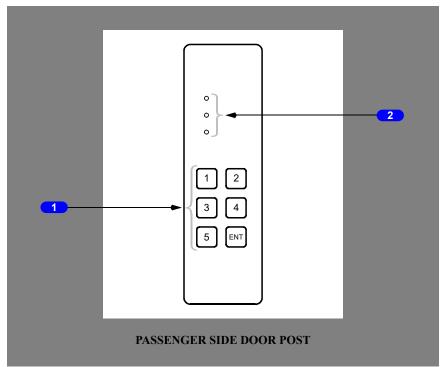
**DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Controls and Indicators

# Flight Deck Door (As Installed)



#### **1** Deadbolt and Deadbolt Placard

#### 2 Release Pins


Pull pins inward - manually separates decompression panel from a jammed door to allow panel opening and egress.

#### **3** Decompression Panel

Provides emergency egress path and automatically opens during cabin depressurization.

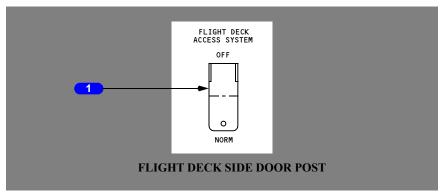
Airplane General, Emergenc **DO NOT USE FOR FLIGHT** Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

### Flight Deck Emergency Access Panel



#### Meypad

Push - enters 3 to 8 digit emergency access code by pressing numeric then "ENT" keys. Entry of correct emergency access code sounds flight deck chime.

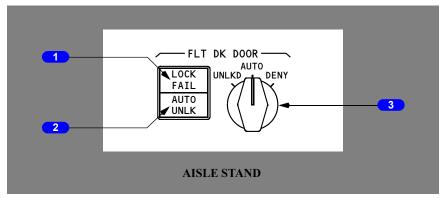

#### **2** Access Lights

Illuminated (red) - door locked or Flight Deck Access System switch OFF.

Illuminated (amber) - correct emergency access code entered.

Illuminated (green) - door unlocked.

#### Flight Deck Access System Switch




### 1 Flight Deck Access System Switch

OFF - removes electrical power from door lock.

NORM (Normal) - flight deck access system configured for flight.

#### Flight Deck Door Lock Panel



# 1 LOCK FAIL Light

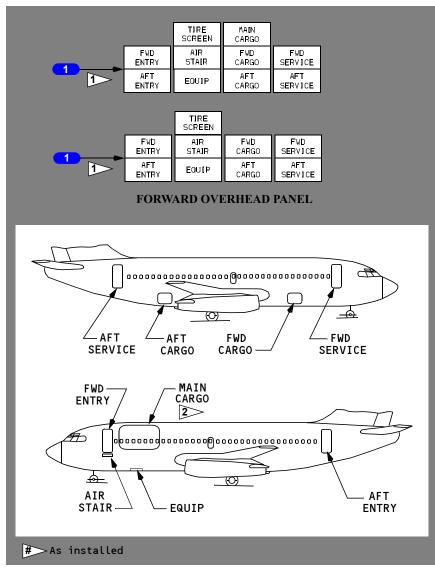
Illuminated (amber) - Flight Deck Door Lock selector in AUTO and door lock has failed or Flight Deck Access System in OFF.

# **2** AUTO Unlock (UNLK) Light

Illuminated (amber) - correct emergency access code entered in keypad. AUTO UNLK light flashes and continuous chime sounds before timer expires and door unlocks.

### Slight Deck (FLT DK) Door Lock Selector

Spring loaded to AUTO. Selector must be pushed in to rotate from AUTO to UNLKD. Selector must not be pushed in to rotate from AUTO to DENY position.

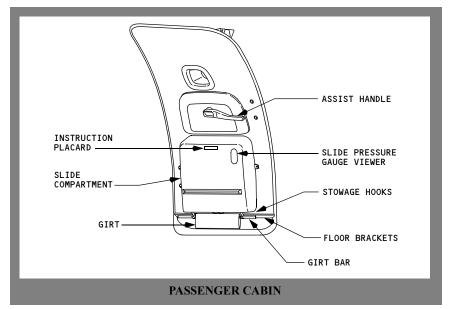

UNLKD - door unlocked while selector in UNLKD.

AUTO - door locked. Allows door to unlock after entry of emergency access code and expiration of timer, unless crew takes action.

DENY - rejects keypad entry request and prevents further emergency access code entry for a time period.

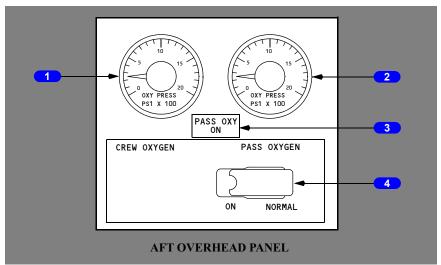
# **DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Controls and Indicators

# **Exterior Door Annunciator Lights**




### **1** Interior Door Annunciations

Illuminated (amber) - related door is unlocked.


Airplane General, Emergenc DO NOT USE FOR FLIGHT Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

# **Passenger Entry/Galley Service Doors**



CAUTION: Do not operate the entry or cargo with winds at the door of more than 40 knots. Do not keep doors open when wind gusts are more than 65 knots. Strong winds can cause damage to the structure of the airplane.

# Oxygen Oxygen Controls and Indicators



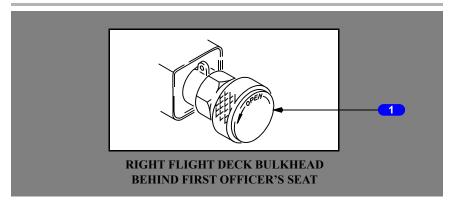
### **1** Flight Crew Oxygen (CREW OXYGEN) Pressure Indicator

Indicates pressure at the crew oxygen cylinder.

#### **2** Passenger Oxygen (PASS OXYGEN) Pressure Indicator

Indicates pressure at the passenger oxygen cylinder.

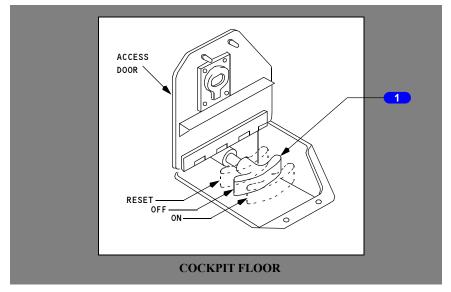
#### **3** Passenger Oxygen On (PASS OXY ON) Light


Illuminated (amber) - system pressure activated.

### 4 Passenger Oxygen (PASS OXYGEN) Switch

NORMAL – passenger masks drop and passenger oxygen system is activated automatically if cabin altitude climbs to approximately 14,000 feet.

ON – activates system and drops masks if automatic function fails.


Airplane General, Emergenc DO NOT USE FOR FLIGHT Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

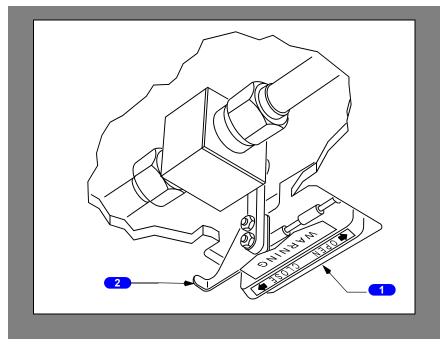


Flight Crew Oxygen (CREW OXYGEN) Shutoff Valve

TURN COUNTERCLOCKWISE - allows oxygen to flow.

TURN CLOCKWISE - shuts off oxygen flow.



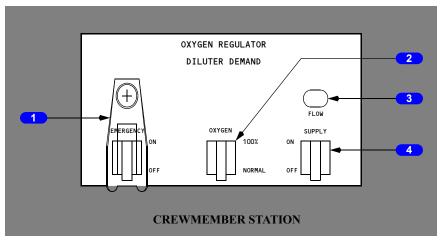

### **1** Manual Actuation and Reset Handle.

PULL ON – activates oxygen system.

PUSH TO RESET (push handle in for 5 seconds) – closes flow control valves and resets system when cabin altitude is below 14,000 feet.

**DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Controls and Indicators

# Passenger Oxygen Shutoff Valve (As Installed)




#### 1 Handle Access Door

Located at the aft end of the forward lowered ceiling

**2** Valve Handle (Closed Position)

# **Oxygen Regulator**



#### 1 Emergency Lever

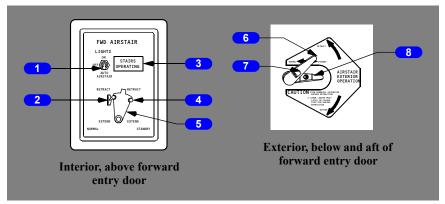
ON - supplies 100% oxygen under positive pressure

OFF - air/oxygen mixture is determined by the position of Oxygen Diluter Lever.

### **2** Oxygen Diluter Lever

100% - provides pure oxygen on demand

NORMAL – provides an air/oxygen mixture, dependent on cabin altitude, on demand.


### **3** Flow Indicator

Indicates oxygen flow through the regulator to the mask.

### **4** Supply Lever

ON/OFF - controls oxygen supply to the regulator.

# Forward Airstair Interior and Exterior Controls



### **1** LIGHTS Switch

ON - illuminates the airstair tread lights.

OFF – airstair tread lights extinguish.

AUTO – the airstair tread lights illuminate automatically upon airstair extension and extinguish upon retraction.

### **2** Normal Control Switch

Note: AC and DC electrical power must be available on airplane.

RETRACT – retracts the airstair. The handrail extensions must be stowed prior to retracting the airstair.

EXTEND – extends the airstair.

# **3** STAIRS Operating Light

Illuminated (amber) - indicates the airstair is in transit.

# **4** STANDBY Control Switch

Note: AC and DC electrical power must be available on airplane.

Retract – retracts the airstair.

Extend - extends the airstair.

# CAUTION: Use of standby bypasses all safety circuits. Airstair handrail extensions must be stowed, or substantial damage could result.

#### **5** Guard

(spring-loaded to the right)

Note: Must be held to the left to operate the standby control switch.

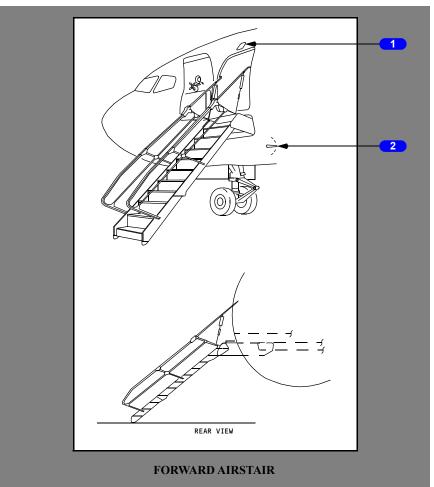
#### **6** Exterior Control Handle

Rotate clockwise – airstair extends. Rotate counterclockwise – airstair retracts.

#### **7** Control Handle Release

Push – extends the exterior control handle.

#### 8 NORMAL/STANDBY Switch


(spring-loaded to NORMAL)

NORMAL - requires both AC and DC power.

STANDBY - requires DC power.

**DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Controls and Indicators

# **Exterior Controls**



### **1** Interior Airstair Control Panel

Normal and standby operating modes.

Entry door must be partially open in order to extend airstair.

#### **2** Exterior Airstair Control Handle

To operate, push button in center and rotate handle either direction.

Entry door need not be open in order to extend airstair.

# Cargo Configuration Main Deck Cargo Door (As Installed)

The main deck cargo door is opened with a hydraulic actuator powered from hydraulic system B. However, the cargo door may also be opened using a manual pump to supply hydraulic pressure for the actuator. The latching and latch locking mechanism is installed along the lower portion of the door. The latch mechanism consists of eight mechanical latches which pull the door completely closed and latch the door to the latch pins on the fuselage door sill. The lock mechanism consists of eight locking pins, with interconnecting mechanism and a manually operated external lock handle. The locking pins prevent the latch mechanism from operating until the door is unlocked. The door is unlocked with a flush mounted external lock handle on the forward outboard side of the door.

After the main deck cargo door is manually unlocked, the cargo door can then be hydraulically unlatched and opened. Hydraulic system pressure for operation of the main deck cargo door actuator is controlled from the cargo door control panel. The panel contains two cargo door position switches, an amber light, and cargo area lighting switches. One switch raises the cargo door to the canopy position and closes the door. The second switch raises the door from the canopy position to the full open position and back to the canopy position. Releasing a control switch while the door is in transit causes the door to hydraulically lock in the interim position. If the switch is operated again the door will continue to raise or lower, depending on the position of the switch. In addition to the hydraulic locking feature, mechanical locks extend to hold the door in the canopy position (approximately 87 degrees) if hydraulic pressure is lost. The lock is released by hydraulic pressure within the actuator. The door is actuated by system B pressure or by pressure from the hand pump in the left wheel well.

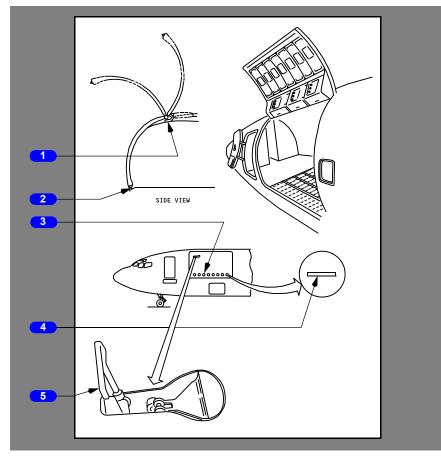
Electric heating blankets are used to heat the inside wall of the cargo door. The cargo door heat switch is located on the cargo attendant's panel. Cargo door heat may be used on the ground as desired for passenger comfort to limit cold soak effect at the main deck cargo door location.

One amber caution light on the cargo door control panel, and one MAIN CARGO door light located on the forward overhead panel, indicate to the flight crew that the main deck cargo door is not closed and locked.

Visual confirmation that latch hooks are engaged is provided by eight latch hook viewing windows on the lower outside edge of the cargo door. A horizontal white line shows the end of each latch hook in the latched position.

An indicating light inside the No. 2 and No. 7 windows will be illuminated when the No. 3 and No. 6 latch hooks are locked. This provides additional confidence that all latch hooks are properly locked.

## **DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Controls and Indicators


Three conditions must be satisfied to extinguish the amber "door unlocked" caution light: (1) door closed, (2) door latched and locked, (3) external door handle stowed. If the light illuminates in flight, it is probably due to the rigging tolerance of the door position proximity switch. The door cannot be mechanically unlocked except from outside.

The passenger cabin can be converted to a main cargo compartment using a cargo conversion kit. The compartment is equipped with a hydraulically operated main deck cargo door located just aft of the forward entry door. The door opening upward and outward permits easy loading of the various commercial/military cargo pallets when the airplane has the cargo conversion kit installed.

This seven pallet configuration kit contains all the parts required for conversion of any of several combination cargo/passenger configurations, permitting mixed loads of passengers and cargo to be carried.

Airplane General, Emergenc **DO NOT USE FOR FLIGHT** Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

### Main Deck Cargo Door



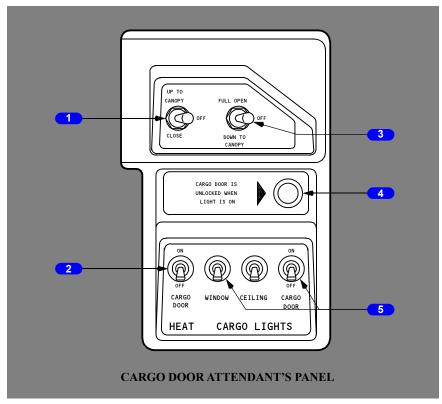
1 Actuation Linkage Shown in closed position

**2** Latch Pin

Typical (8) places

### **3** Indicating Lights (white)

Installed in windows 2 and 7


### **4** Latch Hook Viewing Windows (8)

End of latch hook (white) shown in center of window.

### **5** External Locking Handle

PULL OUT AND FORWARD – unlocks latch hooks and connects electrical power to the opening system (shown in unlock position).

## Main Deck Cargo Door Control Panel



### **1** Switch No. 1

• Requires DC electrical power.

UP TO CANOPY- cargo door unlatches and raises to the canopy position.

CLOSE – cargo door closes and latch hooks engage.

### **2** Cargo Door Heat

• Controls heat to cargo door for comfort and to prevent cold soak.

### **3** Switch No. 2

FULL OPEN – cargo door raises from the canopy position and locks in the full open position.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2012 D6-27370-200A-TBC 1.30.25

#### Airplane General, Emergenc Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

DOWN TO CANOPY- cargo door lowers to the canopy position.

### Cargo Door Unlocked Light

ILLUMINATED – indicates the main cargo door is unlocked.

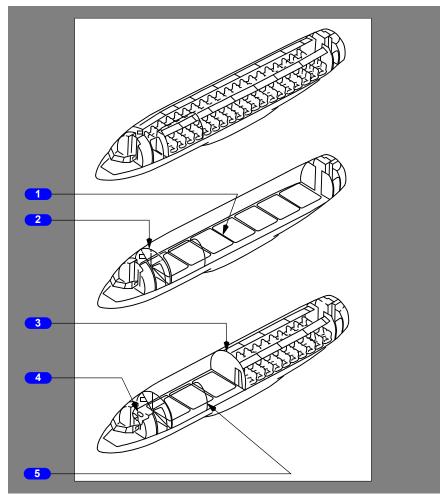
### **5** Recessed Lighting Switches

• Controls cabin and cargo door lights.

## **Cargo Door Operating Instructions Placard**

CARGO DOOR OPERATING INSTRUCTIONS HYDRAULIC "B" SYSTEM MUST BE PRESSURIZED & PARKING BRAKE MUST BE SET 1. MOVE EXTERNAL LOCK HANDLE TO 0 "UNLOCK". Ρ 2. SELECT DESIRED DOOR POSITION. Е THE DOOR WILL REMAIN IN CANOPY OR FULL Ν OPEN POSITION WITHOUT HYDRAULIC POWER. С L 1. SELECT DESIRED DOOR POSITION. 0 2. MOVE EXTERNAL LOCK HANDLE TO "LOCK" s IF THE DOOR IS CLOSED. F FOR MANUAL OPERATION -SEE DECAL IN MAIN WHEEL WELL

#### CARGO DOOR CONTROL PANEL ACCESS DOOR


## Passenger/Cargo Combinations

The cabin may be configured to carry from 2 to 6 pallets with the remainder of the cabin allocated to passenger seating. Installation of the cargo conversion kit requires removal or storage of passenger features in the affected portion of the main cabin area. The plug(s) must also be removed from the cargo compartment vent and replaced with grills to insure smoke evacuation. The vent is located on the floor over the E/E compartment; if two vents are installed, the second is over the attendant's seat. All window shades must be pulled down, all air outlets must be closed, and all reading lights must be off along both sides of the cabin section being converted for cargo.

The passenger compartment will be separated from the main cargo compartment by a fire-resistant smoke barrier partition with a door. A smoke detection system provides monitoring of the air in the main cargo compartment when the equipment cooling fan is operating.

A floor-mounted portable dry chemical fire extinguisher and applicator or, as installed, a BCF fire extinguisher, is installed over the smoke evacuation grill in the forward part of the cabin. Cargo loading must permit an aisle for access between the crew and passenger compartments, and must permit the use of the portable fire extinguisher to effectively reach fires in all areas of the cargo compartment.

### Passenger/Cargo Configurations



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2012 D6-27370-200A-TBC 1.30.27 Cargo Pallet



**3** Smoke Partition Barrier

### 4 Fire Extinguisher

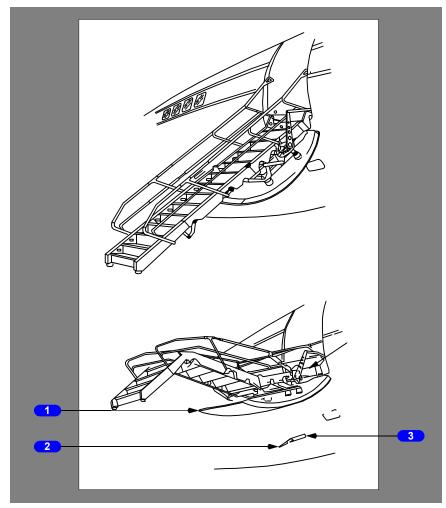
Dry chemical with applicator, or BCF.

### **5** Main Deck Cargo Door

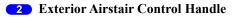
Top-hinged with eight latches along bottom edge.

### Aft Entry Door and Airstair

The aft entry door and airstair is a self-contained unit which provides rapid access to, or departure from, the cabin.


The aft airstair is integral with the aft entry door. When the door is opened, the airstair unfolds from the door and forms a stairway for passengers and crew.

The airstair can be extended and retracted from inside the airplane, electrically or manually.

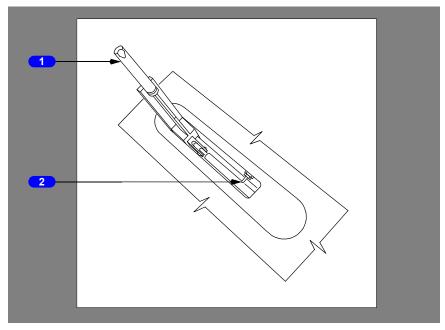

**Note:** Exterior control extends electrically or manually, but retracts only electrically.

When the aft airstair is retracted, it folds in three sections and is stowed inboard of the entry door. The aft entry door is included in the door warning system.

### Aft Airstair and Entry Door Exterior Controls



#### 1 Aft Entry Door




### **3** Extend/Retract Switch

Electrical or manual extension. Retraction is electrical only.

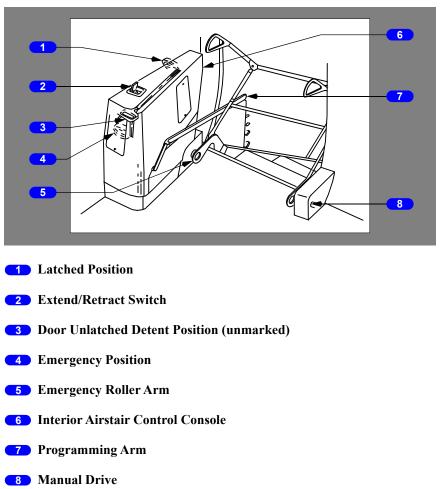
Airplane General, Emergenc **DO NOT USE FOR FLIGHT** Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

### **Exterior Control Below Aft Entry Door**



#### **1** Exterior Airstair Control Handle

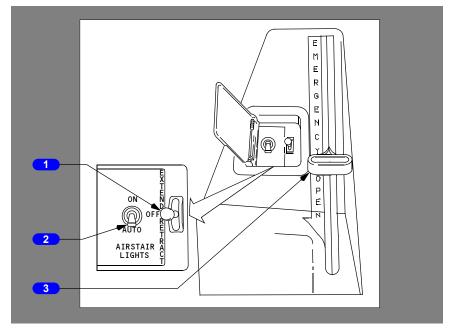
- · Locks and unlocks the aft entry door
- When pulled to the EMERGENCY position, airstair free-falls to the extended position.


#### **2** Extend/Retract Switch

Note: AC and DC electrical power must be available on airplane.

Extend - extends the airstair.

Retract - retracts the airstair.


#### **Interior Controls**



Stairs may be extended manually when electrical power is unavailable.

Airplane General, Emergenc **DO NOT USE FOR FLIGHT** Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

#### Airstair Control Panel at Aft Entry Door



#### **1** Extend/Retract Switch

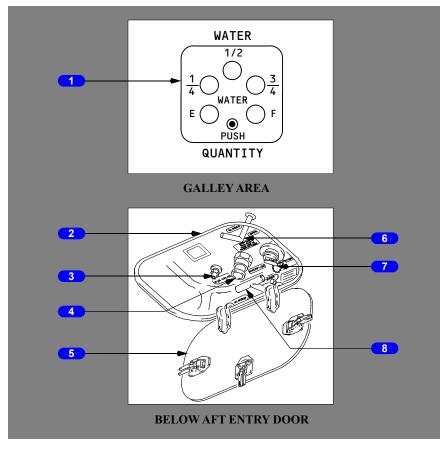
Note: AC and DC electrical power must be available on airplane.

EXTEND - extends the airstair.

RETRACT - retracts the airstair.

OFF - removes power and stops airstair.

### **2** Airstair Lights Switch


ON - illuminates the airstair tread lights.

AUTO – the airstair tread lights illuminate automatically upon airstair extension and extinguish upon retraction.

#### **3** Control Handle

- Locks and unlocks the aft entry door
- When pulled to the EMERGENCY position, airstair free-falls to the extended position.

## Water System Controls



### Water Quantity Indicator

Push – lights illuminate to indicate quantity of water in reservoir. Example: With reservoir half full, the E, 1/4, and 1/2 lights illuminate.

### **2** Water System Service Panel

#### 3 Air Valve

Pressurizes tank and system when normal pressure sources are not available.

### 4 Overflow Fitting

Prevents overfilling of tank and allows venting of tank when gravity draining.

#### Airplane General, Emergenc DO NOT USE FOR FLIGHT Equipment, Doors, Windows Controls and Indicators 737 Flight Crew Operations Manual

#### 5 Access Panel

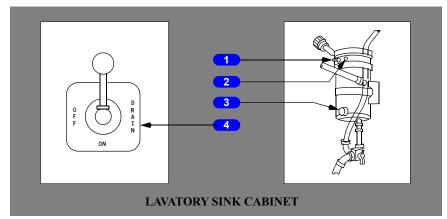
Cannot be closed unless the fill and overflow valve and tank drain valve handles are in the closed position.

### **6** Fill and Overflow Valve Handle

OPEN - enables filling or gravity draining water tank.

CLOSED – normal position.

### **7** Fill Fitting


Used to fill tank.

### **8** Tank Drain Valve Handle

OPEN - drains water from tank.

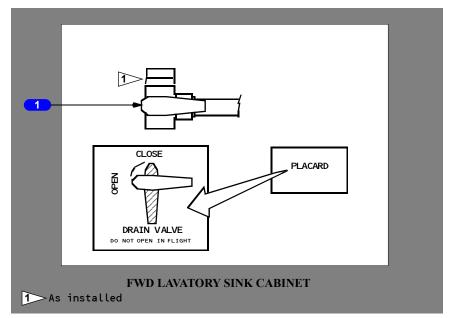
CLOSED – normal position.

### **Lavatory Controls**



### **1** Water Heater Switch

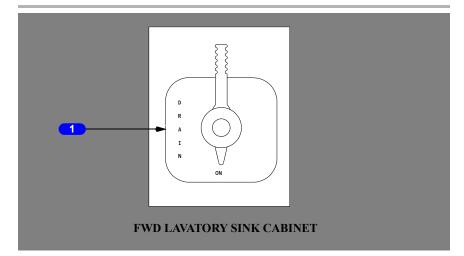
ON - activates the water heater.


### **2** Water Heater Light

Illuminated - heater operating.

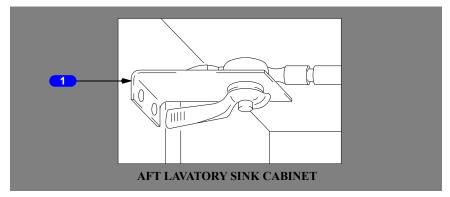


### **4** Water Shutoff and Drain Valve Control


- ON provides water to lavatory sink faucets and heater (normal position)
- OFF shuts off water to lavatory sink faucets and heater
- DRAIN drains water overboard through respective drain fitting.



### **1** Water Supply Drain Valve


- OPEN the drain valve allows the water to drain from all the Lavatory A and galley supply lilnes.
- CLOSE the water from the supply lines flows to the lavatory and galley components and dows not flow overboard.

Airplane General, Emergenc DO NOT USE FOR FLIGHT Equipment, Doors, Windows 737 Flight Crew Operations Manual



#### **1** Fwd Vent Valve Control

- ON normal position for valve
- DRAIN enables pressure or gravity draining of system when Water Shutoff and Drain Valve Control is positioned to DRAIN.



#### **1** Aft Vent Valve Control

- CLOSED (valve handle pointing into cabinet) normal position
- OPEN (valve handle parallel to airplane centerline) Enables system draining when Water Shutoff and Drain Valve Control positioned to DRAIN.

# **DO NOT USE FOR FLIGHT**

737 Flight Crew Operations Manual

## **Airplane General, Emergency** Equipment, Doors, Windows **Systems Description**

## Introduction

This chapter describes miscellaneous airplane systems, including:

- lighting systems
- oxygen systems
- fire extinguishers
- emergency equipment
- · doors and windows
- cargo compartments

## **Lighting Systems**

Lighting systems described in this chapter include:

- exterior lighting
- flight deck lighting

- passenger cabin lighting
- emergency lighting.

## **Exterior Lighting**

Exterior lighting consists of these lights:

- landing
- runway turnoff
- taxi
- position (navigation)

## **Outboard Landing Lights**

Outboard landing lights are installed in the outboard flap track fairings. The lights are designed to extend and shine forward, parallel to the waterline of the airplane. The lights may be extended at any speed.

## **Inboard Landing Lights**

Two inboard landing lights are in the wing leading edge. The lights shine forward and down in a fixed position.

## **Runway Turnoff Lights**

Runway turnoff lights are in each wing root. The lights illuminate the area in front of the main gear.

- anti–collision
- wing illumination
- wheel well

- emergency egress
- · flight deck seats
- galleys
- · water systems
- lavatories
- airstairs.



Chapter 1

Section 40

### Taxi Lights

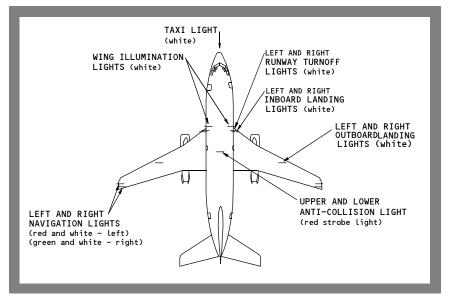
The taxi light is mounted on the nose wheel strut and points in the same direction as the nose wheel. The light will not extinguish automatically when the nose gear is retracted. For increased service life of the taxi light, it is recommended that the taxi light not be used for takeoffs or landings.

### **Position Lights**

The navigation lights are the standard red (left forward wingtip), green (right forward wingtip), and white (aft tip of both wings) position lights.

### Anti-collision Lights

Two red anti-collision strobe lights are located on the top and bottom of the fuselage.


### Wing Illumination Lights

Wing lights are installed on the fuselage and illuminate the leading edge of the wing.

### Wheel Well Lights

Lights are installed in the wheel well of the nose gear and each main gear.

## **Exterior Lighting Locations**



## **Flight Deck Lighting**

White dome lights provide general flight deck flood lighting. When red dome lights are installed, a separate switch provides variable intensity control of the red dome lights overhead and on the sidewalls. The Captain's and First Officer's instruments are illuminated by white flood lights under the light shield and by integral white lights in the panels. Flight kit, map, reading, and circuit breaker panel lights are controlled by individual switches. A separate switch at the base of the standby magnetic compass controls compass illumination.

### Panel and Background Lights

The variable intensity switch marked BACKGROUND on the Captain's instrument panel provides control of the background lights. Rotating the switch clockwise to the detent increases the brightness of the incandescent lights. Movement beyond the detent turns on the fluorescent flood lights. The background (flood) lights illuminate the Captain's, First Officer's, and center instrument panels.

The controls marked PANEL activate the integral instrument lighting for the associated panel. The center instrument panel integral lights are controlled by the Captain's panel control.

On panel light controls with two knobs, the outer knob controls the instrument lighting, and the inner knob controls the lights in the electronic DME miles indicator.

### Passenger Cabin Signs

The passenger cabin signs are controlled by a switch on the forward overhead panel. With AUTO selected, the signs are controlled automatically by reference to landing gear and flap positions:

NO SMOKING signs:

- Illuminate when gear is extended
- Extinguish when gear is retracted.

FASTEN BELTS and RETURN TO SEAT signs:

- Illuminate when flaps or gear are extended
- Extinguish when flaps and gear are retracted.

All passenger signs can be controlled manually by positioning the respective switch to ON or OFF.

When the passenger cabin signs illuminate or extinguish, a low tone chime sounds over the PA system.

### Master Lights Test and Dim Switch

Certain cockpit indicator lights may be tested with a switch on the center instrument panel. The switch has three positions:

TEST:

- The majority of the cockpit indicators will illuminate BRIGHT.
- The fire warning lights are tested as a part of the functional checks of the fire warning system
- The master caution system will not RECALL with the switch in the TEST position.

BRT:

• Light intensity is bright.

DIM:

• Light intensity is dim for the majority of the indicator lights.

## Passenger Cabin Lighting

Passenger cabin lighting is supplied by incandescent and fluorescent lights. General cabin lighting is provided by window lights, ceiling lights, and entry lights. Reading lights are located above each passenger seat in the passenger service unit. Lights are also installed in the lavatories and galleys.

## **Power Sources**

Flight deck and passenger cabin lights are divided between the two main AC busses so that failure of either bus will result in only partial loss of lighting.

### Hot Battery Bus

With the battery switch OFF, and external power connected, the dim entry lights will be illuminated from the hot battery bus. The fluorescent mirror lights in the lavatories will also be illuminated.

### **Battery Bus**

Loss of all AC power will leave only the following lights powered from the battery bus:

Flight Deck Lights:

- Standby compass light
- White dome lights
- Emergency instrument flood lights
- Selected system information and warning lights.

Passenger Cabin Lights:

- Emergency exit lights.
- **Note:** Failure of AC transfer bus No. 2 (TRANSFER BUS OFF Light illuminated) will automatically turn on the emergency instrument flood lights.

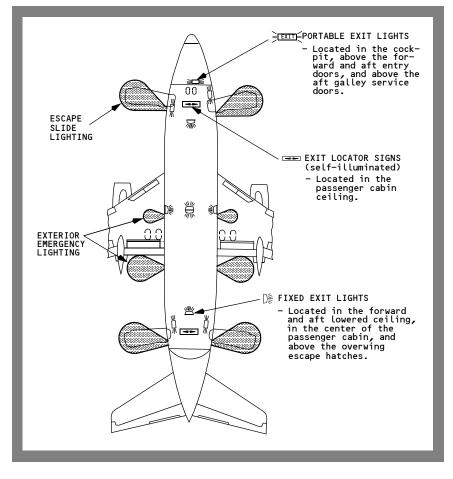
## **Emergency Lighting**

Clearly marked exit lights are located throughout the passenger cabin to indicate the approved emergency exit routes. All of the lights are powered by individual nicad batteries with a charging, monitoring, and voltage regulator circuit.

The system is controlled by a switch on the overhead panel. The switch has three positions, OFF, ARMED and ON and is guarded to the ARMED position. With the switch in the ARMED position, the emergency exit lights are normally extinguished. If electrical power to the 28 volt DC bus No. 1 fails or if AC power has been turned off, the emergency exit lights illuminate automatically. An amber NOT ARMED light adjacent to the switch will illuminate if the switch is not in the ARMED position.

The emergency exit lights may also be illuminated by a switch on the aft attendant's panel. This switch has two positions, NORMAL and ON, and is guarded to the NORMAL position.

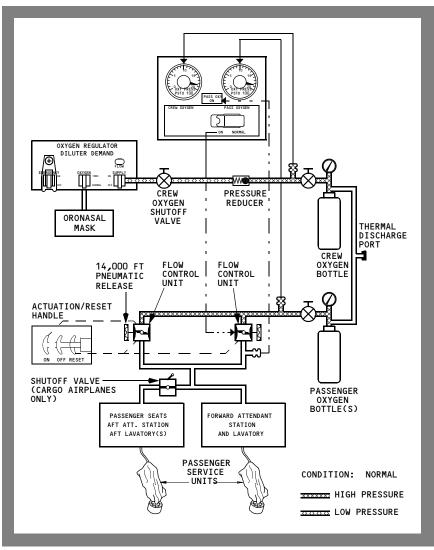
With the switch in the NORMAL position the lights are controlled from the flight deck. Lifting the guard and pushing the switch ON overrides the flight deck control and illuminates all the emergency exit lights. Control from this panel is available in the event of failure of the automatic control.


Portable emergency exit lights are located in the flight deck and over the entry/service doors. These lights may be removed and used as flashlights. With the the cover removed, latches on either end of the light may be depressed to remove the light. If the flight deck Emergency Exit Light Switch is in the ARMED position, and the ARM-ON switch on the light is in the ARMED position, the light illuminates as it is removed from the receptacle. Positioning the ARM-ON switch on the light to ON activates the light.

Fixed lights are located above the overwing emergency hatches and in the ceiling to locate the exits and provide general illumination in the area of the exits. Self-illuminating exit locator signs are installed at the forward, the middle, and aft ends of the passenger cabin.

Exterior emergency lights illuminate the escape slides. The fuselage-installed escape slide lights are adjacent to the forward and aft service and entry doors. Two lights are also installed on the fuselage to illuminate the overwing escape routes and ground contact area. The exterior overwing lights will illuminate if the system is ARMED and the escape hatches are removed.

Airplane General, Emergenc Equipment, Doors, Windows Systems Description 737 Flight Crew Operations Manual


### **Emergency Exit Lighting**



### **Oxygen Systems**

Two independent oxygen systems are provided, one for the flight crew and one for the passengers. Portable oxygen cylinders are located throughout the airplane for emergency use. **DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Systems Description

## **Oxygen System Schematic**



## Flight Crew Oxygen System

On cargo airplanes, the passenger oxygen supply to all outlets aft of the forward attendant's panel and forward lavatory can be secured by closing the PSU shutoff valve located at the aft end of the forward lowered ceiling. Whenever passengers are carried in the cargo airplane, this valve must be open.

Airplane General, Emergenc Equipment, Doors, Windows Systems Description 737 Flight Crew Operations Manual

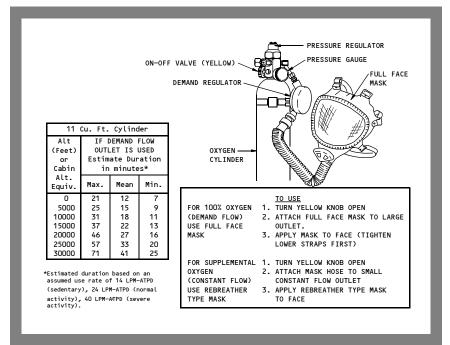
The flight crew oxygen system is completely separate from the passenger oxygen system. It uses quick–donning diluter demand masks/regulators located at each crew station. Oxygen is supplied by a single cylinder. Pressure is read on the indicator located on the aft overhead panel when the Battery Switch is ON. Oxygen flow is controlled through a pressure–reducing regulator to supply low pressure oxygen to a shut-off valve located behind the First Officer's seat. Normal pressure is 1850 psi.

A quick-donning mask is located within easy reach of each crew member. Oxygen flow is controlled by a diluter–demand type regulator located immediately adjacent to each crew station.

With the crew shutoff valve open, oxygen flows to each crewmember diluter-demand regulator and oronasal mask. The regulator has three levers which control the flow of oxygen to the mask. The Supply Lever controls the flow of oxygen to the regulator, the Oxygen Diluter Lever controls the air/oxygen mixture being supplied, and the Emergency Lever provides the capability to select 100% oxygen supplied under pressure.

## Flight Crew Portable Oxygen

The flight crew portable oxygen unit is a completely self-contained oxygen system, offering both demand and constant flow capabilities. It consists of a portable oxygen cylinder, a pressure regulator (constant flow), a shutoff valve, a quantity indicator to show oxygen supply, a demand regulator, and a sling-type carrying strap.


The portable oxygen cylinder is installed behind and adjacent to the First Officer's seat. When charged to 1800 psi at 70° Fahrenheit (21° Celsius), it contains 11 cubic feet (311 liters) of free oxygen.

The demand regulator has a connection for a demand type full–face mask and supplies 100% oxygen. Normally, the full face mask is attached to the unit and provides portable full–face and respiratory protection from hazardous smoke and fumes.

For constant flow oxygen, a bayonet–type fitting accommodates a disposable continuous flow mask. The cylinder provides oxygen for a duration of approximately 103 minutes using the 3 liter constant flow outlet.

**DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Systems Description

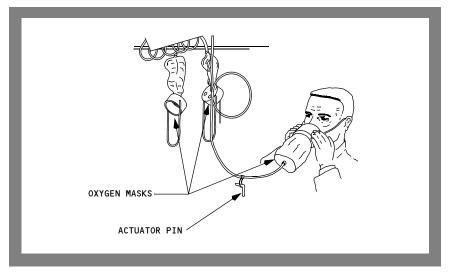
### Flight Crew Portable Oxygen Equipment



## Passenger Oxygen System

The passenger oxygen system is normally inactive. System pressurization occurs in one of three ways:

- Automatically when cabin altitude reaches approximately 14,000 feet
- The Passenger Oxygen Switch on the overhead panel is positioned ON
- The Manual Actuation and Reset Handle in the cockpit floor is pulled ON


The passenger oxygen system is continuous flow, and is pressurized to 1850 psi.

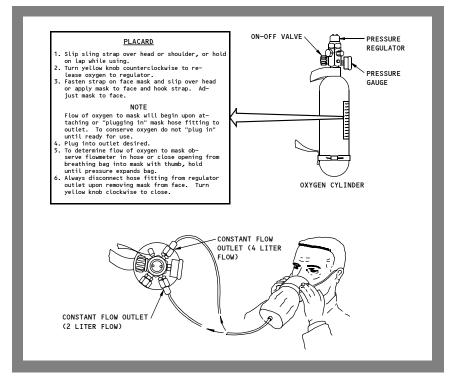
An amber PASS OXY ON Light on the overhead panel illuminates when pressure is sensed in the system. When the system is activated, the masks in the passenger cabin drop from their stowed position. Pulling the mask to one's face pulls the actuator pin and allows oxygen to flow through the mask at a constant rate. The oxygen provided to the passenger mask is diluted by cabin air in variation with cabin altitude.

When cabin altitude is below 14,000 feet, the oxygen system may be shut off by using the Manual Actuation and Reset Handle in the cockpit floor. To reset, the handle must be pushed and held in the reset position for five seconds.

To shut off an individual passenger service unit (PSU) mask, reset the valve or replace the pin which is secured to the hose.

### PSU Oxygen Mask Compartment




- WARNING: When using passenger oxygen, the "NO SMOKING" sign should be strictly observed. Once in use, the flow of oxygen is constant, whether or not the mask is being worn, until shut off at the PSU or by the Manual Activation Handle.
- WARNING: Do not use passenger oxygen with cabin altitude below 14,000 feet when smoke or an abnormal heat source is present. The use of passenger oxygen does not prevent the passengers from inhaling smoke. Air inhaled is a mixture of oxygen and cabin air.

## Passenger Portable Oxygen

First aid and sustaining portable oxygen cylinders are installed at suitable locations in the passenger cabin. The cylinders are fitted with a pressure gauge, pressure regulator and on-off valve. The cylinders are pressurized to 1800 psi. At this pressure and a temperature of 70° Fahrenheit (21° Celsius), the cylinders have a capacity of 4.25 cubic feet (120 liters) of free oxygen. Two continuous flow outlets are provided on each cylinder. One regulates flow at two liters per minute for walk–around; the second outlet provides flow at four liters per minute. The four liter flow is used for first aid.

Duration can be determined by dividing capacity by outflow (120 liters divided by 4 liters/minute = 30 minutes).

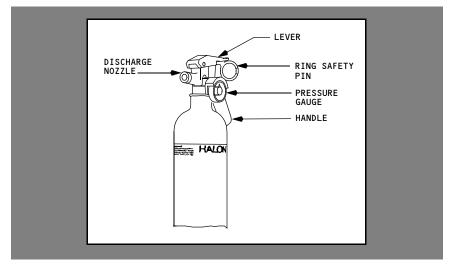
### Passenger Portable Oxygen Equipment



## **Fire Extinguishers**

Fire extinguishers are located in the flight deck and passenger cabin.

## Halon (BCF) Fire Extinguishers


Halon (BCF) fire extinguishers contain a liquefied gas agent under pressure. The pressure indicator shows an acceptable pressure range, a recharge range, and an overcharged range. A safety pin with a pull ring prevents accidental trigger movement. When released the liquefied gas agent vaporizes and extinguishes the fire. The extinguisher is effective on all types of fires, but primarily on electrical, fuel and grease fires.

To use the Halon fire extinguisher:

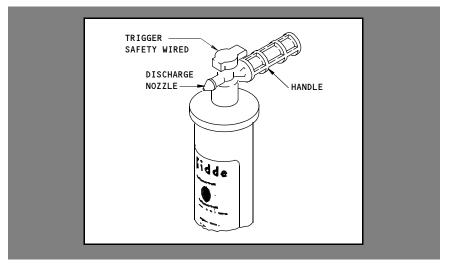
- · Remove from stowage
- Hold upright and remove ringed safety pin
- Aim at base of fire from a distance of six feet and press top lever
- Use side to side motion to suppress fire.

Airplane General, Emergenc Equipment, Doors, Windows Systems Description 737 Flight Crew Operations Manual

### BCF Fire Extinguisher (Halon 1211)



### Water Fire Extinguishers


Water fire extinguishers contain a solution of water mixed with antifreeze. The extinguisher should be used on fabric, paper or wood fires only.

To use the water fire extinguisher:

- Remove from stowage
- Remove the safety pin or wire
- · Aim at base of fire
- Rotate the handle.
- Depress the discharge trigger.

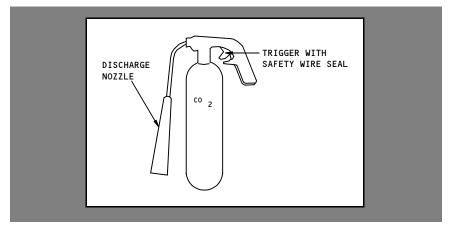
### CAUTION: Do not use on electrical or grease type fires.

#### Water Fire Extinguisher



## **Carbon Dioxide Fire Extinguishers**

A carbon dioxide (CO2) extinguisher is identified by the horn type nozzle and is intended primarily for use in extinguishing electrical fires. Operation is controlled by a trigger in the handle. Until operated, the trigger is lockwired and sealed.


To use the carbon dioxide fire extinguisher:

- Remove from stowage
- Rotate nozzle upright
- Pull the locking pin or the seal at the trigger
- Squeeze the lever and direct the discharge at base of fire.

Note: The compressed CO2 gas is discharged from 4 to 6 feet.

CAUTION: Carbon dioxide is not harmful to fabrics or instruments, but will cause frost bite if directed on bare skin. Avoid grasping the discharge nozzle. In confined areas, don portable oxygen equipment to prevent asphyxiation. Use 100% oxygen until proper ventilation is established.

### **Carbon Dioxide Fire Extinguisher**

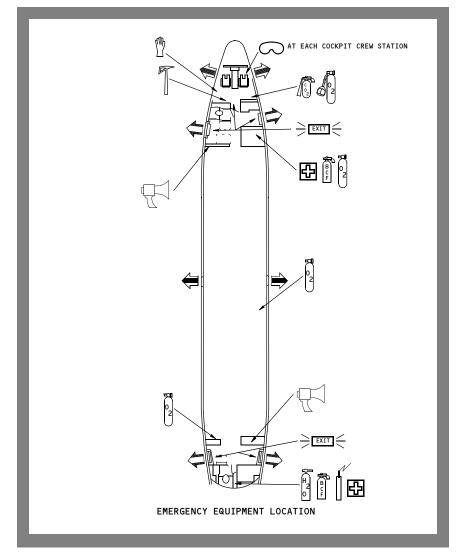


### Fire Extinguisher Usage

Each class of fire calls for specialized action. Using the wrong extinguisher may do more harm than good. For your own protection, you should know these basic types, how to use them, and why.

| There are                     | CLASSES OF FIRE<br>three common classes of fire:                                                                                                                                                                                                                                                                                                                       | EXTINGUISHER TYPE                                                                          |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| CLASS A combustible MATERIALS | - paper, wood, fabric, rubber,<br>certain plastics, etc., where<br>quenching by water is effective.                                                                                                                                                                                                                                                                    | TYPE A<br>Water (H <sub>2</sub> 0) saturates<br>material and prevents<br>rekindling.       |
| CLASS B FLAMMABLE LIQUIDS     | - gasoline, oils, greases, solvents,<br>paints, burning liquids, cooking<br>fats, etc., where smothering<br>action is required.                                                                                                                                                                                                                                        | TYPE B<br>1. Carbon dioxide (CO <sub>2</sub> )<br>2. BCF (Halon 1211)<br>3. Dry chemical   |
| CLASS (C) LIVE<br>ELECTRICAL  | <ul> <li>fires started by short circuit or<br/>faulty wiring in electrical,<br/>electronic equipment, or fires in<br/>motors, switches, galley equipment,<br/>etc., where a nonconducting<br/>extinguisher agent is required.</li> <li><u>NOTE</u>: Whenever possible, electrical<br/>equipment should be de-energized<br/>before attacking a class C fire.</li> </ul> | TYPE (C)<br>1. Carbon dioxide (CO <sub>2</sub> )<br>2. BCF (Halon 1211)<br>3. Dry chemical |

- WARNING: The wrong extinguisher on a fire could do more harm than good. For example, a B C rated extinguisher is not as effective as H2O on a class A fire. Water on flammable liquid fires spread the fire. Water on a live electrical fire could cause severe shock or death.
- WARNING: Carbon dioxide (CO2) in excess of 3 percent by volume (sea level equivalent) is considered hazardous in the case of crew members. Higher concentrations of CO2 may not necessarily be hazardous in crew compartments if appropriate protective breathing equipment is available. The CO2 concentration may exceed 3 percent for a minute or so after discharging one CO2 fire extinguisher in the crew compartment.
- WARNING: The concentrated agent, or the by-products created by the heat of the fire, are toxic when inhaled. If a fire extinguisher is to be discharged in the flight deck, then all crewmembers are to wear oxygen masks and use 100% oxygen with emergency selected. Whenever fire is encountered on the airplane, landing at the nearest suitable airport is recommended.


Intentionally Blank

## **Emergency Equipment Symbols**



Airplane General, Emergenc Equipment, Doors, Windows System Description 737 Flight Crew Operations Manual

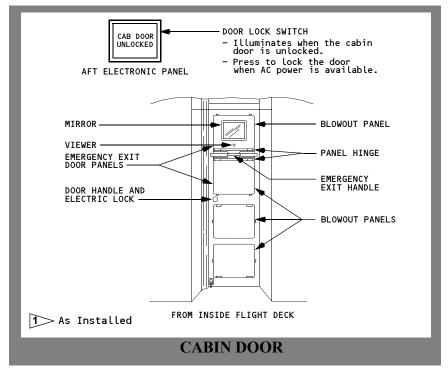
## **Emergency Equipment Locations**



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. **1.40.18** D6-27370-200A-TBC April 9, 2009

### **Doors and Windows**

The airplane has two passenger entry doors, one cabin door (the flight deck/passenger cabin entry), and two cargo doors. It also has one center electrical and electronic (E/E) equipment access door on the bottom of the airplane.


The flight deck number two windows, one on the left and one on the right, can be opened by the flight crew.

## **Cabin Door**

An electrical and keyed lock permits the door to be opened, closed, and locked from either side. With 115 volt AC power available, the door may be electrically locked or unlocked by pressing the door lock switch on the control stand; entrance from the passenger cabin requires a key when the door is electrically locked. The door cannot be locked without electrical power.

There are four blowout panels located in the cabin door. In the event of a sudden depressurization of the flight deck, the blowout panels hinge out from the door. This uncovers openings in the door and allows the air pressure in the flight deck and passenger cabin to equalize.

An emergency exit feature is also provided which permits the release and removal of the two upper blowout panels from the door. To operate, grasp the emergency exit handle on the upper part of the door and pull forward. Panel will not release unless both ends of handle have been pulled away from their locked position.

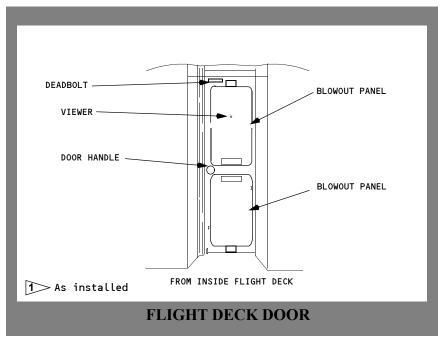


The flight deck door meets requirements for resistance to ballistic penetration and intruder entrance. The door opens into the passenger cabin. When closed, the door locks when electrical power is available and unlocks when electrical power is removed. A viewing lens in the door allows observation of the passenger cabin.

The door can be manually opened from the flight deck by turning the door handle. The door incorporates a deadbolt with a key lock on the passenger cabin side. Rotating both concentric deadbolt levers to the locked (horizontal) position prevents the passenger cabin key from unlocking the door. Rotating only the forward deadbolt lever to locked allows the key to unlock the door.

## **DO NOT USE FOR FLIGHT**Airplane General, Emergency 737 Flight Crew Operations Manual Systems Description

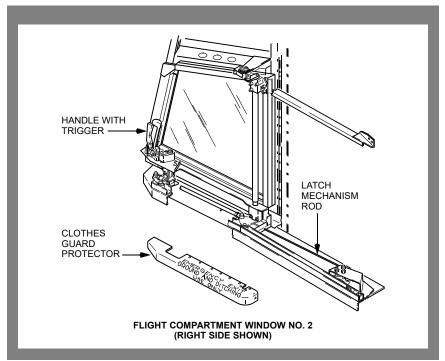
The flight deck access system consists of an emergency access panel, chime module, three position door lock selector, two indicator lights, and an access system switch. The emergency access panel includes a six button keypad for entering the numeric access code along with red, amber, and green lights. The red light illuminates to indicate the door is locked. When the correct emergency access code is entered, the amber light illuminates. The green light illuminates to indicate the door is unlocked.


Illumination of the amber LOCK FAIL light indicates the door lock has failed or the Access System switch is in the OFF position.

The emergency access code is used to gain access to the flight deck in case of pilot incapacitation. A flight deck chime and illumination of the amber AUTO UNLK light indicates the correct emergency access code has been entered and the door is programmed to unlock after a time delay. Selecting the DENY position on the Door Lock selector denies entry and prevents further keypad entry for several minutes. To allow entry, the selector is turned to the UNLKD position which unlocks the door while held in that position. If the emergency access code is entered and the pilot takes no action, the door unlocks after expiration of the time delay. Before the door unlocks, the chime sounds continuously and the AUTO UNLK light flashes.

#### Airplane General, Emergenc Equipment, Doors, Windows Systems Description 737 Flight Crew Operations Manual

By pressing "1" then "ENT" keys on the emergency access panel, the flight deck chime will sound (if programmed).


The door incorporates two pressure sensors that unlock the decompression panels in the event pressurization is lost. The decompression panels have manual release pins. Pulling the pins frees the panels allowing egress in the event the door is jammed.



## Flight Deck Number Two Windows

The flight deck number two windows can be opened on the ground or in flight and can be used for emergency evacuation. To open the window, depress the trigger and turn the handle back and inboard. After the window moves inboard, move it back until it locks in the open position.

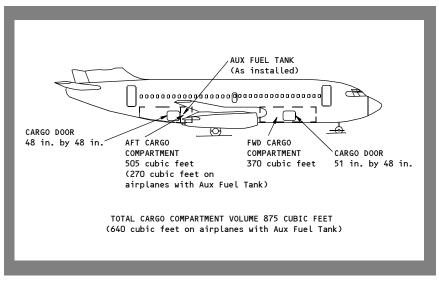
To close the window, it must first be unlocked. Pull forward on the latch mechanism rod to unlock the window. Depress the trigger and move the window forward until the handle can be turned forward and outboard. When the trigger is released, the window latches.



## Lower Cargo Compartments

The lower cargo compartments, if equipped with smoke and fire detectors and with a built-in fire extinguisher system controlled from the flight deck, satisfy the requirements for Class C compartments.

**Note:** The certification standards for fire safety in Class D cargo and baggage compartments have been changed. Class D compartments in airplanes used for passenger service must now comply with the standards for Class C compartments. Class C standards require that a compartment be equipped with smoke and fire detectors and with a built-in fire extinguisher system controlled from the flight deck. No inflight access is necessary, but the flight crew must be able to control the ventilating airflow into these compartments. Class D compartments in airplanes used only for cargo service must also comply with the standards for Class C, or with the detection standards for Class E compartments.


There are two cargo compartment doors on the lower right side of the fuselage. Both are plug type, inward opening pressure doors, hinged at their upper edges and operated manually from either inside or outside the airplane. Except for slight difference in shape, both doors are similar in design and operation. The door is locked closed by four latches. Each door has a balance mechanism which creates door–open force slightly more than equal to the weight of the door. The door can therefore, with little effort, be swung open, until it engages a mechanical lock. The door can be closed easily by pulling a lanyard attached to the door, releasing the uplatch, grasping the handle and closing the door.

**Note:** When the doors are not locked, the MASTER CAUTION light and DOOR annunciator are illuminated.

A pressure equalization value is in the aft bulkhead of each compartment. The valves let only enough air flow into or out of the cargo compartments to keep the pressures nearly the same as the cabin pressure.

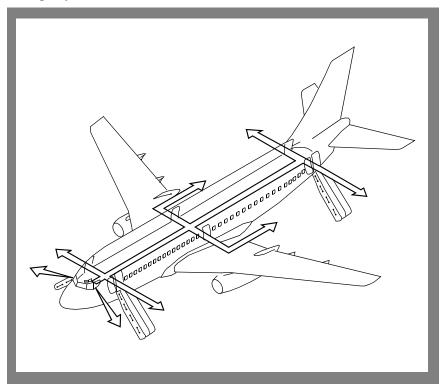
Blowout panels in the lower cargo compartments provide pressure relief at a greater rate than the pressure equalization valve in case the airplane should suddenly lose pressurization.

## Lower Cargo Compartments



## **Emergency Escape**

Emergency escape information included in this chapter includes:


- Emergency evacuation routes
- · Flight deck windows
- Escape slides
- Escape straps
- Escape hatches.

## **Emergency Evacuation Routes**

Emergency evacuation may be accomplished through four entry/service doors and two overwing escape hatches. Flight deck crew members may evacuate the airplane through two sliding flight deck windows.

Airplane General, Emergenc Equipment, Doors, Windows Systems Description 737 Flight Crew Operations Manual

#### **Emergency Evacuation Routes**

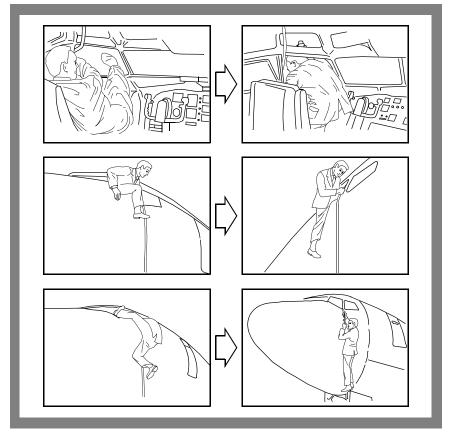


#### Flight Deck Number Two Windows

Flight deck sliding windows are opened by squeezing the lock release in the handle, rotating the handle inward, and sliding the window aft until it locks. Window unlocking can also be accomplished using an exterior handle: For passenger airplanes, at the First Officer's window only; for cargo airplanes, at both windows.

#### **Flight Deck Escape Straps**

An escape strap is attached to a compartment above each No. 2 window. The straps may be used by a crewmember for escape.

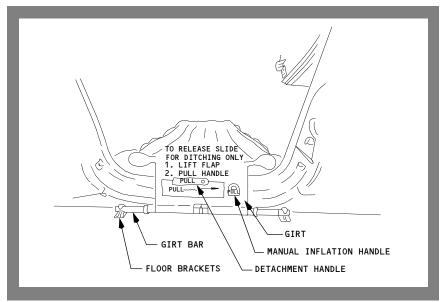

## Flight Deck Window Emergency Egress

If the flight deck number two windows must be used for emergency egress, use the following procedure:

- Open the window
- Open the escape strap compartment (above and aft of window)

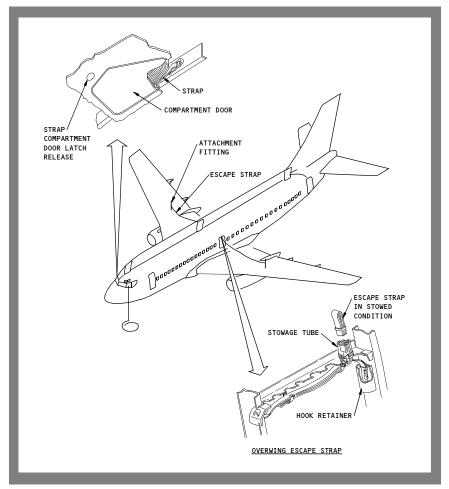
- Pull on the escape strap to ensure it is securely attached
- Throw the strap out the window
- Sit on the window sill with upper body outside
- Exit in accordance with the following illustration.

#### CAUTION: Ensure the escape strap is securely fastened to the airplane.




The above illustrated method of departure would probably be the easiest for most crewmembers. This technique is difficult and should be used only in extreme emergency.

## **Escape Slide Detachment Handle**


The slide has not been certified to be part of the water landing emergency equipment. In a water environment, the slide may not properly inflate when deployed. If the deployed slide is recognized to be a potential obstruction to egress, a quick release handle is provided near thew top of the slide. This handle is protected by a cover and is placarded. The escape slide is detached from the airplane by pulling the quick release handle. Once detached from the door sill, the slide is tethered to the door sill by a lanyard. A properly inflated slide could be buoyant, and useful as a flotation device for passengers in the water. Hand grips are positioned along the sides of the slide.

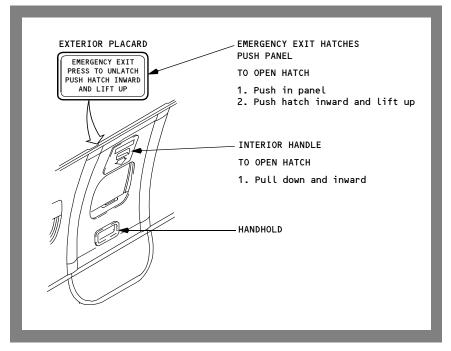
#### **Escape Slide Detachment Handle**



## **Overwing Escape Straps**

Escape straps are installed above each emergency escape hatch frame. The overwing escape hatches must be removed to expose the straps. One end of the strap is attached to the hatch frame. The remainder of the strap is stowed in a tube extending into the cabin ceiling. To use, the strap is pulled free from its stowage and attached to a ring on the top surface of the wing. The escape strap can be used as a hand hold in a ditching emergency for passengers to walk out on the wing and step into a life raft.




## **Overwing Escape Hatches**

Two escape hatches are located in the passenger cabin over the wings. These are plug type hatches and are held in place by mechanical locks and airplane cabin pressure. The hatches can be opened from the inside or from outside of the airplane by a spring–loaded handle at the top of the hatch.

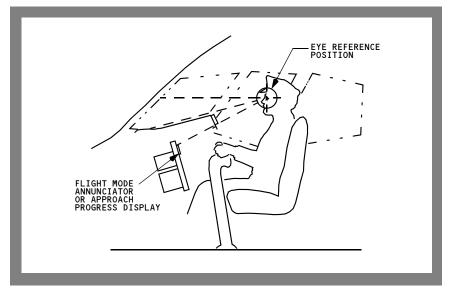
A seat back blocking an exit may be pushed forward by applying force to the top of the seat back. For safety reasons, hatches should not be removed in flight.

Hatch removal illuminates the overwing emergency exit lights on the same side, provided the flight deck Emergency Exit Light Switch is in the ARMED position.

#### **Overwing Escape Hatches**



WARNING: Do not remove hatches in flight in preparation for passenger evacuation. For emergency evacuation on the ground or in water, remove hatch and place so as not to obstruct egress. The hatch may be thrown out onto the wing, placed on the seat arm rests, or placed in any other suitable location as dictated by the conditions at the time of airplane evacuation.


## **Pilot Seat Adjustment**

Adjust the seat position with the appropriate controls to obtain the optimum eye reference position. Use the handhold above the forward window to assist.

The correct eye reference position is established when:

- The topmost flight mode annunciators or approach progress displays are just in view below the glareshield
- A slight amount of the aircraft nose structure is visible above the forward lower window sill.

# **Pilot Seat Adjustment**



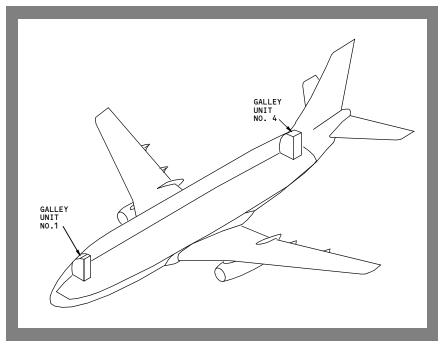
# Galleys

Galleys are located in the passenger cabin to provide convenient and rapid service to the passengers. Generally, they are installed in the cabin adjacent to the forward and aft galley service doors.

In general the equipment of the galley unit consists of the following main items:

- High speed ovens
- Hot beverage containers
- Hot cup receptacles
- Refrigeration and main storage compartments.

Electrical control panel switches and circuit breakers to operate the above equipment are conveniently located within the galley work area. Storage space, miscellaneous drawers, and waste containers are also integrated in the galley units.


## **Electrical Service**

Electricity for the galleys is 115V AC 400 Hz supplied from the airplane transfer buses and controlled by a switch on the overhead panel. Circuit breakers are located on the galleys and on the P-6 circuit breaker panel.

## Water Service

Water is supplied to the galleys from the airplane pressurized water system and, in an emergency, may be shut off at the galleys. Waste water is drained into containers in the galleys.

# Galleys

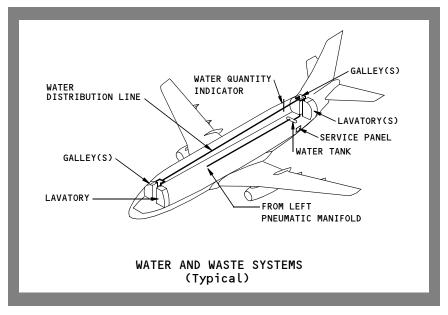


## Water System General

The potable airplane water system is supplied from a single tank located behind the aft cargo compartment. Fresh water is supplied to the galleys and lavatory sinks.

# **Quantity Indication and System Operation**

A quantity indicator is located above the aft service door. When the "PUSH" button on the indicator is pressed, lights illuminate to show the water level. When full, approximately 20 U.S. gallons are available. The system is pressurized when the left engine or the APU is running. A shutoff valve is located in the cabinet below the sink in each lavatory. The drain position of this valve is used to drain all water overboard. Normally, the drain shutoff valves are ON, and the vent valves closed.


# Hot Water

Hot and cold water is available in the lavatories. The water heater is located below the lavatory sink and maintains a water temperature of 125°F to 133°F (52°C to 56°C). When emptied, it heats a new water charge in four minutes. An amber light is ON when the heater is operating normally. The heater has an overheat switch which turns off the heating element if a temperature of 190°F (88°C) is reached. The heater may be turned off at any time by using a manual switch on the heater. Hot and cold water is also supplied at the galleys.

# Servicing

The system is serviced from an exterior panel on the aft left side of the airplane. Pressure filling is required. Waste water from the galleys and lavatory wash basins is drained into the containers in the galley.

## Water System



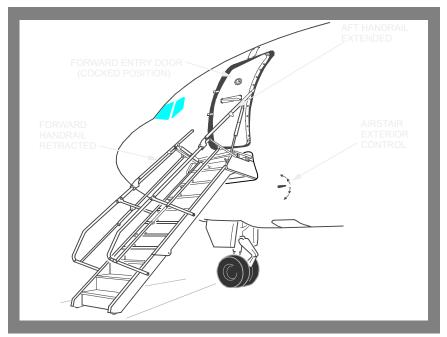
## Forward Airstair General

The forward airstair provides the capability of boarding passengers without relying on the availability of airport ground equipment. The airstair is electrically operated and may be controlled from either inside or outside the airplane. The airstair is stowed in a compartment just below the forward entry door. The compartment has a pressure door that automatically opens before the airstair will operate. For passenger safety, upper handrails are attached to support brackets inside the entry door after the airstair is fully extended.

## **Interior Control**

The interior control panel is located above the forward entry door. An amber STAIRS OPERATING light on the panel illuminates when the airstair is in transit. The airstair tread lights on the airstair steps are controlled by a single three–position airstair tread LIGHTS switch. With the switch in the AUTO position, the tread lights illuminate when the airstair makes contact with the ground and extinguish when the airstair retracts. The interior control panel has two modes of operation, normal and standby. The standby system provides an alternate means of electrical control in the event the normal mode of operation is not available. Normal and standby operations require both AC and DC power. Both operating modes require the forward entry door to be partially open. The two airstair control switches have three positions - EXTEND, RETRACT, and a center neutral (off) position. For standby operation, hold the spring-loaded guard lever to the left, then select either EXTEND or RETRACT. The lever is spring-loaded to the right to prevent inadvertent operation of the airstair in standby.

# **Exterior Control**


The exterior control is located to the right and below the airstair compartment. Operating instructions are located around the handle. When operating the airstair with the exterior control, the forward entry door need not be open. The exterior control handle by–passes the door–open requirement.

The control handle is normally flush with the fuselage. Pushing the button in the center of the handle extends the handle for easy operation. The handle rotates clockwise or counterclockwise to extend or retract the airstair.

A two-position switch, labeled NORMAL and STANDBY, is located in the exterior handle recess. The switch is spring-loaded to NORMAL. Holding the NORMAL/STANDBY Switch to STANDBY provides DC power from the battery bus for airstair operation. The BAT switch on the flight deck does not need to be ON when operating the airstair on standby from the exterior control panel. The control handle rotates to extend or retract airstair. The use of the standby system from either the interior or exterior control by-passes the handrail and lower ladder safety circuits. Caution must be exercised when using the standby system. If the upper handrail extensions are not properly stowed before retraction, damage to the airplane structure or damage to the airstair's handrail may result.

An amber AIRSTAIR light, located on the overhead door caution annunciator panel illuminates when the airstair pressure door is unlocked. Illumination of the AIRSTAIR light also activates the DOORS annunciator light and the MASTER CAUTION lights. The Airstair light is inoperative when the main AC bus is not powered. The MASTER CAUTION and DOORS lights illuminates in normal or standby operation of the airstair.

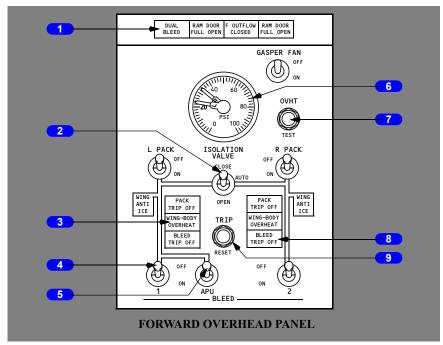
## Airstairs



WARNING: Use care not to fall from the airstair platform when operating the forward entry door. The small platform area and bad weather can make the door difficult to operate.

737 Flight Crew Operations Manual

| Air Systems                              | Chapter 2   |
|------------------------------------------|-------------|
| Table of Contents                        | Section TOC |
| Controls and Indicators                  |             |
| Bleed Air Controls and Indicators        | 2.10.1      |
| Air Conditioning Controls and Indicators | 2.10.3      |
| Equipment Cooling Panel                  | 2.10.5      |
| Cabin Altitude Panel                     |             |
| Cabin Pressurization Panel.              | 2.10.7      |
| Air Systems Schematic                    | 2.10.11     |
| Bleed Air System Description             |             |
| Introduction                             | 2.20.1      |
| Engine Bleed System Supply               | 2.20.1      |
| Engine Bleed Air Valves                  |             |
| Bleed Trip Sensors                       | 2.20.1      |
| Duct Pressure Transmitters               | 2.20.1      |
| Isolation Valve                          | 2.20.2      |
| External Air Connection                  |             |
| APU Bleed Air Valve                      |             |
| DUAL BLEED Light                         |             |
| Bleed Air System Schematic               |             |
| Wing-Body Overheat                       |             |
| Wing-Body Overheat Ducts and Lights      | 2.20.4      |
| Air Conditioning System Description      |             |
| Introduction                             |             |
| Air Conditioning Pack                    | 2.30.1      |
| Ram Air System                           | 2.30.1      |
| Cooling Cycle                            |             |
| Air Mix Valves                           | 2.30.2      |
| Air Conditioning Pack Schematic          | 2.30.3      |
| Air Conditioning Distribution            |             |
| Flight Deck                              |             |


737 Flight Crew Operations Manual

| Passenger Cabin                         | 2.30.4 |
|-----------------------------------------|--------|
| Gasper Air System                       | 2.30.4 |
| Equipment Cooling                       | 2.30.5 |
| Forward Cargo Compartment               | 2.30.5 |
| Conditioned Air Source Connection       | 2.30.5 |
| Air Conditioning Distribution Schematic | 2.30.6 |
| Pressurization System Description       | 2.40   |
| Introduction                            | 2.40.1 |
| Pressure Relief Valves                  | 2.40.1 |
| Cabin Pressure Controller               | 2.40.1 |
| Cabin Pressure Control System Schematic | 2.40.2 |
| Pressurization Outflow                  | 2.40.2 |
| Flow Control Valve                      | 2.40.3 |
| Outflow Valves                          | 2.40.3 |
| Pressurization Outflow Schematic        | 2.40.4 |
| Auto Mode Operation.                    | 2.40.4 |
| Flight Path Events – Auto Mode          | 2.40.6 |
| Standby Mode Operation                  | 2.40.6 |
| Manual Mode Operation.                  | 2.40.7 |
|                                         |        |

737 Flight Crew Operations Manual

Air Systems Controls and Indicators Chapter 2 Section 10

## **Bleed Air Controls and Indicators**



#### 1 DUAL BLEED Light

Illuminated (amber) -

- Either APU bleed air valve open and engine No. 1 BLEED air valve open, or
- APU bleed air valve open, engine No. 2 BLEED air valve open and ISOLATION VALVE open.

#### **2** ISOLATION VALVE Switch

CLOSE - closes isolation valve.

AUTO –

- closes isolation valve if all engine BLEED air and air conditioning PACK switches ON
- opens isolation valve automatically if either engine BLEED air or air conditioning PACK switch positioned OFF.

OPEN - opens isolation valve.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2001 D6-27370-200A-TBC 2.10.1

#### WING–BODY OVERHEAT Light

Illuminated (amber) -

- left light indicates overheat from bleed air duct leak in left inboard wing leading edge, left air conditioning bay, keel beam or APU bleed air duct
- right light indicates overheat from bleed air duct leak in right inboard wing leading edge or right air conditioning bay.

#### **4** Engine BLEED Air Switches

OFF - closes engine bleed air valve.

ON - opens engine bleed air valve.

#### **5** APU BLEED Air Switch

OFF - closes APU bleed air valve.

ON - opens APU bleed air valve when APU is operating.

#### **5** Bleed Air DUCT PRESSURE Indicator

Indicates pressure in L and R (left and right) bleed air ducts.

#### 7 Wing–Body Overheat (OVHT) TEST Switch

PUSH –

- tests wing-body overheat detector circuits.
- illuminates both WING-BODY OVERHEAT lights.

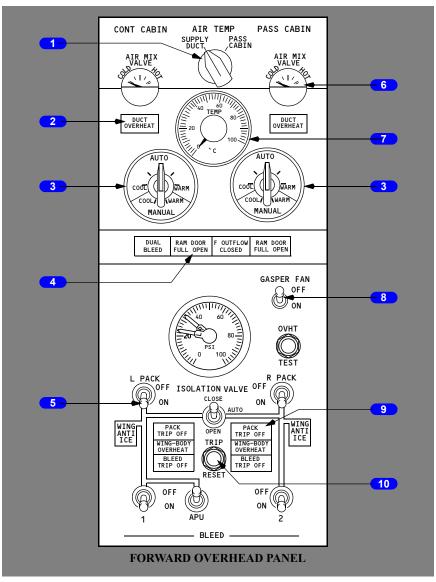
## **8** BLEED TRIP OFF Light

Illuminated (amber) - indicates excessive engine bleed air temperature

rela

- ted engine bleed air valve closes automatically
- requires reset.

## 9 TRIP RESET Switch


PUSH (if fault condition is corrected) -

• resets BLEED TRIP OFF, PACK TRIP OFF or DUCT OVERHEAT lights

Lights remain illuminated until reset.

737 Flight Crew Operations Manual

## Air Conditioning Controls and Indicators



#### **1** AIR Temperature (TEMP) Source Selector

SUPPLY DUCT – selects main distribution supply duct sensor for TEMP indicator.

PASS CABIN – selects passenger cabin sensor for TEMP indicator.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 7, 2000 D6-27370-200A-TBC 2.10.3



#### **2** DUCT OVERHEAT Light

Illuminated (amber) -

- bleed air temperature in related duct exceeds limit
- air mix valves drive full cold
- requires reset.

# **3** Control (CONT) CABIN and Passenger (PASS) CABIN Temperature Selector

AUTO – automatic temperature controller controls passenger cabin or flight deck temperature as selected.

MANUAL – air mix valves controlled manually. Automatic temperature controller bypassed.

## 4 RAM DOOR FULL OPEN Light

Illuminated (blue) - indicates ram door in full open position.

#### **5** Air Conditioning PACK Switch

OFF - pack signalled OFF.

ON – opens pack valve to allow bleed air to enter pack. Valve is electrically controlled, pneumatically operated.

## 6 AIR MIX VALVE Indicator

Indicates position of air mix valves:

- · controlled automatically with related temperature selector in AUTO
- controlled manually with related temperature selector in MANUAL.

#### **7** Air Temperature (TEMP) Indicator

Indicates temperature at location selected with AIR TEMP source selector.

#### **B** GASPER FAN Switch

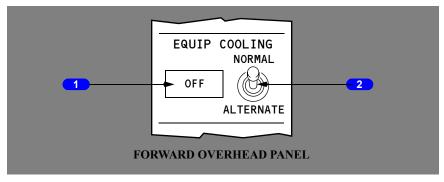
OFF - gasper fan signalled off.

ON - increases airflow to individual gasper outlets.

## 9 PACK TRIP OFF Light

Illuminated (amber) -

- · indicates pack temperature has exceeded limits
- · related pack valve automatically closes and mix valves drive full cold
- requires reset.


#### **10** TRIP RESET Switch

PUSH (if fault condition is corrected) -

• resets BLEED TRIP OFF, PACK TRIP OFF or DUCT OVERHEAT lights

Lights remain illuminated until reset.

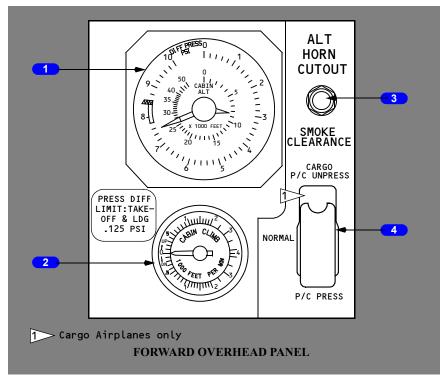
## **Equipment Cooling Panel**



#### **1** Equipment Cooling OFF Light

Illuminated (amber) - no airflow from selected cooling fan.

**2** Equipment (EQUIP) COOLING Switch


NORMAL – normal cooling fan activated.

ALTERNATE – alternate cooling fan activated.

Air Systems -Controls and Indicators



## **Cabin Altitude Panel**



#### **CABIN Altitude (ALT)/Differential Pressure (DIFF PRESS) Indicator**

Inner Scale – indicates cabin altitude in feet.

- **Note:** The CABIN ALT indicator can show a cabin altitude of less than 0 feet and reach the upper end of the cabin altitude scale. This can occur under the following conditions:
  - on the ground at airports close to or below seal level.
  - in flight when the cabin is pressurized below sea level.

Outer Scale – indicates the difference between cabin pressure and ambient pressure in psi.

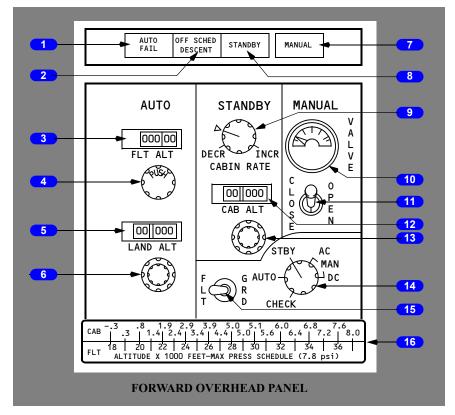
#### **2** CABIN Rate of CLIMB Indicator

Indicates cabin rate of climb or descent in feet per minute.

#### **3** Altitude (ALT) HORN CUTOUT Switch

PUSH -

- cuts out intermittent cabin altitude warning horn.
- altitude warning horn sounds when cabin exceeds 10,000 feet altitude.


#### **4** SMOKE CLEARANCE Switch (Cargo airplanes only)

CARGO P/C UNPRESS - Used to evacuate smoke in the main cargo compartment in an all-cargo configuration.

NORMAL - Position for all normal pressurized operations.

P/C PRESS - Used to evacuate smoke in the main cargo compartment in a combined passenger/cargo configuration.

## **Cabin Pressurization Panel**



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 15, 2018 D6-27370-200A-TBC 2.10.7



#### AUTO FAIL Light

Illuminated (amber) – automatic pressurization control failure. Control automatically transfers to the standby mode.

### OFF Schedule (SCHED) DESCENT Light

Illuminated (amber) – airplane descended before reaching the planned cruise altitude set in the FLT ALT indicator.

## **3** Flight Altitude (FLT ALT) Indicator

- indicates selected cruise altitude.
- set before takeoff.

## Flight Altitude Selector

Push/Rotate to set planned cruise altitude.

## **5** Landing Altitude (LAND ALT) Indicator

- indicates altitude of intended landing field.
- set before takeoff.

#### **6** Landing Altitude Selector

Rotate to select planned landing field altitude.

- large diameter control sets 1000 foot increments and negative elevations.
- small diameter control sets 10 foot increments.

## 7 MANUAL Light

Illuminated (green) - pressurization system operating in the manual mode.

## 8 STANDBY Light

Illuminated (green) – pressurization system operating in the standby mode.

#### 9 Cabin Rate Selector

- DECR cabin altitude rate of change equals 50 ft/min.
- INCR cabin altitude rate of change equals 2000 ft/min.
- Index cabin altitude rate of change equals 300 ft/min.

## **10** Outflow VALVE Position Indicator

- indicates position of outflow valve.
- operates in all modes.

Note: Indicator moves to the full left position when no AC power is available.

#### **(11)** Outflow Valve Switch (spring–loaded to center)

CLOSE – closes main cabin outflow valve electrically with pressurization mode selector in MAN position.

OPEN – opens main cabin outflow valve electrically with pressurization mode selector in MAN position.

#### **12** Cabin Altitude (CAB ALT) Indicator

- Indicates selected cabin altitude.
- Set before takeoff.

#### **13** Cabin Altitude Selector

Rotate to select desired cabin altitude.

- large diameter control sets 1000 foot increments and negative elevations.
- small diameter control sets 10 foot increments.

#### **14** Pressurization Mode Selector

AUTO – pressurization system controlled automatically.

STBY - pressurization system controlled through the standby mode.

MAN -

- pressurization system controlled manually by Outflow Valve Switch.
- AC outflow valve operates from AC power.
- DC outflow valve operates from DC power.
- all auto and standby circuits bypassed.

CHECK – Tests auto failure function of AUTO system.

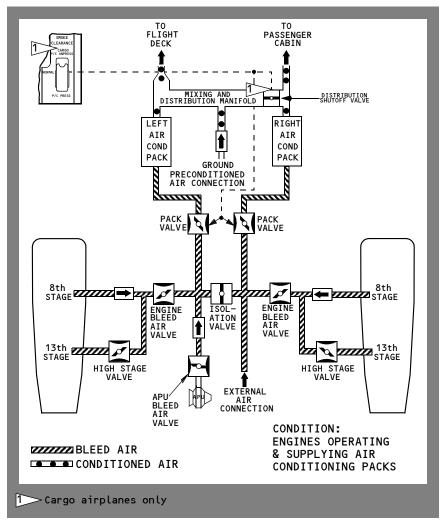
#### **15** Flight /Ground Switch

AUTO mode -

- GND on the ground, drives the pressurization outflow valve full open at a controlled rate and depressurizes the airplane. After takeoff, inhibited; functions the same as FLT position
- FLT on the ground, pressurizes the cabin to approximately 200ft. below airport elevation. After takeoff, cabin pressure is automatically controlled in climb and descent as a function of airplane altitude. In cruise, cabin pressure is held constant.



#### STANDBY mode –


- GND on the ground, drives the main outflow valve full open. After takeoff, inhibited; functions the same as FLT position
- FLT pressurizes the airplane by driving the main outflow valve to attempt to pressurize the cabin to the selected CAB ALT (normally set 200ft. below takeoff field elevation).

#### (16) Cabin /Flight Altitude (CAB ALT)(FLT ALT) Placard

Used to determine setting for cabin altitude when operating in standby and manual modes.

#### 737 Flight Crew Operations Manual

## **Air Systems Schematic**





Intentionally Blank

737 Flight Crew Operations Manual

# Air Systems Bleed Air System Description

Chapter 2 Section 20

## Introduction

Air for the bleed air system can be supplied by the engines, APU, or an external air cart/source. The APU or external cart supplies air to the bleed air duct prior to engine start. After engine start, air for the bleed air system is normally supplied by the engines.

The following systems rely on the bleed air system for operation:

- Air conditioning/pressurization
- Wing and engine thermal anti-icing
- Engine starting
- Hydraulic reservoirs pressurization
- Water tank pressurization

Switches on the air conditioning panel operate the APU and engine bleed air supply system.

## **Engine Bleed System Supply**

Engine bleed air is obtained from the 8th and 13th stages of the compressor section. When 8th stage bleed air is insufficient for system requirements, the 13th stage valve automatically modulates to maintain constant airflow in response to demand from the respective cooling pack valves. The 13th stage valve is also temperature sensitive, automatically closing to prevent exceeding a predetermined temperature.

## **Engine Bleed Air Valves**

The engine bleed valve is opened to supply bleed air to the air conditioning, pressurization and wing TAI systems. The valves are AC operated.

## **Bleed Trip Sensors**

Bleed trip sensors illuminate the respective BLEED TRIP OFF light when engine bleed air temperature exceeds a predetermined limit. The respective engine bleed air valve closes automatically.

## **Duct Pressure Transmitters**

Duct pressure transmitters provide bleed air pressure indications to the respective (L and R) pointers on the bleed air duct pressure indicator. The indicator is AC operated.

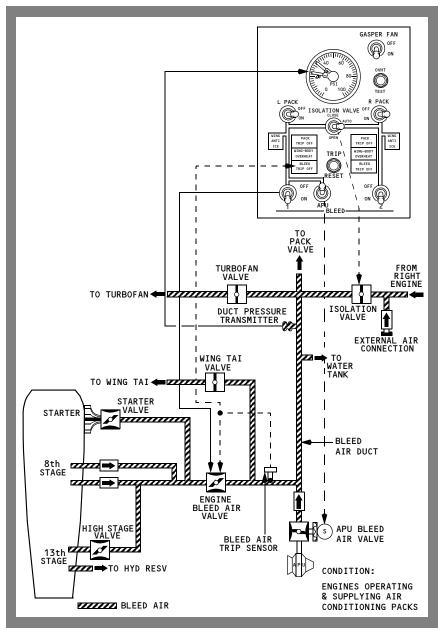
## **Isolation Valve**

The isolation valve isolates the left and right sides of the bleed air duct during normal operations. The isolation valve is AC operated.

With the isolation valve switch in AUTO, both engine bleed air switches ON, and both air conditioning pack switches ON, the isolation valve is closed. The isolation valve opens if either engine bleed air switch or air conditioning pack switch is positioned OFF. Isolation valve position is not affected by the APU bleed air switch.

# **External Air Connection**

An external air cart/source provides an alternate air source for engine start or air conditioning.

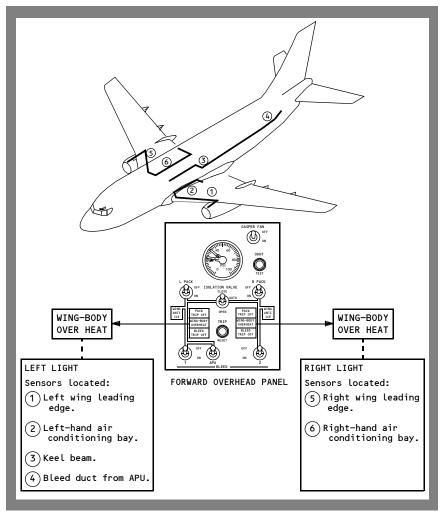

# APU Bleed Air Valve

The APU bleed air valve permits APU bleed air to flow to the bleed air duct. The valve closes automatically when the APU is shut down. The APU bleed air valve is DC controlled and pressure operated.

# **DUAL BLEED Light**

The DUAL BLEED light illuminates whenever the APU bleed air valve is open and the position of the engine bleed air valves and isolation valve would permit possible backpressure of the APU. Therefore, thrust must be limited to idle with the DUAL BLEED light illuminated. 737 Flight Crew Operations Manual

# **Bleed Air System Schematic**




Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 7, 2000 D6-27370-200A-TBC 2.20.3

## Wing-Body Overheat

A wing-body overheat condition is caused by a bleed air duct leak. It is sensed by the overheat sensors located as shown.

## Wing-Body Overheat Ducts and Lights



737 Flight Crew Operations Manual

# Air Systems Air Conditioning System Description

Chapter 2 Section 30

## Introduction

Conditioned air for the cabin comes from either the airplane air conditioning system or a preconditioned ground source. Air from the preconditioned ground source enters the air conditioning system through the mixing and distribution manifold to the cabin distribution ducts.

The air conditioning system provides temperature controlled air by processing bleed air from the engines, APU, or a ground air source in air conditioning packs. This temperature controlled air is distributed to the cockpit and passenger cabin.

Passenger/Cargo convertible airplanes have an additional valve in the supply duct. This Distribution Shutoff Valve is activated by the Smoke Clearance switch. See Chapter 8 for additional information.

Conditioned air from the left pack flows directly to the flight deck. Excess air from the left pack and the air from the right pack are mixed in a common manifold. The mixed air is then distributed by the sidewall risers to the passenger cabin.

## **Air Conditioning Pack**

The flow of bleed air from the main bleed air duct through each air conditioning pack is controlled by the respective pack valve. The left and right packs are completely independent. Normally the left pack uses bleed air from engine No. 1 and the right pack uses bleed air from engine No. 2. A single pack in high flow is capable of maintaining pressurization and acceptable temperatures throughout the airplane up to the maximum certified ceiling.

Two pack operation from a single bleed air source is not recommended due to excessive bleed air requirements.

## Ram Air System

The ram air system provides cooling air for the heat exchangers. Operation of the system is automatically controlled by the packs through operation of a ram door.

On the ground, or in-flight with the flaps not fully retracted, or during high ambient temperatures, the ram door moves to the full open position for maximum cooling. In normal cruise, the doors modulate between open and closed. The RAM DOOR FULL OPEN light illuminates whenever the ram door is fully open.

A turbofan is located in each ram air exit duct just upstream of the exit louvres. It augments the ram airflow on the ground or during slow flight (flaps not retracted). The fan operates pneumatically using bleed air. It is activated electrically, when the pack is on, by the air-ground safety sensor or flap limit switch.



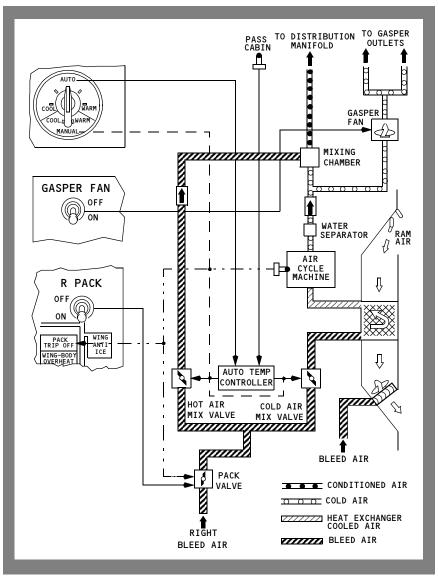
A deflector door is installed forward of the ram air inlet doors to prevent slush ingestion prior to liftoff and after touchdown. The deflector door extends when activated electrically by the air–ground safety sensor.

# **Cooling Cycle**

The flow through the cooling cycle starts with bleed air passing through a heat exchanger for cooling. The air then flows to an air cycle machine for refrigeration and to a water separator which removes moisture. The processed cold air is delivered to the mixing chamber and distribution manifold.

Overheat protection is provided by temperature sensors located in the cooling cycle. An overheat condition causes the pack valve to close and the PACK TRIP OFF light to illuminate.

# Air Mix Valves


The two air mix valves for each pack combine hot and cold air in a mixing chamber according to the setting of the CONT CABIN or PASS CABIN temperature selector. In the automatic temperature mode, the air mix valves are operated by the automatic temperature controller. The automatic temperature controller uses inputs from the respective temperature selector and cabin temperature sensor. The automatic temperature controller is bypassed when the temperature selector is positioned to MANUAL.

Hot air flows through the hot air mix valve directly into the mixing chamber. Air that flows to the cold air mix valve is processed through a cooling cycle and then delivered to the mixing chamber.

Anytime the pack valve closes, the air mix valves are driven to the full cold position automatically. This aids start-up of the cooling cycle and prevents nuisance hot air trips when the pack is turned on.

737 Flight Crew Operations Manual

## **Air Conditioning Pack Schematic**



# **Air Conditioning Distribution**

Conditioned air is collected in the mixing and distribution manifold. The temperature of the air will be directly related to the setting of the CONT CABIN and PASS CABIN temperature selectors.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 3, 2007 D6-27370-200A-TBC 2.30.3 Overheat detection is provided by temperature sensors located in the supply duct. An overheat condition causes the appropriate mix valves to drive full cold and the DUCT OVERHEAT light to illuminate. A temperature higher than the duct overheat causes the appropriate pack valve to close and the PACK TRIP OFF light to illuminate.

On cargo airplanes, the SMOKE CLEARANCE switch controls the distribution shutoff valve in the main distribution supply duct.

# **Flight Deck**

Since the flight deck does not require all the air supply provided by the left pack, part of the left pack air output is mixed with the right pack supply and routed to the passenger cabin.

Conditioned air for the flight deck branches into several risers which end at the floor, ceiling, and foot level outlets. Air diffusers on the floor under each seat deliver continuous air flow as long as the manifold is pressurized.

Overhead diffusers are located on the flight deck ceiling, above and aft of the No. 3 windows. Each of these outlets can be opened or closed as desired by turning a slotted adjusting screw.

There is also a dual purpose valve behind the rudder pedals of each pilot. These valves provide air for warming the pilots' feet and for defogging the inside of the No. 1 windshields. Each valve is controlled by knobs located on the Captain's and First Officer's panel, respectively.

# Passenger Cabin

The passenger cabin air supply distribution system consists of the main distribution manifold, sidewall risers, and an overhead distribution duct.

Sidewall risers go up the right wall of the passenger cabin to supply air to the overhead distribution duct. The overhead distribution duct routes conditioned air to the passenger cabin. It extends from the forward to the aft end of the ceiling along the airplane centerline and also supplies the sidewall diffusers.

# Gasper Air System

The gasper air distribution system provides air to individual crew and passenger positions. This air is colder than that being supplied by the main air conditioning system. A movable control nozzle at each crew and passenger outlet can change the direction and amount of airstream. Normally the right pack supplies cold air to the gasper air system. With the right pack inoperative, conditioned air from the supply duct can flow through the gasper air system.

# **Equipment Cooling**

The equipment cooling system cools electronic equipment in the flight deck and the E & E bay.

The equipment cooling system consists of a duct, a normal fan and an alternate fan. The duct collects and discards warm air from the circuit breaker panels in the flight deck and electronic equipment in the E & E bay.

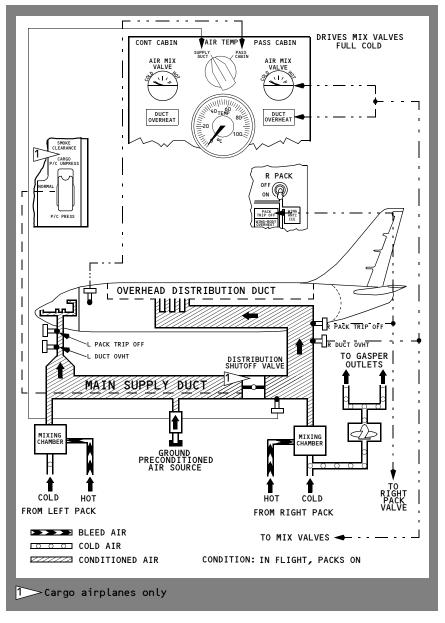
Loss of airflow due to failure of an equipment cooling fan results in illumination of the equipment cooling OFF light. Selecting the alternate fan should restore airflow and extinguish the OFF light.

# Forward Cargo Compartment

The equipment cooling system circulates air from the passenger cabin around the lining of the forward cargo compartment.

On the ground, or with the cabin differential pressure less than 2.5 psi, the exhaust fan air is blown through a flow control valve and exhausted out the bottom of the airplane.

With increasing airflow at greater cabin differential pressures, the flow control valve closes and exhaust air from the equipment cooling system is now diffused to the lining of the forward cargo compartment for in-flight heating.


# **Conditioned Air Source Connection**

A ground air conditioning source may be connected to the main distribution manifold so that preconditioned air can be distributed throughout the airplane.

**DO NOT USE FOR FLIGHT** 

737 Flight Crew Operations Manual

# **Air Conditioning Distribution Schematic**



737 Flight Crew Operations Manual

# Air Systems

**Pressurization System Description** 

Chapter 2 Section 40

# Introduction

Cabin pressurization is controlled during all phases of airplane operation by the cabin pressure control system (CPCS). The CPCS includes one automatic controller and one standby controller available by selecting AUTO or STBY, and two manual (MAN) pilot-controlled modes.

The system uses bleed air supplied to and distributed by the air conditioning system. Pressurization and ventilation are controlled by modulating the outflow valves.

# **Pressure Relief Valves**

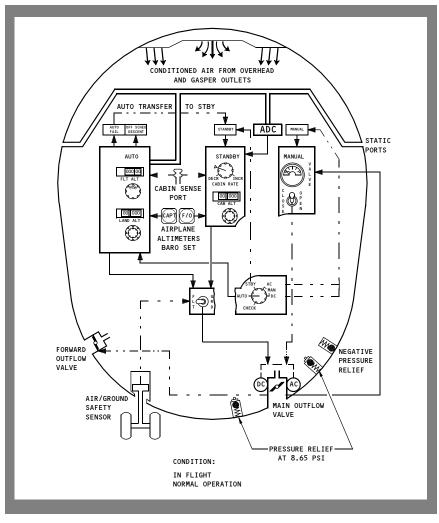
Two pressure relief valves provide safety pressure relief by limiting the differential pressure to a maximum of 8.65 psi. A negative relief valve prevents external atmospheric pressure from exceeding internal cabin pressure.

# **Cabin Pressure Controller**

Cabin altitude is normally rate-controlled by the cabin pressure controller up to a cabin altitude of 8,000 feet at the airplane maximum certified ceiling of 37,000 feet. The cabin pressure controller controls cabin altitude in the following modes:

- AUTO Automatic pressurization control; normal mode of operation. Uses AC motor.
- STBY Semi-automatic pressurization control; standby mode of operation. Uses DC motor.
- MAN AC Manual control of the system using the AC motor.
- MAN DC Manual control of the system using the DC motor.

In the automatic mode, airplane altitude is sensed electrically from the air data computer (ADC). In the standby mode of operation, airplane altitude is sensed directly from the static ports. Barometric corrections to these pressures come from the Captain's altimeter in AUTO and the First Officer's altimeter in STANDBY.


The controller receives additional information from the air/ground sensor and the cabin pressure altitude sensing port.

Air Systems -

Pressurization System Description NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

# **Cabin Pressure** Control System Schematic



# **Pressurization Outflow**

Cabin air outflow is controlled by the main outflow valve, the forward outflow valve and the flow control valve. During pressurized flight, the flow control valve is closed, and the majority of the overboard exhaust is through the main and forward outflow valves. A small amount is also exhausted through toilet and galley vents, miscellaneous fixed vents, and by seal leakage.

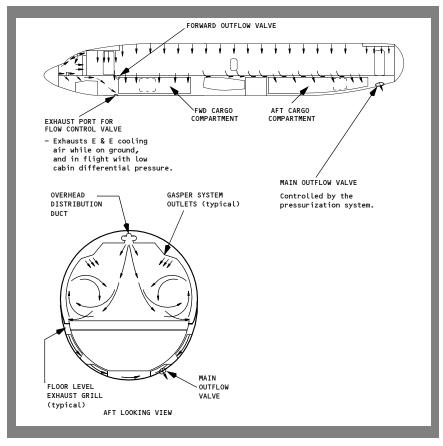
# **Flow Control Valve**

The flow control valve opens to exhaust the cooling air from the E & E compartment overboard during ground operation, unpressurized flight and pressurized flight below a cabin differential pressure of 2.5 psi.

When the flow control valve closes, air is directed around the forward cargo compartment liner for inflight heating.

# **Outflow Valves**

The main outflow valve can be actuated by either an AC or a DC motor. The AC motor is used during AUTO and MAN AC operation. The DC motor is used during STANDBY and MAN DC operation.


The forward outflow valve closes automatically to assist in maintaining cabin pressure when the main outflow valve is almost closed. When the cabin differential pressure exceeds approximately 2.5 psi, this valve is the overboard discharge exit for air circulated through the E & E compartment and around the forward cargo compartment.

The main outflow valve is the overboard exhaust exit for the majority of the air circulated through the passenger cabin. Passenger cabin air is drawn through foot level grills, down around the aft cargo compartment, where it provides heating, and is discharged overboard through the main outflow valve.

Air Systems -Pressurization System Descri<mark>ption NOT USE FOR FLIGHT</mark>

737 Flight Crew Operations Manual

# **Pressurization Outflow Schematic**



# **Auto Mode Operation**

In AUTO, the pressurization control panel is used to preset two altitudes into the pressure controller:

- FLT ALT (flight or cruise altitude).
- LAND ALT (landing or destination airport altitude).

Takeoff airport altitude (actually cabin altitude) is input into the pressurization controller at all times when on the ground.

The air/ground safety sensor signals whether the airplane is on the ground or in the air. On the ground, the FLT/GRD switch is used to keep the cabin depressurized by driving the main outflow valve full open when the switch is in the GRD position. With the switch in the FLT position, the controller modulates the main outflow valve toward close, slightly pressurizing the cabin. This ground pressurization of the cabin makes the transition to pressurized flight more gradual for the passengers and crew, and also gives the system better response to ground effect pressure changes during takeoff.

In the air, the pressure controller maintains a proportional pressure differential between airplane and cabin altitude. By climbing the cabin altitude at a rate proportional to the airplane climb rate, cabin altitude change is held to the minimum rate required.

Approximately 1000 feet below flight altitude a cruise relay will trip, scheduling the controller to begin maintaining an isobaric 7.80 psi differential between flight and cabin altitudes.

An amber OFF SCHED DESCENT light illuminates if the airplane begins to descend without having tripped the cruise relay; for example, a flight aborted in climb and returning to the takeoff airport. The controller programs the cabin to land at the takeoff field elevation without further pilot inputs. If the flight altitude indicator is changed or the flight altitude selector is depressed during climb, the automatic cabin abort capability to the original takeoff field elevation will be lost.

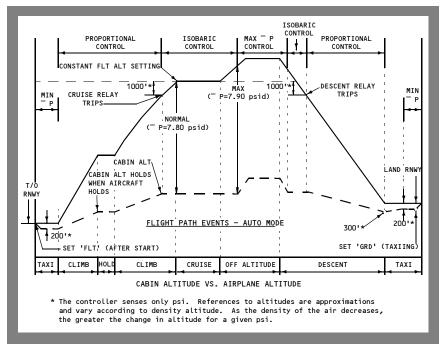
During isobaric cruise, minor airplane excursions from flight altitude may cause the pressure differential to go as high as 7.90 psid to maintain a constant cabin altitude.

**Note:** Below a flight altitude of 19,500 feet, the cabin maintains landing field elevation minus 300 feet.

Beginning descent, approximately 1000 feet below cruise altitude, a descent relay trips, scheduling the cabin to begin a proportional descent to the selected LAND ALT. The controller programs the cabin to land slightly pressurized so that rapid changes in altitude during approach result in minimum cabin pressure changes.

Taxiing in, the controller drives the main outflow valve slowly to full open when the FLT/GRD switch is positioned to GRD, thereby depressurizing the cabin. Having the main outflow valve full open also prevents the equipment cooling fan from depressurizing the airplane to a negative pressure.

The forward outflow valve remains open at all times to ensure heating of the forward cargo as air from the E & E compartment flows up around the cargo area and out the forward outflow valve. If, however, the main outflow valve programs to within 1/2 degree of full closed in order to maintain pressurization, the forward outflow valve will close.


#### Air Systems -Pressurization System Descri**pton NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

An amber AUTO FAIL light illuminates if any one of three conditions occurs:

- Loss of AUTO AC power.
- Excessive rate of cabin pressure change (+/- 1890 feet/minute).
- High cabin altitude (13,875 feet).

With illumination of the AUTO FAIL Light, the pressure controller automatically trips to STANDBY mode; however, the Pressurization Mode Selector will remain in AUTO. Positioning the Mode Selector to STBY will extinguish the light.

# Flight Path Events – Auto Mode



# **Standby Mode Operation**

A green STANDBY light will be illuminated when the pressure controller is in the STANDBY mode.

On the ground, the GRD position of the FLT/GRD switch drives the main outflow valve full open. The FLT position drives the main outflow valve to attempt to pressurize the cabin to the selected CAB ALT. CAB ALT should be set 200 feet below the takeoff airport altitude to pressurize the cabin properly when the FLT/GRD switch is placed to FLT prior to takeoff.

In the air, by referring to the placard below the pressurization control panel, the cabin altitude indicator is set to the isobaric cabin altitude, based on the proposed flight altitude and a pressure differential or 7.8 psi.

Cabin rate of climb or descent is controlled by the cabin rate selector. In descent, the Cabin Altitude Indicator is set 200 feet below landing field altitude to insure a pressurized cabin during landing.

# **Manual Mode Operation**

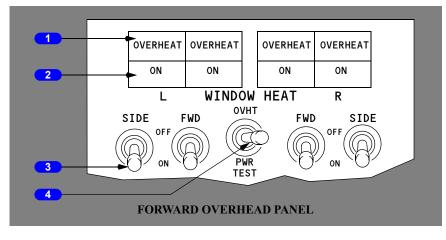
A green MANUAL Light illuminates with the Pressurization Mode Selector in MAN AC or MAN DC.

Operation in the MAN modes assumes failure of the AUTO and STANDBY modes. Manual mode allows the pilot, by using the Outflow Valve Switch, to modulate the main outflow valve while monitoring the Outflow Valve Position Indicator. MAN AC mode uses the AC motor to control the main outflow valve; MAN DC uses the DC motor. The rate of operation in MAN AC is faster than that in MAN DC.

Intentionally Blank

737 Flight Crew Operations Manual

| Anti-Ice, Rain                       | Chapter 3   |
|--------------------------------------|-------------|
| Table of Contents                    | Section TOC |
| Controls and Indicators              |             |
| Window Heat Panel                    |             |
| Windshield/Foot Air Controls         | 3.10.2      |
| Windshield Wiper Panel               |             |
| Pitot Static Heat Panel              |             |
| Engine Anti–Ice Panel                |             |
| Wing Anti–Ice Panel                  | 3.10.5      |
| System Description                   |             |
| Introduction                         |             |
| Anti-Ice Components Diagram          | 3.20.1      |
| Flight Deck Window Heat              |             |
| Flight Deck Window Heat Operation    | 3.20.2      |
| Flight Deck Window Heat Schematic    | 3.20.3      |
| Windshield Wipers and Rain Repellent | 3.20.3      |
| Probe and Sensor Heat                | 3.20.4      |
| Engine Anti–Ice System               | 3.20.4      |
| Engine Anti–Ice System Operation     | 3.20.4      |
| Engine Anti–Ice System Schematic     | 3.20.5      |
| Wing Anti–Ice System                 | 3.20.5      |
| Wing Anti–Ice System Operation       | 3.20.5      |
| Wing Anti–Ice System Schematic       | 3.20.7      |




Intentionally Blank

737 Flight Crew Operations Manual

Anti-Ice, Rain Controls and Indicators Chapter 3 Section 10

# Window Heat Panel



### Window OVERHEAT Lights

Illuminated (amber) – overheat condition is detected.

**Note:** OVERHEAT light also illuminates if electrical power to window is interrupted.

### **2** Window Heat ON Lights

Illuminated (green) - window heat is being applied to selected window.

Extinguished -

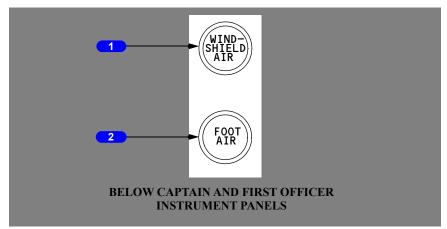
- switch is OFF, or
- an overheat is detected, or
- a system failure has occurred.

### **3** WINDOW HEAT Switches

- ON window heat is applied to selected window.
- OFF window heat not in use.

### 4 WINDOW HEAT Test Switch (spring-loaded to neutral)

OVHT - simulates an overheat condition.


PWR TEST – provides a confidence test.

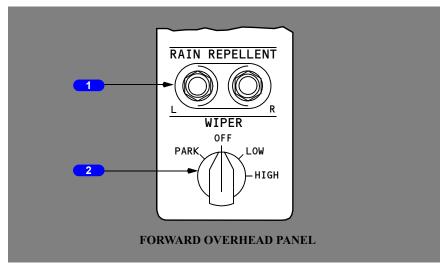
Note: Refer to Supplementary Procedures for Window Heat Test procedures.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 7, 2000 D6-27370-200A-TBC 3.10.1 Anti-Ice, Rain -Controls and Indicators



## Windshield/Foot Air Controls




### WINDSHIELD AIR Controls

PULL – supplies conditioned air to No. 1 windows for defogging.

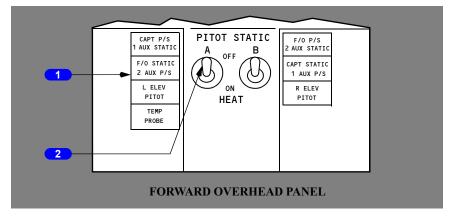
### **2** FOOT AIR Controls

PULL – supplies conditioned air to pilots' leg positions.

# Windshield Wiper Panel



737 Flight Crew Operations Manual


#### **1** Rain Repellent Switches

Push - applies measured amount of repellent on related window 1.

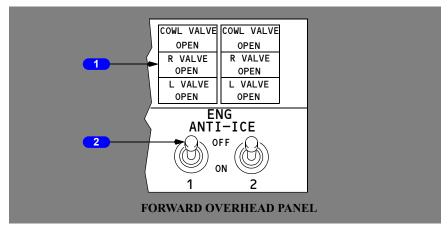
### 2 Windshield WIPER Selector

- PARK turns off wiper motors and stows wiper blades.
- OFF turns off wiper motors.
- LOW low speed operation.
- HIGH high speed operation.

### **Pitot Static Heat Panel**



### **1** PROBE HEATER Lights


Illuminated (amber) - related probe not heated.



### 2 PITOT STATIC HEAT Switches

- ON power is supplied to heat related system.
- OFF power off.

# Engine Anti–Ice Panel

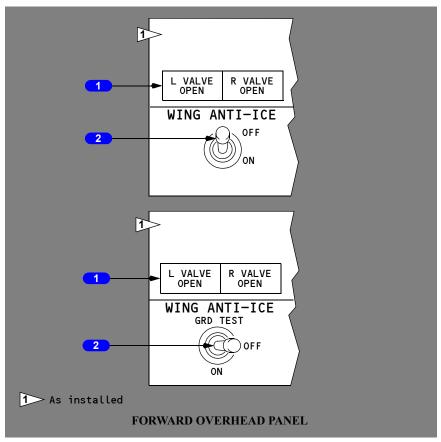


### **1** VALVE OPEN Lights

Illuminated (blue) -

- bright related control valve is in transit, or the valve position disagrees with related ENGINE ANTI-ICE switch position
- dim related control valve is open (switch ON).

Extinguished - related control valve is closed (switch OFF).


### **2** ENGINE ANTI-ICE Switch

ON - related engine anti-ice valve opens.

OFF - related engine anti-ice valve closes.

# 737 Flight Crew Operations Manual

## Wing Anti–Ice Panel



### **1** Wing Anti–Ice VALVE OPEN Lights

Illuminated (blue) -

- bright related wing anti-ice control valve is in transit, or related wing anti-ice control valve position disagrees with WING ANTI-ICE switch position.
- dim related wing anti-ice control valve is open (switch ON).

Extinguished – related wing anti-ice control valve is closed (switch OFF).

### **2** WING ANTI–ICE Switch

OFF - wing anti-ice control valves close.

ON (in flight) - wing anti-ice control valves open.

ON (on the ground) – on airplanes with GRD TEST– wing anti-ice valves are closed, but are armed to open after liftoff (switch remains ON).

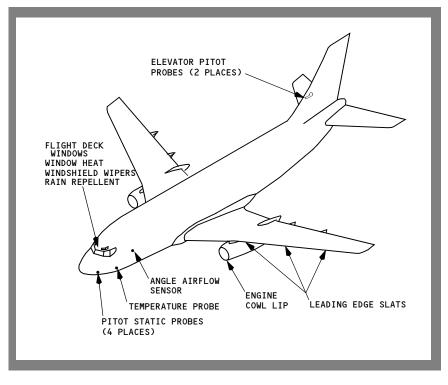
ON (on the ground) - on airplanes with ground wing anti-ice -

- wing anti-ice control valves open if thrust on both engines is below takeoff warning setting and temperature inside both distribution ducts is below thermal switch activation temperature
- control valves close if either engine thrust is above takeoff warning setting or thermal switch is activated in either distribution duct. Switch remains ON
- switch trips OFF at lift-off.

GRD TEST (spring loaded to OFF) – on airplanes with ground test, opens wing anti-ice control valves unless either engine thrust is above the takeoff warning setting or the thermal switch is activated in either distribution duct.

737 Flight Crew Operations Manual

Anti-Ice, Rain System Description


# Introduction

Thermal anti-icing (TAI), electrical anti-icing, rain repellent, and windshield wipers are the systems provided for ice and rain protection.

The anti-ice and rain systems include:

- · Flight Deck Window Heat
- Windshield Wipers and Rain Repellent
- Probe and Sensor Heat
- Engine Anti-Ice System
- Wing Anti-Ice System

### **Anti-Ice Components Diagram**



# **Flight Deck Window Heat**

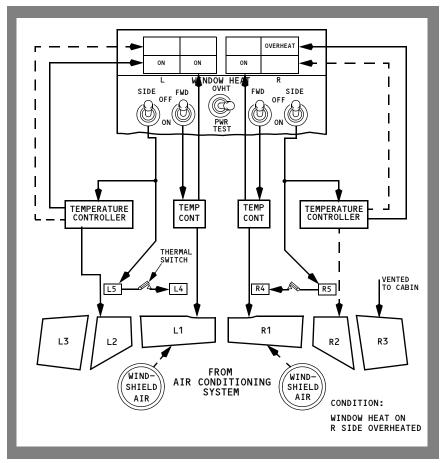
Flight deck windows 1, 2, 4 and 5 consist of glass panes laminated to each side of a vinyl core. Flight deck window 4 has an additional vinyl layer and acrylic sheet laminated to the inside surface. Flight deck window 3 consists of two acrylic panes separated by an air space.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2012 D6-27370-200A-TBC 3.20.1

Chapter 3 Section 20



A conductive coating on the outer glass pane of windows 1 and 2 permits electrical heating to prevent ice build–up and fogging. A conductive coating on the inner glass pane of windows 4 and 5 permits electrical heating to prevent fogging. Window 3 is not electrically heated.


# Flight Deck Window Heat Operation

The FWD WINDOW HEAT switches control heat to window 1. The SIDE WINDOW HEAT switches control heat to window 2, 4 and 5.

Temperature controllers maintain windows 1 and 2 at the correct temperature to ensure maximum strength of the windows in the event of bird impact. Power to windows 1 and 2 is automatically removed if an overheat condition is detected. A thermal switch located on window 5 opens and closes to maintain the correct temperature of windows 4 and 5.

737 Flight Crew Operations Manual

# **Flight Deck Window Heat Schematic**



## Windshield Wipers and Rain Repellent

The rain removal system for the forward windows consists of windshield wipers and rain repellent. One windshield wiper is located on each No. 1 window. Each wiper is electrically operated by separate systems. Both wiper systems are controlled by a common switch. Each push of a rain repellent switch applies a measured amount of repellent on the related No. 1 windshield.

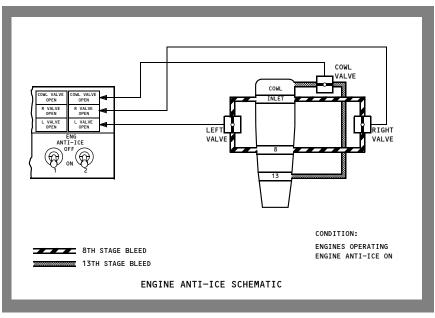
# CAUTION: Windshield scratching will occur if the windshield wipers are operated on a dry windshield.

### **Probe and Sensor Heat**

All pitot-static probes, the total air temperature probe, and angle airflow sensors are electrically heated to prevent the formation of ice. Alternate static ports are not heated.

## **Engine Anti–Ice System**

Engine bleed air thermal anti-icing prevents the formation of ice on the engine nose cowl lip, compressor area, and EPR probe. Engine anti-ice operation is controlled by individual ENG ANTI-ICE switches. The engine anti-ice system may be operated on the ground and in flight.


# **Engine Anti–Ice System Operation**

Each cowl anti-ice valve is electrically controlled and actuated. Positioning the ENG ANTI-ICE switches to ON allows engine bleed air to flow through the cowl anti-ice valve for nose cowl lip anti-icing, and through the right and left valves for compressor area and EPR probe anti-icing. If either the right or left valve is open, adequate inlet anti-ice protection will be obtained.

If any anti-ice valve fails to move to the position indicated by the ENG ANTI-ICE switch, the associated VALVE OPEN light remains illuminated bright blue.

737 Flight Crew Operations Manual

## **Engine Anti–Ice System Schematic**



## Wing Anti–Ice System

The wing anti-ice system provides protection for the leading edge slats by using bleed air. The wing anti-ice system does not include the leading edge flaps.

The wing anti-ice control valves are AC motor-operated. With a valve open, bleed air flows to the leading edge slats through a telescoping duct, and is then exhausted overboard. The wing anti-ice system is effective with the slats in any position.

### Wing Anti–Ice System Operation Airplanes with Ground-Operational Wing Anti-Ice

On the ground, positioning the WING ANTI-ICE switch ON opens both control valves if thrust on both engines is below the setting for takeoff warning activation and the temperature inside both wing distribution ducts is less than the thermal switch activation temperature.

Both valves close if either engine thrust is above the takeoff warning setting or either temperature sensor senses a duct overtemperature. The valves automatically reopen if thrust on both engines is reduced and both temperature sensors are cool.

With the air/ground sensor in the ground mode and the WING ANTI-ICE switch ON, the switch remains in the ON position regardless of control valve position. The WING ANTI-ICE switch automatically trips OFF at lift-off when the air/ground sensor goes to the air mode.

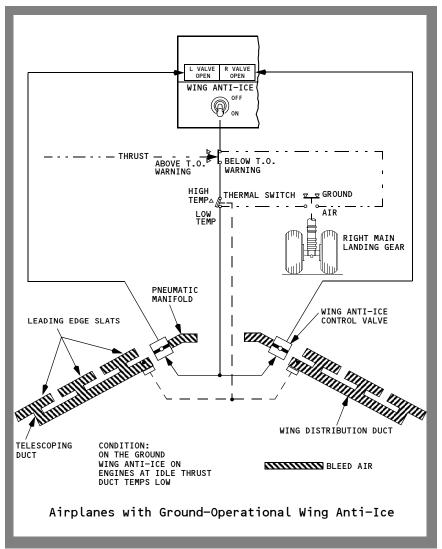
In flight, both control valves open when the WING ANTI–ICE switch is positioned ON. Duct temperature and thrust setting logic are disabled and have no affect on control valve operation in flight.

Valve position is monitored by the blue VALVE OPEN lights.

### Airplanes with Ground–Inhibited Wing Anti-Ice

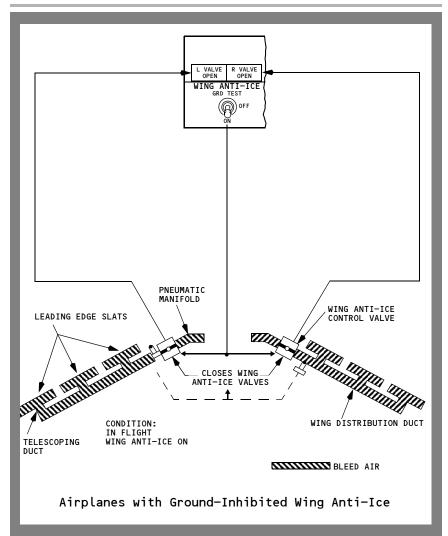
The air/ground sensor prevents the wing anti-ice control valves from opening on the ground except during ground test.

A ground overheat thermal switch in each wing closes the wing anti-ice control valves if bleed air temperature is excessive during ground test. Activation of either thermal switch closes both valves. The thermal switches are deactivated in flight.


In flight, both control valves open when the WING ANTI-ICE switch is positioned ON. Duct temperature and thrust setting logic are disabled and have no affect on control valve operation in flight.

Valve position is monitored by the blue VALVE OPEN lights.

If low-altitude icing conditions exist or are anticipated, the non-ground operable system's ON-OFF-GRD TEST switch is placed in the ON position on the ground. The WTAI valves are closed, but the system is armed for flight. During liftoff, the air/ground relay enables the WTAI system and both valves open, providing ice protection to the wing's leading edge. A thrust penalty is taken due to WTAI bleed air extraction.


737 Flight Crew Operations Manual

# Wing Anti–Ice System Schematic



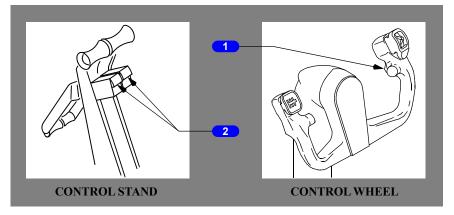
Anti-Ice, Rain -System Description





737 Flight Crew Operations Manual

| Automatic Flight                   | Chapter 4   |
|------------------------------------|-------------|
| Table of Contents                  | Section TOC |
| Controls and Indicators            |             |
| Autopilot Controls                 |             |
| Autopilot Indicators               |             |
| Autopilot Panel                    | 4.10.3      |
| Approach Progress Display          |             |
| Flight Director                    |             |
| Altitude Alert                     | 4.10.9      |
| System Description                 | 4.20        |
| General                            | 4.20.1      |
| Autopilot                          |             |
| Autopilot Modes                    |             |
| Hydraulic Failure                  |             |
| Loss of Navigation Signal          |             |
| Autopilot System                   |             |
| Autopilot Heading Switch           |             |
| Autopilot Pitch Mode Selector      |             |
| Approach Progress Display          |             |
| Autopilot Schematic.               |             |
| Engagement Interlocks              |             |
| Pitch (ELEV) Channel               |             |
| Automatic Disengagements           |             |
| Roll and Pitch                     |             |
| Roll Only                          |             |
| Pitch Only                         |             |
| Autopilot Revert–to–Man Conditions |             |
| Control Wheel Steering (CWS)       |             |
| Low Detent Level                   |             |
| High Detent Level                  |             |


737 Flight Crew Operations Manual

| CWS Operation             | 4.20.6 |
|---------------------------|--------|
| Flight Director           | 4.20.7 |
| Flight Director Schematic | 4.20.8 |
| Altitude Alert System     | 4.20.8 |
| Acquisition Mode          | 4.20.8 |
| Altitude Alert System     | 4.20.9 |

737 Flight Crew Operations Manual

Automatic Flight Controls and Indicators Chapter 4 Section 10

# **Autopilot Controls**

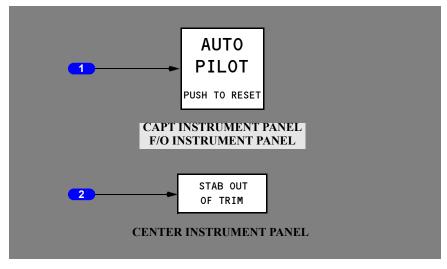


### **1** Autopilot Disengage Switch

- Disengages the autopilot
- A/P disengage light illuminates
- Resets the Autopilot Disengage Light after automatic disengagement.

**Note:** Each time the autopilot is disengaged, the pilot should guard the controls for an undetected out-of-trim condition.

### **2** GO–AROUND SWITCHES


- Armed with flight director Mode Selector in the AUTO APP or MAN GS positions.

PRESS (either or both switches) – Provides flight director commands for wings level with a pitch up of 14 degrees.

Automatic Flight -Controls and Indicators



### **Autopilot Indicators**



### **1** Autopilot Disengage Light (red)

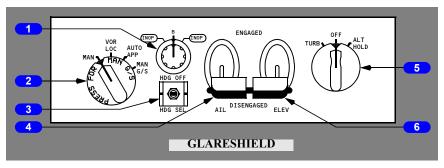
PRESS - Resets the Autopilot Disengage Light after automatic disengagement.

ILLUMINATED FLASHING - The autopilot is automatically disengaged.

- The light is pressed to test
- The Autopilot Disengage Switch is pushed
- Either manual disengage switch (aileron or elevator) is moved to DISENGAGED
- Pushing the light resets the system after automatic disengagement

ILLUMINATED STEADY - The self-test switch in the E/E compartment is on.

EXTINGUISHED – The Autopilot Disengage Switch is released.


• The Autopilot Disengage Light is reset.

### **2** Stabilizer Out Of Trim Light (amber)

Functions only with the Autopilot Elevator Engage Switch ENGAGED.

ILLUMINATED – The stabilizer is out-of-trim for the condition required by the autopilot.

## **Autopilot Panel**



### 1 Autopilot System Select Switch

Selects the hydraulic system used by the autopilot and yaw damper. Transfer of systems will disengage the autopilot and yaw damper.

### **2** Autopilot Mode Selector (spring-loaded to MAN)

MAN (Manual Mode) – CWS low detent is used to maneuver the airplane with either or both channels engaged.

- ALT HOLD or TURB is selectable
- HDG SEL or HDG OFF is selectable.

VOR LOC (VOR/LOC Mode) – Used to automatically intercept the selected radio course.

- · HDG SEL or CWS is used to achieve the intercept heading
- Captain's HSI is used to select heading and course
- Course capture occurs at 2/5 dot (VOR), 2 dots (LOC), the HDG Switch centers at capture (if HDG SEL is used)
- Roll commands can be increased or reduced manually during the capture phase prior to ON COURSE
- When ON COURSE, CWS roll is high detent
- Crosswind compensation occurs after ON COURSE
- ALT HOLD or TURB is selectable (TURB in VOR only).

AUTO APP (Auto Approach Mode) - Used to automatically capture ILS Localizer and glide slope.

- · HDG SEL or CWS is used to achieve the intercept heading
- LOC CAPTURE is the same as VOR/LOC mode
- LOC and G/S are armed when:
  - ILS frequency is tuned
  - Front Course is selected
  - AUTO APP is selected.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2012 D6-27370-200A-TBC 4.10.3

- G/S is captured at 1/3 dot
- ALT HOLD trips OFF at G/S capture
- Gain programming occurs after G/S capture at 1500 feet radio altitude or below. LOC sensitivity is reduced from 100% to 50% as altitude decreases to 100 feet. G/S sensitivity is reduced to 0% as altitude decreases to 50 feet
- When ON COURSE and on G/S, CWS roll and pitch are high detent
- Autopilot reverts to MAN if TURB is selected
- AUTO APP is not selectable unless ILS frequency is selected.

MAN G/S (Manual Glide Slope Mode) - Used to capture G/S from above or to re-capture after autopilot disengagement.

• When selected, the airplane pitches down for 10 seconds (700 ft/min) then tracks G/S

**Note:** Do not select MAN G/S when the airplane is more than 1/2 dot, as depicted on the HSI, from the glide slope.

- GLIDE SLOPE light illuminates green immediately after selecting MAN G/S
- Operates the same as AUTO APP after G/S capture
- Mode selector must be pressed in to select MAN G/S.

## **3** Autopilot Heading Switch

HDG OFF - Autopilot maintains any bank attitude within limits.

• Selectable in MANUAL mode only.

HDG SEL (solenoid-held on, spring-loaded to the center position) – Establishes preselected heading mode.

• Maintains the heading selected for the Captain's HSI.

HEADING HOLD (center position) -

- Autopilot engaged:
  - Bank angle < 5 degrees Airplane rolls wings level and maintains heading
  - Bank angle > 5 degrees Airplane maintains bank attitude.
- CWS input:
  - Bank angle < 5 degrees When the force is released, the airplane rolls wings level
  - Bank angle > 5 degrees When the force is released, the airplane maintains bank attitude.

# **4** Autopilot Aileron (ROLL) Engage Switch

The aileron (roll) channel may be operated independently of the pitch channel in the MAN or VOR LOC modes of operation.

737 Flight Crew Operations Manual

DISENGAGED – Mechanically locked until interlock circuitry is satisfied.

• Spring-loaded to DISENGAGED if interlock is broken.

ENGAGED - Solenoid-held if interlocks are satisfied.

- The Mode Selector must be in MAN
- Will not engage if force is being applied to the control wheel.

### **5** Autopilot Pitch Mode Selector

TURB (Turbulence) - Decreases pitch attitude and rate gains.

- Bank angle is limited to 8 degrees in VOR
- CWS pitch is low detent after selection
- CWS, HDG SEL, HDG HOLD, and VOR modes are available
- Deselected by manually positioning switch to OFF.

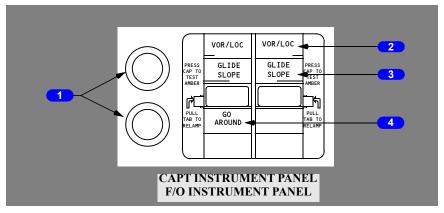
OFF - Pitch Attitude hold or glide slope engaged.

- Spring-loaded to OFF at glide slope engagement
- Spring-loaded to OFF if force greater than high detent level is exerted.

ALT HOLD (Altitude Hold) - Pitch reference is to pressure altitude.

### 6 Autopilot Elevator (PITCH) Engage Switch

The elevator (pitch) channel may be operated independently of the roll channel in the MAN mode only.


DISENGAGED - Mechanically locked until interlock circuitry is satisfied.

• Spring-loaded to DISENGAGED if interlock is broken.

ENGAGED - Solenoid-held if interlocks are satisfied.

- The Mode Selector must be in MAN
- Will not engage if force is being exerted on the control column.

# **Approach Progress Display**



### **1** Photoelectric Cells

- Control intensity of lighting for the approach progress display if the Master Lights Test and Dim Switch is in DIM
- Overridden by positioning the Master Lights Test and Dim Switch to BRT.

### **2** VOR/LOC

AMBER - Radio mode selected.

• Prior to VOR or localizer capture.

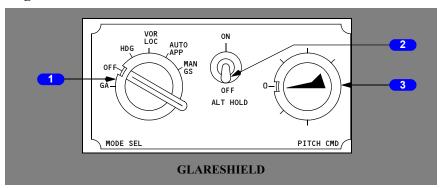
GREEN - Radio mode selected.

• Capture initiated.

### **3** GLIDE SLOPE

AMBER – AUTO APP selected.

• Prior to glide slope capture.


GREEN - AUTO APP selected and glide slope captured.

• MAN G/S selected.

### **4** GO AROUND

GREEN - Captured.

# Flight Director



### **1** Mode Selector (MODE SEL)

Rotate – selects flight director computer reference signals provided to command bars.

GA (Go-Around) -

- GA light illuminated (green) -
  - command bars provide commands for wings level and a pitch attitude of 14 degrees until the Mode Selector is changed to another position
  - mode Selector in AUTO APP or MAN GS, go-around is initiated by pushing the Go-Around switches on the thrust levers
  - manual selection to GA can be initiated anytime by positioning the Mode Selector to GA.

OFF - removes command bars.

HDG – command bars provide commands to fly to and maintain selected heading on HSI.

VOR/LOC -

- VOR/LOC light illuminated (amber/armed) -
  - command bars provide commands to fly to and maintain selected heading on HSI
- VOR/LOC light illuminated (green/capture) -
  - command bars provide commands to fly to and maintain VOR radial or localizer course selected on HSI
  - VOR capture 1 dot (5 degrees)
  - LOC capture 2 dots (2 degrees).

### AUTO APP –

- VOR/LOC light illuminated (amber/armed) -
  - command bars provide commands to fly to and maintain selected heading on HSI
- VOR/LOC light illuminated (green/capture) -
  - command bars provide commands to fly to and maintain localizer course
  - LOC capture 2 dots (2 degrees)
- GLIDE SLOPE light illuminated (amber/armed) -
  - command bars provide commands to fly existing attitude commands
- GLIDE SLOPE light illuminated (green/capture) -
  - command bars provide commands to fly to and maintain glide slope.

### MAN GS -

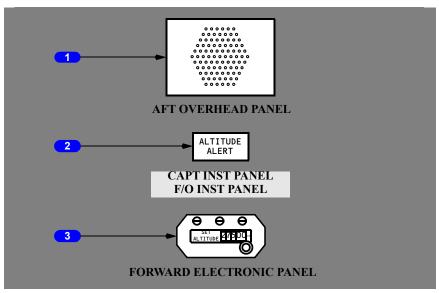
- VOR/LOC and GLIDE SLOPE lights illuminated (green/capture) -
  - command bars provide commands for fixed intercept angle to the localizer
  - command bars provide commands to fly to pitch up or down to intercept the glide slope.

### Altitude Hold (ALT HOLD) Switch

OFF (spring loaded) -

- Deselects altitude hold
- Trips off at glide slope capture.
- ON
  - Command bars reference to pressure altitude from ADC
  - Cannot be selected when Mode Selector is in GA position.

## **3** Pitch Command (PITCH CMD) Control


- · Selects fixed pitch angle for climb or descent
- Command bars can be selected to 10 degrees down to 15 degrees up.

Not effective if:

- ALT HOLD switch is ON
- Glide slope is captured
- GA mode is active.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Altitude Alert**



#### **1** Speaker

Transmits alert tone when airplane approaches or departs selected altitude.

### **2** ALTITUDE ALERT Light

Illuminated (amber)

Airplane is within the range of 1000 to 375 feet of the selected altitude.



#### **3** ALTITUDE ALERT Controller

- Displays the selected alerting altitude
- Covered by a warning flag if the Captain's altimeter signal is lost or if electrical power is lost.



Intentionally Blank

737 Flight Crew Operations Manual

Automatic Flight System Description Chapter 4 Section 20

## General Autopilot

The autopilot is made of two independent channels – roll and pitch – and may be used with or without the yaw damper engaged. (see the limitation section in Volume 1 for operation above 30,000 feet.) The two channels may be engaged simultaneously or independently and only in the MANUAL mode.

The roll channel uses signals from the vertical gyro (roll attitude), directional gyro (heading), Captain's HSI (heading and course), ADC (airspeed signal), VHF navigation radio (VOR/LOC deviation), and control wheel steering. These inputs are converted to mechanical control of the ailerons by the aileron power control unit. Movement of the ailerons causes the control wheel to turn, which then causes the spoilers to operate normally.

The pitch channel uses signals from the vertical gyro (pitch attitude), ADC (altitude and airspeed), VHF navigation radio (glideslope deviation), and control wheel steering. Additionally, signals from the radio altimeter are used to desensitize ILS signals while in the AUTO APPROACH or MAN G/S modes. These inputs are converted to mechanical control of the elevators by the elevator power control unit. Large elevator movements cause the stabilizer to re-trim automatically.

## **Autopilot Modes**

The following modes are available and will be described in detail later in this section:

- MANUAL
- VOR/LOC
- AUTO APPROACH
- MANUAL GLIDE SLOPE

In conjunction with these modes, the following submodes are available:

- CONTROL WHEEL STEERING
- HEADING OFF
- HEADING HOLD
- HEADING SELECT
- TURBULENCE
- ALTITUDE HOLD

## **Hydraulic Failure**

Loss of hydraulic system pressure will not cause autopilot disengagement. The autopilot will be inoperative due to the loss of flight control hydraulic power.

## Loss of Navigation Signal

Loss of valid navigation signals will not cause autopilot disengagement or mode change if in VOR/LOC, AUTO APP or MAN G/S. Manual mode may be selected or the autopilot disengaged to continue safely.

## Autopilot System Autopilot Heading Switch

The autopilot heading switch may be used to operate the autopilot in HEADING OFF, HEADING HOLD, or HEADING SELECT. This switch is spring–loaded to the center, HEADING HOLD, position. HEADING SELECT may be used in any mode until VOR/LOC capture, when it trips to the center position automatically.

When in HEADING SELECT, the autopilot uses the Captain's heading marker for reference. The autopilot roll channel is in CWS high detent. If high detent force is exceeded, the heading switch trips to HEADING HOLD.

Pitch modes such as ALT HOLD or TURB may be used independently of the heading mode. Bank angles for all modes are limited to 32 degrees.

## Autopilot Pitch Mode Selector

The autopilot pitch mode selector is used for altitude hold (ALT HOLD) and turbulence (TURB) mode selection.

The Altitude Hold mode causes the autopilot to level at the altitude at which the autopilot mode selector is positioned to ALT HOLD.

Turbulence (TURB) mode softens autopilot control to reduce gust loads.

In VOR/LOC (localizer operation only), AUTO APP, and MAN G/S modes, selection of TURB will cause automatic reversion to the MANUAL mode.

LOC, AUTO APP, and MAN G/S cannot be selected while TURB mode is active.

## **Approach Progress Display**

The approach progress display provides annunciation of autopilot status while in VOR/LOC, AUTO APP, and MAN G/S.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

#### VOR/LOC Mode

The VOR/LOC light:

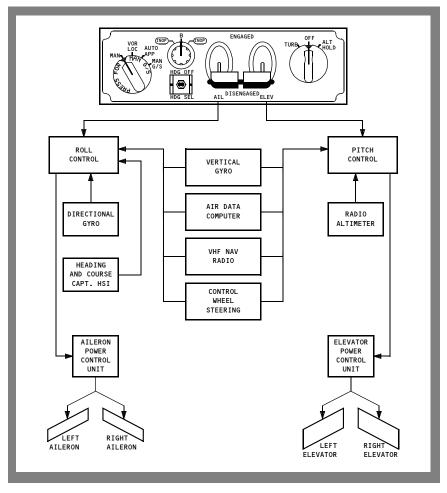
- · Illuminates amber immediately after mode selection
- Illuminates green when capture occurs (2/5 dot in VOR and 2 dots in LOC).

The GLIDE SLOPE light is inoperative in the VOR/LOC mode.

#### AUTO APP Mode

In the auto approach AUTO APP mode, the VOR/LOC light provides the same annunciations as in the VOR/LOC mode.

The GLIDE SLOPE light:


- Illuminates amber at AUTO APP mode selection
- Illuminates green at glide slope capture (1/3 dot).

#### MAN G/S Mode

Selection of the Manual Glide Slope (MAN G/S) mode illuminates the green GLIDE SLOPE light, regardless of glide slope deviation.



## **Autopilot Schematic**



## **Engagement Interlocks**

The autopilot engage switches will be mechanically locked in the disengage position until the following conditions are satisfied:

## Roll (AIL) Channel

- Autopilot roll computer is valid
- ADC airspeed signal is valid
- Vertical and directional gyros are valid.
- B flight control switch is ON.

737 Flight Crew Operations Manual

- No force on control wheel
- Standby power switch is in AUTO position.

## Pitch (ELEV) Channel

- Autopilot pitch computer is valid
- ADC airspeed signal is valid
- · Vertical gyro is valid
- Flight control switch is ON
- · Electric trim is not operating
- A/P trim cutout switch is NORMAL
- No force on control column
- Standby power switch is in AUTO position.

## Automatic Disengagements Roll and Pitch

Automatic disengagement of both channels occurs when:

- Either autopilot disengage switch is pushed
- The vertical gyro signal is lost or transferred
- The airspeed signal from the ADC is lost.
- The B flight control switch is positioned to OFF
- The autopilot system select switch is repositioned
- The standby power switch is positioned to BAT.

## **Roll Only**

Automatic disengagement of the roll channel only occurs when:

- · Autopilot roll channel power is lost
- The compass signal is lost or transferred.

## **Pitch Only**

Automatic disengagement of the pitch channel only occurs when:

- Autopilot pitch channel power is lost
- The control wheel stabilizer trim switches are used
- The stabilizer trim autopilot cutout switch is positioned to CUTOUT.

## Autopilot Revert-to-Man Conditions

The autopilot will revert to MANUAL if the following conditions exist:

- TURB mode selected (with mode selector in AUTO APP, MAN G/S, or in VOR/LOC with ILS frequency selected)
- ILS test performed in radio modes

- ILS frequency changed or transfer switch moved in AUTO APP or MAN G/S
- high detent CWS force applied while in VOR/LOC, AUTO APP, or MAN G/S modes after VOR or LOC on course
- loss of altitude input from the ADC while in AUTO APP or MAN G/S.

## **Control Wheel Steering (CWS)**

The airplane may be maneuvered in pitch and roll after autopilot engagement using the control wheel and column. Manual inputs by the pilots using CWS are the same as required for manual flight. Autopilot system feel control is designed to simulate control input resistance similar to manual flight configuration. Two force levels are required to move the control column or wheel out of the center (detent) position to induce pitch or roll commands.

## Low Detent Level

After autopilot engagement, a low level force (4 pounds in the roll axis and 5 pounds in the pitch axis) is required to move the control wheel out of the center (detent) position. This force is comparable to the force required during manual flight. After overcoming this resistance, the command to pitch or roll is at a rate proportional to control wheel or column force.

## High Detent Level

High detent level force (8 pounds in the roll axis and approximately 18 pounds in the pitch axis) is provided to prevent inadvertent disengagement of various submodes. The force required to move the control wheel or column out of the detent position is increased. If reversion to CWS inputs only (no automatic heading, course, radio, or pitch commands) is desired, this may be accomplished by exerting a force greater than high detent level.

## **CWS** Operation

CWS operates in low or high detent level, depending on which modes or submodes are active:

## MAN Mode

CWS pitch and roll are low detent unless various submodes are active.

## VOR/LOC Mode

CWS pitch and roll are low detent until VOR or localizer ON COURSE. CWS roll then becomes high detent, and CWS pitch remains low detent unless ALT HOLD is active. CWS roll may be used to override during the capture phase until ON COURSE. Exceeding high detent in roll reverts the autopilot to MAN.

#### AUTO APP or MAN G/S Modes

Same as VOR/LOC mode until G/S engaged. Pitch and roll CWS are then high detent. Exceeding high detent reverts the autopilot to MAN.

#### ALT HOLD Submode

CWS pitch is high detent. Exceeding high detent will revert the Pitch Mode Selector Switch to OFF.

#### TURB Submode

CWS pitch is low detent.

#### HDG HOLD/HDG OFF Submodes

CWS roll is low detent.

#### HDG SEL Submode

CWS roll is high detent. Exceeding high detent causes the heading switch to move to the center (HEADING HOLD) position.

## **Flight Director**

The flight director computers receive constant inputs from various airplane systems. Loss of one of these inputs will adversely affect the flight director.

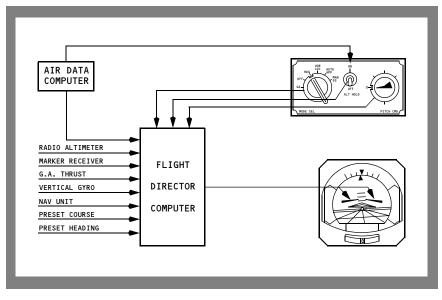
The command bars are dependent upon the position of the Flight Director Mode, Selector, Altitude Hold Switch, and Pitch Command Control. The following is a condensed description of the inputs to the computers and the commands to the indicator:

Air data computer – a pitch command to hold altitude if the Altitude Hold Switch is ON.

Radio altimeter and marker beacon receiver - at 1500 feet, gain for pitch commands to maintain glide slope is reduced. Gain is further reduced at 200 feet, or the middle marker, whichever is first.

GA (Go-Around) - a pitch-up command and a wings level roll command.

Vertical gyro - pitch and roll commands for stabilization of the indicator


Navigation unit – pitch and roll signals for capturing and tracking VOR radials, localizer courses, and glide slope beams.

Preset course - roll commands to remain on selected course.

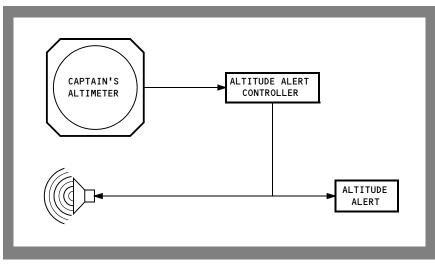
Preset heading - roll commands to remain on selected heading.



## **Flight Director Schematic**



## **Altitude Alert System**


The altitude alert system provides visual and aural reminders when approaching a pre-selected altitude. The system uses the Captain's altimeter to compare actual altitude to the alerting altitude set in the Altitude Alert Controller.

## **Acquisition Mode**

When approaching the selected altitude, a two second tone sounds and the ALTITUDE ALERT lights illuminate 1000 feet above or below the selected altitude. The lights extinguish 375 feet above or below the selected altitude.

737 Flight Crew Operations Manual

## **Altitude Alert System**





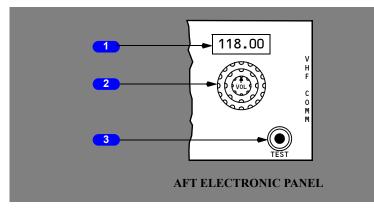
Intentionally Blank

737 Flight Crew Operations Manual

| Communications                                 | Chapter 5   |
|------------------------------------------------|-------------|
| Table of Contents                              | Section TOC |
| Controls and Indicators                        |             |
| VHF Communication Panel                        | 5.10.1      |
| HF Communication Panel                         | 5.10.2      |
| Audio Selector Panel (ASP)                     | 5.10.3      |
| Miscellaneous Communication Controls (Typical) | 5.10.5      |
| Interphone and Passenger Address Controls      | 5.10.7      |
| Cockpit Voice Recorder                         | 5.10.9      |
| Call System                                    | 5.10.10     |
| Selective Calling Panel (SELCAL)               | 5.10.12     |
| System Description                             | 5.20        |
| Introduction                                   | 5.20.1      |
| Audio Systems and Audio Selector Panels        | 5.20.1      |
| Speakers and Headsets                          | 5.20.1      |
| Microphones                                    | 5.20.1      |
| Normal Audio System Operation                  | 5.20.2      |
| Flight Interphone System                       | 5.20.2      |
| Service (Attendant) Interphone System          | 5.20.2      |
| Passenger Address System                       | 5.20.2      |
| Call System                                    | 5.20.3      |
| Selective Calling (SELCAL)                     | 5.20.4      |
| VHF Communications                             | 5.20.4      |
| HF Communications                              | 5.20.5      |
| Cockpit Voice Recorder                         | 5.20.5      |



Intentionally Blank


737 Flight Crew Operations Manual

Communications

**Controls and Indicators** 

Chapter 5 Section 10

## **VHF** Communication Panel



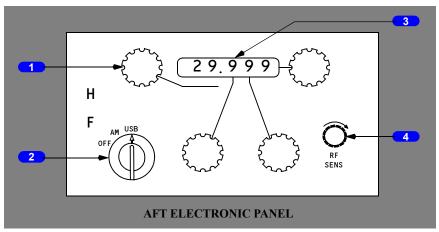
#### **1** Frequency Indicator

Indicates selected frequency.

#### 2 Frequency Selector

Rotate - selects frequency in related indicator:

- outer selector changes three left digits
- middle selector changes two right digits.
- inner selector changes receiver volume, but not side tone.


#### **3** Communication (COMM) TEST Switch

Push-

- removes automatic squelch feature, permitting reception of background noise and thereby testing receiver operation
- improves reception of weak signals.



## **HF Communication Panel**



#### Frequency Selector

Rotate - selects frequency.

#### 2 Mode Selector

OFF - transceiver not powered.

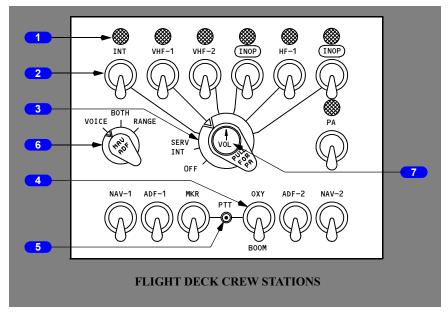
USB (Upper Sideband) - transmits and receives on higher side of frequency.

AM (Amplitude Modulation) – transmits and receives on selected frequency with a carrier wave.

#### **3** Frequency Indicator

- · indicates selected frequency
- frequency range from 2,000 to 29,000 megahertz.

#### 4 RF/HF Sensitivity Control


Rotate-controls sensitivity of receiver.

- (clockwise) increases sensitivity for reception of weak or distant stations
- (counterclockwise) decreases sensitivity to reduce noise and static.

**Note:** decreasing sensitivity too far prevents reception, including SELCAL monitoring of HF radio.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Audio Selector Panel (ASP)



### **1** Transmitter Light

Illuminated (green) - related switch is active.

#### 2 Receiver Switches

Up –

- receiver selected for related communication system or navigation receiver
- multiple switches may be selected

#### **3** Transmitter Selector

Rotate -

- · selects related communication system for transmission
- receiver also selected on regardless of whether related receiver switch is on.
- must be pulled up to select PA.

### 4 OXY–BOOM Switch

OXY - selects oxygen mask for transmissions.

BOOM – selects boom microphone for transmissions.

#### **5** Push–to–Talk Switch

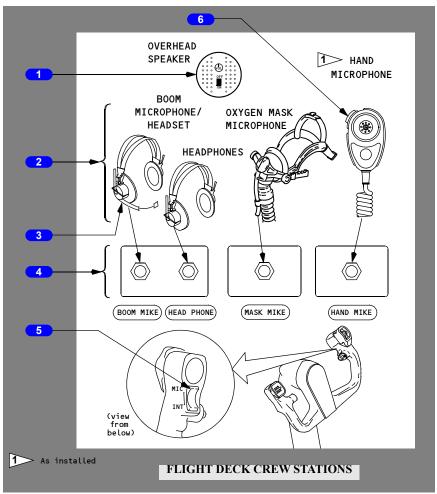
Push – keys the oxygen mask or boom microphone for transmission, as selected by the transmitter selector.

#### **6** Filter Switch

Voice - receive NAV and ADF voice audio.

Both - receive NAV and ADF voice and range audio

Range - receive NAV and ADF station identifier range (code) audio.


#### 7 Volume Control

Rotate - adjusts volume. of all receivers.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Communications -Controls and Indicators

## **Miscellaneous Communication Controls (Typical)**



#### **1** Overhead Speaker

Monitors audio from related pilot's ASP.

#### **2** Standard Microphones

Choose desired microphone for voice transmission through selected radio, interphone system, or passenger address (PA).

#### **3** Headset or Headphones

Monitors audio from related ASP.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 7, 2000 D6-27370-200A-TBC 5.10.5



#### **4** Communication Jacks

Used for appropriate microphone or headphone plugs.

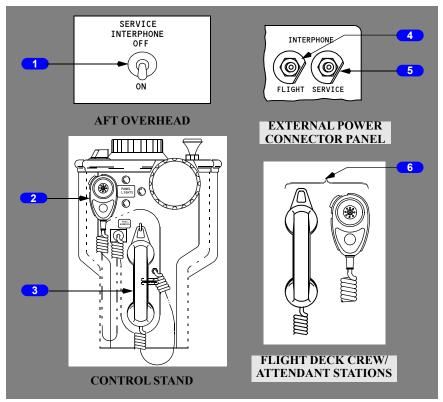
#### **5** Push–To–Talk Switch

MIC (microphone) -

- selects oxygen mask or boom microphone for transmission, as selected by ASP transmitter selector.
- Same as using ASP PTT switch (R/T position).

OFF - center position.

INT (interphone) -


- selects oxygen mask or boom microphone for direct transmission over flight interphone
- bypasses ASP transmitter selector
- same as using ASP PTT switch (I/C position).
- Locks in INT position until selected to either OFF or MIC.

#### **6** Push–To–Talk Switch

Push – keys hand microphone for transmission, as selected by ASP transmission selector.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Interphone and Passenger Address Controls**



#### **1** SERVICE INTERPHONE Switch

OFF -

- · external jacks are deactivated
- communication between flight deck and flight attendants is still possible.

ON - adds external jacks to service interphone system.

#### 2 Passenger Address (PASS ADDRESS) Hand Microphone

- · used to make PA announcements
- bypasses ASP.

737 Flight Crew Operations Manual

#### **3** Service INTERPHONE Handset

- used to communicate with flight attendant stations
- With SERVICE INTERPHONE switch ON, also used to communicate with any external jack location
- bypasses ASPs.

### **4** FLIGHT INTERPHONE Jack

Connects ground crew to Flight Interphone system.

### **5** SERVICE INTERPHONE Jack

Connects ground crew to Service Interphone system if Service Interphone switch is ON.

## **6** Flight Deck / Attendant PA Hand Microphone

Used to make PA announcements.



#### **1** SERVICE INTERPHONE Switch

OFF -

- · external jacks are deactivated
- communication between flight deck and flight attendants is still possible.

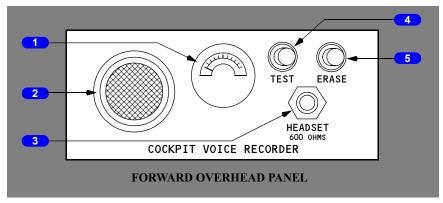
ON - adds external jacks to service interphone system.

#### **2** Service INTERPHONE Handset Jack

- used to communicate with flight attendant stations
- With SERVICE INTERPHONE switch ON, also used to communicate with any external jack location
- bypasses ASPs.

#### **3** FLIGHT INTERPHONE Jack

Connects ground crew to Flight Interphone system.


#### **4** SERVICE INTERPHONE Jack

Connects ground crew to Service Interphone system if Service Interphone switch is ON.

#### **5** Flight Deck / Attendant PA Hand Microphone

Used to make PA announcements.

## **Cockpit Voice Recorder**



#### **1** Monitor Indicator

Pointer deflection indicates recording or erasure on all four channels (approximately a one second delay); during test, pointer rises into green band.



#### **2** Area Microphone

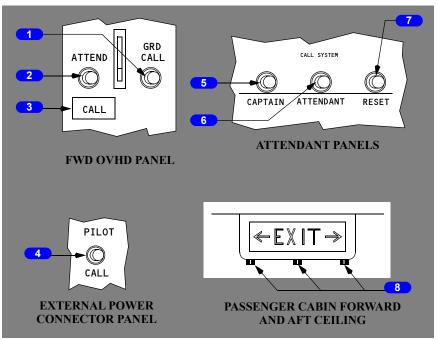
Active anytime 115V AC is applied to airplane.

#### 3 HEADSET Jack

Headset may be plugged into jack to monitor tone transmission during test, or to monitor playback of voice audio.

#### 4 TEST Switch

Push-


- after a slight delay, monitor indicator rises into green band
- a tone may be heard through a headset plugged into HEADSET jack.

#### **5** ERASE Switch

Push (2 seconds) -

- all four channels are erased
- monitor indicator momentarily deflects
- operates only when airplane is on ground and parking brake is set.

## **Call System**



737 Flight Crew Operations Manual

#### Ground Call (GRD CALL) Switch

Push - sounds a horn in nose wheel well until released.

#### **2** Attendant Call (ATTEND CALL) Switch

Push –

• sounds a two-tone chime in the passenger cabin.

#### **3** Flight Deck CALL Light

Illuminated (blue) – flight deck is being called by flight attendants or ground crew. Extinguished when Captain Call or Pilot Call switch released.

#### 4 PILOT CALL Switch

Push – sounds a single-tone chime in flight deck.

Flight deck CALL light extinguished when switch is released.

#### **5** CAPTAIN Call Switch

Push – sounds a single-tone chime in flight deck Flight deck CALL light extinguished when switch is released.

I light deek CALL light extinguished when switch is fer

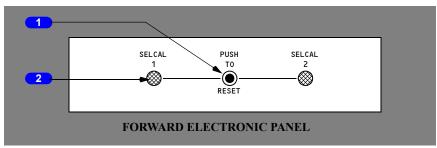
#### 6 ATTENDANT Call Switch

Push –

- sounds a two-tone chime in passenger cabin
- illuminates both pink master call lights.

#### 7 Call RESET Switch

Push – extinguishes both pink master call lights.


#### **8** Master Call Light

Illuminated -

- amber a lavatory call switch is activated
- pink flight deck or other flight attendant station is calling
- blue a passenger seat call switch is activated.



## Selective Calling Panel (SELCAL)



#### **1** SELCAL Reset Switch

Push - extinguishes SELCAL light and resets decoder.

#### **2** SELCAL Light

Illuminated -

- · alerts crew that communication is desired on a communication radio
- SELCAL 1 light illuminates for a call on VHF -1 or HF
- SELCAL 2 light illuminates for a call on VHF-2.

737 Flight Crew Operations Manual

# Communications

## **System Description**

Chapter 5 Section 20

## Introduction

The communication system includes:

- radio communication system
- interphone communication system
- cockpit voice recorder system
- communication crew alerting system

The communication systems are controlled using the:

- audio control panels
- radio tuning panels

## Audio Systems and Audio Selector Panels

An ASP is installed at the Captain, First Officer, and Observer stations. Each panel controls an independent crew station audio system and allows the crewmember to select the desired radios, navigation aids, interphones, and PA systems for monitoring and transmission.

Transmitter selectors on each ASP select one radio or system for transmission by that crewmember. Any microphone at that crew station may then be keyed to transmit on the selected system.

Receiver switches select the systems to be monitored. Any combination of systems may be selected. Receiver switches also control the volumes at the respective crew stations. Audio from each ASP is monitored using a headset/headphones or the related pilot's speaker.

## **Speakers and Headsets**

Each crew station has a headset or headphone jack. The Captain and First Officer have speakers on the ceiling above their seats. There is no speaker at the observer station. Headset volume is controlled by the receiver switches. Speaker volume is controlled by the receiver switch.

Audio warnings for altitude alert, GPWS, and windshear are heard at preset volumes. They cannot be controlled or turned off by the crew.

## Microphones

Hand microphones and boom microphones may be plugged into the related jacks at the flight deck crew stations. Each oxygen mask also has an integral microphone.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Each hand microphone has a PTT switch to key the selected audio system. The PTT switches on the control wheel or ASP are used to key the oxygen mask or boom microphone, as selected by the OXY–BOOM switch. The OXY–BOOM switch does not affect the operation of the hand microphone.

## Normal Audio System Operation

The Captain, First Officer, and Observer audio systems are located in a common remote electronics unit in the E & E compartment. They function independently and have separate circuit breakers. The audio systems are normally controlled by the related ASPs through digital or computerized control circuits.

## Flight Interphone System

The flight interphone system is an independent communication network. Its primary purpose is to provide private communication between flight deck crewmembers without intrusion from the service interphone system. The ground crew may also use the flight interphone through a jack at the external power receptacle.

The pilots can transmit directly over the flight interphone by using the control wheel PTT switch. Alternatively, any crewmember with an ASP can transmit/receive over the flight interphone by using their related ASP and normal PTT switches. Any standard microphone may be used with the flight interphone system.

## Service (Attendant) Interphone System

The service interphone system provides intercommunication between the flight deck, Flight Attendants, and ground personnel. Flight deck crewmembers communicate using either a separate handset (if installed) or their related ASP and any standard microphone.

The Flight Attendants communicate between flight attendant stations or with the flight deck using any of the attendant handsets. Anyone who picks up a handset/microphone is automatically connected to the system.

External jacks for use by maintenance or service personnel can be added to the system by use of the service interphone switch.

## Passenger Address System

The passenger address (PA) system allows flight deck crewmembers and flight attendants to make announcements to the passengers. Announcements are heard through speakers located in the cabin and in the lavatories.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

The flight deck crewmembers can make announcements using a PA hand microphone or by using any standard microphone and the related ASP. Flight Attendants make announcements using PA hand microphones located at their stations. The attendants use the PA to play recorded music for passenger entertainment.

PA system use is prioritized. Flight deck announcements have first priority and override all others. Flight Attendant announcements override the music system. The forward attendant has priority over the aft attendant.

## Call System

The call system is used as a means for various crewmembers to gain the attention of other crewmembers and to indicate that interphone communication is desired. Attention is gained through the use of lights and aural signals (chimes or horn). The system can be activated from the flight deck, either flight attendant station, or from the external power receptacle. Passengers may also use the system to call an attendant, through the use of individual call switches at each seat.

The flight deck may be called from either flight attendant station or by the ground crew. The ground crew may only be called from the flight deck. Flight Attendants may be called from the flight deck, the other attendant station, or from any passenger seat or lavatory. Master call lights in the passenger cabin identify the source of incoming calls to the attendants.

Call system chime signals are audible in the passenger cabin through the PA system speakers. The PA speakers also provide an alerting chime signal whenever the NO SMOKING or FASTEN SEAT BELT signs illuminate or extinguish.



#### 737 Flight Crew Operations Manual

| Location of Call<br>Originator | Called Position   | Visual Signal at<br>Called Position                                | Aural Signal at<br>Called Position |
|--------------------------------|-------------------|--------------------------------------------------------------------|------------------------------------|
| Flight deck                    | Attendant station | Pink master<br>call light                                          | Two-tone chime                     |
| Flight deck                    | Nose wheel well   |                                                                    | Horn in nose<br>wheel well         |
| Attendant station              | Flight deck       | Blue flight deck<br>call light                                     | Single high-tone chime             |
| External Power<br>Panel        | Flight deck       | Blue flight deck<br>call light                                     | Single high-tone chime             |
| Flight deck                    | Passenger cabin   | NO SMOKING<br>or FASTEN<br>BELT signs<br>illuminate/<br>extinguish | Single low-tone<br>chime           |

## Selective Calling (SELCAL)

A ground station desiring communication with the flight deck can use the SELCAL system. SELCAL monitors selected frequencies on VHF and HF radios. Each airplane is assigned a unique four–letter SELCAL identification code. When the system receives an incoming call from a ground station, a two–tone chime sounds, and the related SELCAL light illuminates.

## **VHF Communications**

Primary short–range voice communications is provided in the VHF range by two independent radios. Each radio provides for selection of an active frequency and an inactive (preselected) frequency. Voice transmission and reception are controlled at the related ASP.

VHF-1 is located on the left aft electronic panel, VHF-2 on the right. The VHF-1 antenna is located on the upper fuselage, VHF-2 on the lower fuselage.

### **HF Communications**

HF transmission and reception are controlled at the related ASP. When the HF transmitter is keyed after a frequency change, the antenna tunes. While the antenna is tuning, a steady or intermittent tone may be heard through the audio system (tuning takes a maximum of 15 seconds). The antenna is located in the vertical stabilizer.

**Note:** Keying HF transmitter on the ground may cause oil and fuel quantity indicators to fluctuate if one or more of the following conditions exist:

- cargo or passenger entry door open
- · service interphone microphone plugged into service interphone jack
- airplane grounding wire attached to airplane
- ground power cart connected.

## **Cockpit Voice Recorder**

The cockpit voice recorder uses four independent channels to save the last 30 minutes of flight deck audio. Recordings older than 30 minutes are automatically erased. One channel records flight deck area conversations using the area microphone. The other channels record individual ASP output (headset) audio and transmissions for the pilots and observer.



Intentionally Blank

737 Flight Crew Operations Manual

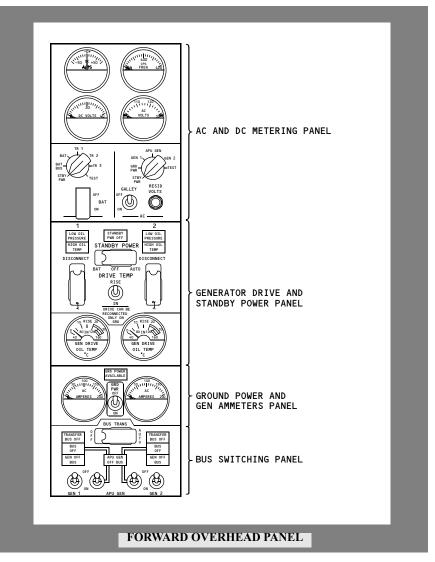
| Electrical                                        | Chapter 6   |
|---------------------------------------------------|-------------|
| Table of Contents                                 | Section TOC |
| Controls and Indicators                           | 6.10        |
| Electrical Panel                                  | 6.10.1      |
| AC and DC Metering Panel                          | 6.10.2      |
| Generator Drive and Standby Power Panel           | 6.10.4      |
| Bus Switching                                     | 6.10.6      |
| Ground Service Switch                             | 6.10.8      |
| System Description                                | 6.20        |
| Introduction                                      | 6.20.1      |
| Electrical Power Generation                       | 6.20.1      |
| Engine Generators.                                | 6.20.1      |
| APU Generator                                     |             |
| External Ground Power                             | 6.20.2      |
| Ground Service                                    | 6.20.2      |
| Electrical Power Schematic                        | 6.20.3      |
| AC Power System                                   | 6.20.3      |
| Bus Transfer System                               | 6.20.4      |
| Automatic Load Shedding                           |             |
| AC Power Schematic                                | 6.20.5      |
| Electrical Power Controls and Monitoring          | 6.20.5      |
| Generator Drive                                   | 6.20.5      |
| AC Voltmeter and Frequency Meter                  | 6.20.6      |
| DC Voltmeter and Ammeter                          | 6.20.6      |
| Electrical Power Controls and Monitoring Schemati | c 6.20.7    |
| DC Power System                                   | 6.20.7      |
| Transformer Rectifier Units                       | 6.20.8      |
| Battery Power                                     | 6.20.8      |
| Battery Charger                                   | 6.20.8      |
| DC Power Receptacle                               | 6.20.8      |
| DC Power System Schematic                         | 6.20.9      |

#### Electrical -Table of Contents

# **DO NOT USE FOR FLIGHT**

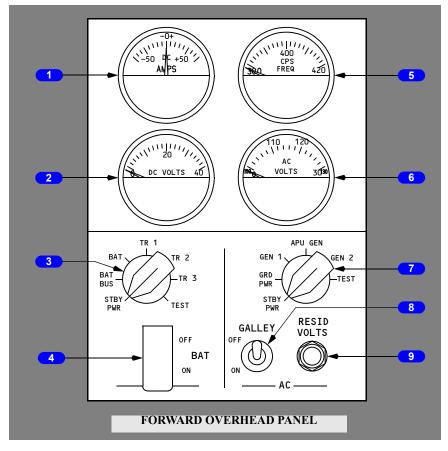
737 Flight Crew Operations Manual

| Standby Power System                          |
|-----------------------------------------------|
| Normal Operation                              |
| Alternate Operation                           |
| Static Inverter                               |
| Standby Power System Schematic                |
| All Generators Inoperative                    |
| Airplane General, Emergency Equipment, Doors, |
| and Windows                                   |
| Air Systems                                   |
| Engines, APU                                  |
| Communications                                |
| Electrical                                    |
| Flight Instruments                            |
| Fire Protection                               |
| Fuel                                          |
| Landing Gear                                  |
| Navigation                                    |
| Warnings                                      |
| Basic Equipment Operating – Instrument Panels |
| Captain Instrument Panel                      |
| First Officer Instrument Panel                |
| Electrical System Power Distribution          |
| No. 1 Generator Inoperative                   |
| No. 2 Generator Inoperative                   |
| -                                             |


737 Flight Crew Operations Manual

Electrical

### **Controls and Indicators**


Chapter 6 Secti<u>on 10</u>

## **Electrical Panel**





## AC and DC Metering Panel



#### **1** DC Ammeter

Indicates current of source selected by DC meter selector.

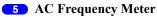
#### **2** DC Voltmeter

Indicates voltage of source selected by DC meter selector.

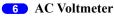
#### **3** DC Meter Selector

Selects the DC source for the DC voltmeter and DC ammeter indications

TEST - used by maintenance.


#### **4** Battery (BAT) Switch

OFF -


• removes power from the battery bus.

ON (guarded position) -

- provides power to the battery bus from TR3 when main bus No. 2 is energized.
- provides power to the battery bus from the hot battery bus when main bus No. 2 is not energized.



Indicates frequency of source selected by AC meter selector.



130V scale - indicates voltage of source selected on the AC meter selector.

30V scale - indicates residual voltage of generator selected when RESID VOLTS switch is pressed.



#### 7 AC Meter Selector

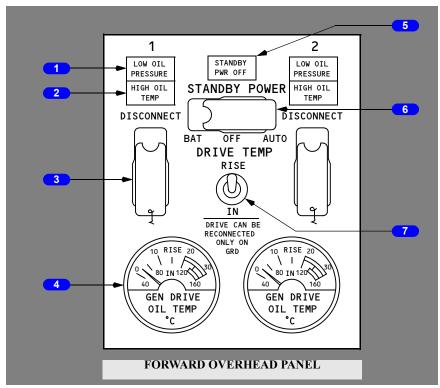
Selects the AC source for the AC frequency meter and AC voltmeter.

TEST - used by maintenance.

#### 8 GALLEY Power Switch

OFF - removes electrical power from galleys.

ON – electrical power is supplied to galleys when both AC generator busses are powered.


#### **9** Residual Volts (RESID VOLTS) Switch

PRESS - 30V scale of AC voltmeter indicates residual voltage of generator selected.

Associated generator switch must be OFF. With associated generator switch ON, AC voltmeter drives off scale and residual voltage cannot be read.

0 NOT USE FOR FLIGHT 737 Flight Crew Operations Manual

# **Generator Drive and Standby Power Panel**



#### **1** LOW OIL PRESSURE Lights

Illuminated (amber) - generator drive oil pressure is below minimum operating limits.

### **2** High Oil Temperature (HIGH OIL TEMP) Lights

Illuminated (amber) - generator drive oil temperature exceeds operating limits.

#### **3** DISCONNECT Switches (guarded and safetied)

Disconnects generator drive.

Generator drive cannot be re-engaged in the air.

#### **4** Generator Drive Oil Temperature (GEN DRIVE OIL TEMP) Indicator

Displays the temperature of the oil used in the generator drive.

IN scale (inner) - Displays the temperature of the oil entering the generator drive. Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 8, 2011 D6-27370-200A-TBC

6.10.4

RISE scale (outer) - Displays the temperature rise within the generator drive.

- Higher than normal temperature rise indicates excessive generator load or poor condition of the generator drive.
- Lack of adequate cooling will generally cause the temperature RISE to decrease.

#### **5** Standby Power (STANDBY PWR OFF) Light

Illuminated (amber) - AC standby bus is inactive.

#### **6** STANDBY POWER Switch

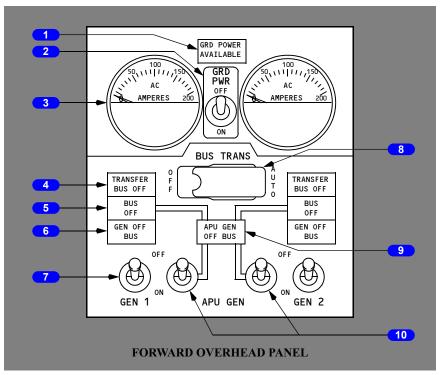
AUTO (guarded position) -

- In flight, or on the ground, and AC transfer busses powered:
  - AC standby bus is powered by AC transfer bus 1
  - DC standby bus is powered by DC bus 1.
- In flight, loss of all AC power.
  - AC standby bus is powered by the battery bus through the static inverter
  - DC standby bus is powered by the battery bus.
- On the ground, loss of all AC power
  - No automatic transfer of power. AC and DC standby busses are not powered on 737-200 models with unmodified standby system.

OFF (center position) -

- STANDBY PWR OFF light illuminates
- AC standby bus, static inverter, and DC standby bus are not powered.
- STANDBY PWR OFF light illuminates
- AC standby bus and static inverter are not powered.

BAT (unguarded position) -


- AC standby bus is powered by the battery bus through the static inverter.
- DC standby bus is powered by the battery bus.

### 7 Drive Temperature (DRIVE TEMP) Switch

RISE/IN - Selects RISE or IN temperature to be displayed on the GEN DRIVE OIL TEMP indicator.



## **Bus Switching**



### **1** Ground Power (GRD POWER AVAILABLE) Light

Illuminated (blue) - external power bus is powered by ground power supply.

Remains illuminated as long as an AC ground power source is attached outside the airplane.

### **2** Ground Power (GRD PWR) Switch

Three position switch, spring-loaded to neutral.

OFF - disconnects ground power from both generator busses.

ON - if momentarily moved to ON position and ground power is available:

- · removes previously connected power from AC generator busses
- connects ground power to both AC generator busses if power quality is correct
- switches the ground service bus to the generator bus 1
- deactivates the ground service switch.

#### **3** AC Ammeter

Indicates engine generator load in amperes.

#### **4** TRANSFER BUS OFF Light

Illuminated (amber) - related transfer bus is inactive.

#### **5** BUS OFF Light

Illuminated (amber) - related generator bus is inactive.

#### 6 Generator Off Bus (GEN OFF BUS) Light

Illuminated (blue)- related generator is not supplying the generator bus.

### **7** Generator Switch (GEN 1/GEN 2)

Three position switch, spring-loaded to neutral.

OFF - disconnects related engine generator from the generator bus.

ON - connects related engine generator to the generator bus if the power quality is correct. Disconnects the previous power source.

#### **Bus Transfer (BUS TRANS) Switch**

AUTO (guarded position) - upon failure of one engine generator bus, its transfer bus is switched to the active generator bus. Allows TR3 to supply DC bus No.1 if TR1 fails.

OFF - Isolates transfer busses by preventing operation of the bus transfer relays, and opens TR3 disconnect relay. Prevents the battery charger from switching to its alternate source of power, main bus 2. Isolates TR3 from DC bus No.1

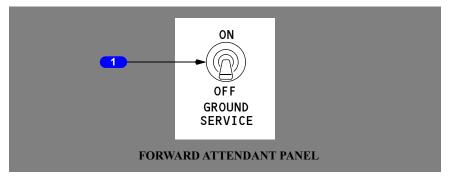
#### **9** APU Generator Off Bus (GEN OFF BUS) Light

Illuminated (blue) – APU is at its operating speed and not powering a generator bus.

#### **10** APU Generator (GEN) Switch

Three position switch, spring-loaded to center position.

OFF - disconnects the APU from the generator bus.


ON – connects the APU generator output to the generator bus if the quality is correct.

**Note:** In flight, if one generator bus is powered by the APU and the other APU GEN switch is moved to ON, the second generator bus will not connect to the APU generator.

Electrical -Controls and Indicators



## **Ground Service Switch**



#### **1** GROUND SERVICE Switch

Solenoid held ON, spring-loaded to OFF.

Provides manual control of ground service bus. Enables servicing airplane using external power without activating generator busses.

- ON connects the ground service bus to the external AC bus. Trips off when the GRD PWR switch is ON
- OFF disconnects external AC bus from the ground service bus.

737 Flight Crew Operations Manual

# Electrical System Description

Chapter 6 Section 20

## Introduction

Primary electrical power is provided by two engine driven generators which supply three-phase, 115 volt, 400 cycle alternating current. Each generator supplies its own bus system in normal operation and can also supply essential loads of the opposite side bus system when one generator is inoperative. Transformer rectifier (TR) units and a battery supply DC power. The battery also provides backup power for the AC and DC standby systems. The APU operates a generator and can supply power to both AC generator busses on the ground or one AC generator bus in flight.

There are two basic principles of operation for the 737 electrical system:

- There is no paralleling of the AC sources of power.
- The source of power being connected to a generator bus automatically disconnects an existing source.

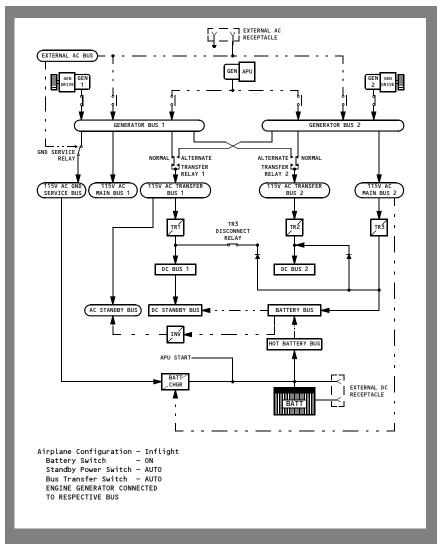
The electrical power system may be categorized into three main divisions: the AC power system, the DC power system, and the standby power system.

## Electrical Power Generation Engine Generators

Primary power is obtained from two 40 KVA, engine driven generators. Each generator is part of a generator drive unit which maintains a constant frequency throughout the normal operating range of the engine. The generator is coupled directly to the engine and operates whenever the engine is running.

# **APU Generator**

The APU generator can supply primary power on the ground and can serve as a backup for either generator in flight. The APU generator is identical to the engine generators but has no generator drive unit, since the APU itself is governed and will maintain a constant speed. As the only power source, the APU generator can meet electrical power requirements for all ground conditions and all essential flight requirements. The APU generator is rated at 40 KVA in flight and 45 KVA on the ground.


## **External Ground Power**

An external AC power receptacle located near the nose gear wheel well, on the lower right side of the fuselage, allows the use of an external power source. Status lights on a panel adjacent to the receptacle permit the ground crew to determine if external power is being used. A GRD POWER AVAILABLE light provides flight deck indication that an AC ground power source is attached outside the airplane. A GRD PWR switch allows connection of external power to both generator busses.

## **Ground Service**

For ground servicing, a ground service switch is located on the forward attendant's panel. The switch provides ground power directly to the AC ground service bus for utility outlets, cabin lighting and the battery charger without powering all airplane electrical busses. The ground service switch is magnetically held in the ON position and is overridden when the GRD PWR switch is positioned to ON.

## **Electrical Power Schematic**



## **AC Power System**

Each AC power system consists of a generator bus, a main bus, and a transfer bus. The left AC power system also includes a ground service bus. Transfer bus 1 supplies power to the AC standby bus. If the source powering either AC power system fails or is disconnected, a transfer relay automatically selects the opposite generator bus as an alternate power source for the transfer bus.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2012 D6-27370-200A-TBC 6.20.3

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Generator busses can be powered from the engine generators by momentarily positioning the related generator switch to ON. This connects the voltage regulator to the generator and connects the generator to its associated generator bus. Selecting a new power source disconnects the existing power source.

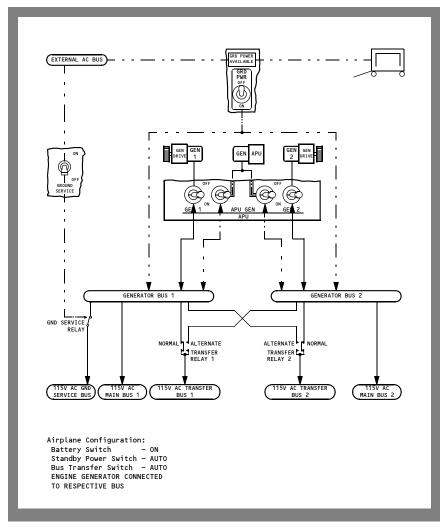
When the APU is operating, selecting either APU GEN switch ON connects APU power to its associated generator bus. On the ground, the APU can supply electrical power to both generator busses.

With the airplane on the ground and external power is available, selecting the GRD PWR switch ON connects external power to both generator busses. An engine generator can supply power to one generator bus while external power supplies the other generator bus.

With external power supplying both generator busses, selecting either APU GEN switch ON disconnects external power.

In flight, each engine generator normally powers its own generator bus. If an engine generator is no longer supplying power, the APU generator may be used to power one generator bus. Since the entire electrical system is powered from the two generator busses, all electrical components can be powered with any two operating generators.

## **Bus Transfer System**


The generator busses supply the heavy electrical loads including supplying power to the transfer and main busses. The transfer busses carry the essential electrical loads, and the main busses carry the non-essential loads.

If a generator trips off, its generator bus and main bus will not be powered. Each transfer bus has a transfer relay which automatically selects the opposite generator bus as its power source. The BUS TRANS switch must be in the AUTO position to enable this transfer.

# Automatic Load Shedding

In flight, all galley power and the respective system B hydraulic pump power is automatically removed when operating on one generator. (The switches remain in the ON position.) However, if one system B hydraulic pump switch is already off, the remaining system B hydraulic pump will be transferred to the generator bus that is powered. This automatic load shedding feature reduces the total electrical load on the remaining generator, protecting it from overload.

## **AC Power Schematic**



## **Electrical Power Controls and Monitoring Generator Drive**

Each engine driven generator is connected to its engine through a generator drive unit. Each generator drive is a self-contained unit consisting of an oil supply, cooler, instrumentation and disconnect device which provides for complete isolation of the generator in the event of a malfunction.

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Operating conditions of the generator drive can be observed on the generator drive oil temperature indicator. Oil temperature is measured as it enters and leaves the generator drive. Temperature of oil entering the generator is indicated on the IN scale. Temperature differential between outlet and inlet is indicated as RISE - (out temperature minus in temperature). During normal operation, the oil temperature rise should be less than 20 deg. C. Readings above 20 deg. C indicate excessive generator load or poor condition of the drive and are used by maintenance in troubleshooting drive problems.

The amber HIGH OIL TEMPERATURE light illuminates when oil temperature in the internal oil tank exceeds limitations. The amber LOW OIL PRESSURE light illuminates when oil pressure is below the operating limit. When the generator has been disconnected, the LOW OIL PRESSURE light will be on, and the HIGH OIL TEMPERATURE light remains on until the oil is cooled.

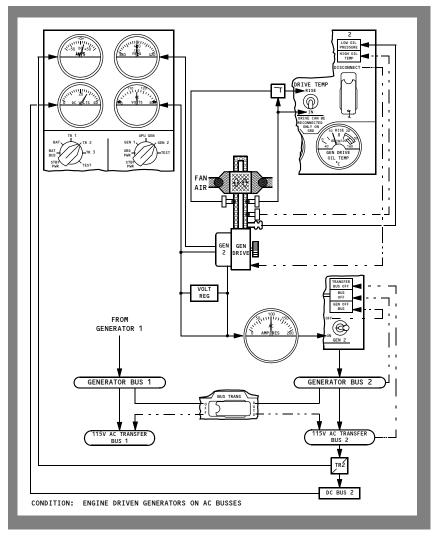
A generator drive disconnect switch is installed. This switch disconnects the generator from the engine in the event of a generator drive malfunction. Reactivation of the generator may be accomplished only on the ground by maintenance personnel.

# AC Voltmeter and Frequency Meter

AC voltage and frequency may be read on the AC voltmeter and frequency meter for unit selected on the AC meter switch. Frequency is indicated only when the generator is electrically excited. The voltage regulator automatically controls the generator output voltage.

Current readings for the two engine generators and the APU generator may be read on the AC ammeter.

The TEST position is used by maintenance and connects the voltage and frequency meter to the power systems test module for selection of additional reading points.


## **DC** Voltmeter and Ammeter

DC voltage and amperage may be read on the DC voltmeter and ammeter for the battery and each of the three TRs. Standby power and the battery bus will display only DC voltage.

The TEST position is used by maintenance.

737 Flight Crew Operations Manual

## **Electrical Power Controls and Monitoring Schematic**



### **DC Power System**

28 volt DC power is supplied by three TR units, which are energized from the AC transfer busses and main bus 2. The battery provides 28V DC power to loads required to be operative when no other source is available.

## **Transformer Rectifier Units**

The TRs convert 115 volt AC to 28 volt DC, and are identified as TR1, TR2, and TR3.

TR1 and TR2 receive AC power from transfer bus 1 and transfer bus 2, respectively. TR3 receives AC power from main bus 2.

Under normal conditions, TR1 and TR2 are each powering DC bus 1 and DC bus 2. TR3 powers the battery bus and serves as a backup power source for TR1 and TR2 with the Bus Transfer Switch in the AUTO position.

- Maximum TR Load (with cooling) 65 amps.
- Maximum TR Load (without cooling) 50 amps.
- TR voltage range 24 30V

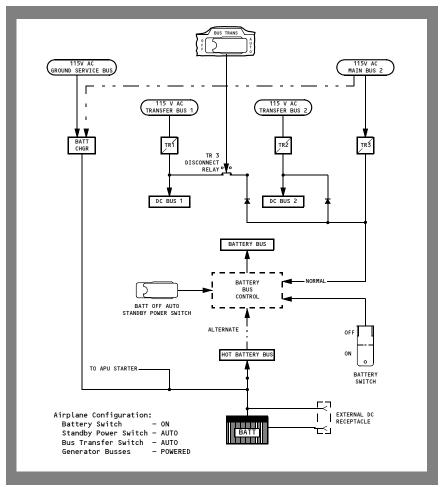
## **Battery Power**

A 24 volt nickel–cadmium battery is located in the electronics compartment. The battery can supply part of the DC system. Battery charging is automatically controlled. A fully charged battery has sufficient capacity to provide standby power for a minimum of 30 minutes. Battery voltage range is 22–30 volts.

DC busses powered from the battery following a loss of both generators are:

- battery bus
- DC standby bus
- hot battery bus

The hot battery bus is always connected to the battery. There is no switch in this circuit. The battery must be above minimum voltage to operate units supplied by this bus.


## **Battery Charger**

The purpose of the battery charger is to restore and maintain the battery at full electrical power. The battery charger is powered through AC ground service bus with provisions for automatic switching to main bus 2 when the ground service bus is unpowered.

# **DC Power Receptacle**

An auxiliary 28V DC power receptacle is provided near the battery in the electronic compartment. A placard located adjacent to the receptacle gives complete instruction for connecting external DC power. With external DC power connected, the battery is paralleled with the DC external power source and the external power source will power all circuits normally supplied by the battery. In the event that the airplane battery is depleted, the APU can be started using DC external power.

## **DC Power System Schematic**



## **Standby Power System Normal Operation**

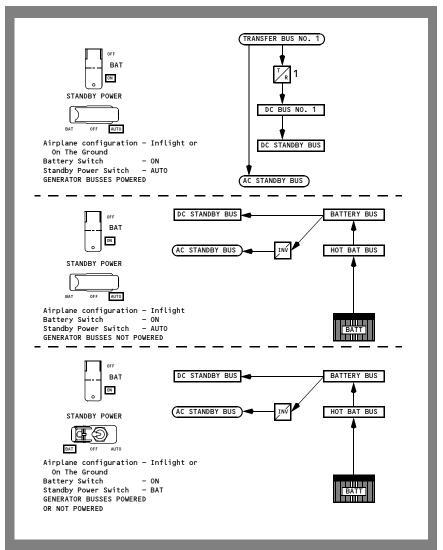
The standby system is used to supply power to essential AC and DC systems. During normal operation the guarded standby power switch is in AUTO and the battery switch is ON. Under normal conditions the AC standby bus is energized from the 115 V AC transfer bus no. 1 and the DC standby bus is energized from DC bus no. 1.

## **Alternate Operation**

The alternate power source for standby busses is the battery. With a complete generator power failure the AC standby bus is powered from the battery bus through the static inverter. The DC standby bus is powered by the battery bus. A fully charged battery has sufficient capacity to provide power to the minimum essential flight instruments, communications and navigation equipment for a minimum of 30 minutes.

In flight, automatic switching is provided from the normal power sources to the alternate power sources when the standby power switch is in the AUTO position. If either transfer bus 1 or DC bus 1 loses power, the AC standby bus automatically switches to the battery bus via the static inverter, and the DC standby bus switches to the battery bus.

The automatic transfer of power is an inflight feature only. The air/ground safety sensor prevents the battery from powering the airplane when the airplane is on the ground. The air/ground safety sensor inhibits the transfer to battery power to prevent discharging the battery. If the standby power switch is positioned to BAT, the air/ground safety sensor is bypassed and the AC and DC standby busses are powered.


When the standby power switch is OFF, the STANDBY PWR OFF light will be ON indicating the standby busses are de-energized.

## **Static Inverter**

The static inverter converts 24 volt DC power from the battery to 115V AC power to supply the AC standby bus during the loss of normal electrical power. The power supply to the inverter is controlled by the standby power switch and the battery switch on the overhead panel.

On the unmodified standby system, the static inverter is operating only when the battery bus is powering the AC standby bus.

## **Standby Power System Schematic**



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 6, 2000 D6-27370-200A-TBC 6.20.11



Intentionally Blank

## **All Generators Inoperative**

The following list identifies the significant equipment that operates when the battery is the only source of electrical power and is powering the standby busses.

# Airplane General, Emergency Equipment, Doors, and Windows

- emergency instrument flood lights
- entry lights (dim) (hot battery bus)
- position lights
- standby compass light
- white dome lights
- oxygen indicator and valve
- forward airstair control

## Air Systems

- A/C pack valves
- altitude warning horn
- manual pressurization control
- cabin airflow fan
- PACK TRIP OFF lights

# Engines, APU

- EPR warning
- engine start ignition
- starter valves
- thrust reversers
- APU operation (start attempts not recommended above 25,000 feet)

## Communications

- flight interphone system
- passenger address system
- VHF No. 1

## Electrical

- STANDBY POWER OFF light
- external power control (hot battery bus)
- APU & engine generator power control

# **Flight Instruments**

- standby airspeed indicator
- standby horizon indicator

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.



- standby magnetic compass
- · captain's horizon indicator

## **Fire Protection**

- APU and engine fire extinguisher bottles (hot battery bus)
- APU and engine fire detection system

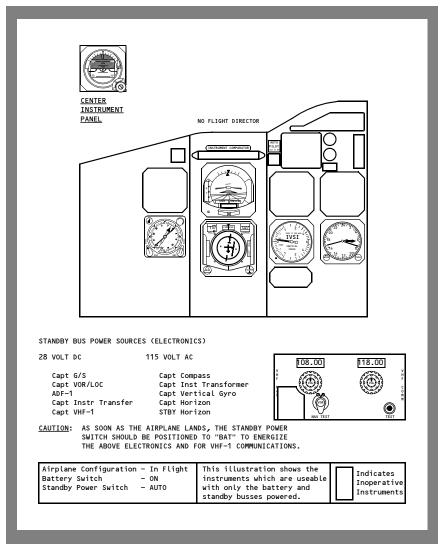
## Fuel

- crossfeed valve
- engine fuel shutoff valves (hot battery bus)
- fuel quantity indicators
- FUEL VALVE CLOSED lights (hot battery bus)

# Landing Gear

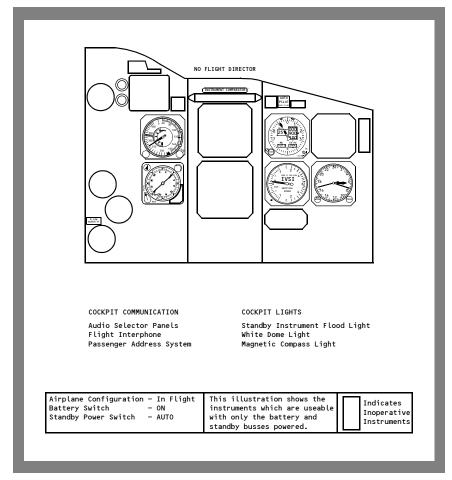
- autobrake failure warning
- anti-skid failure and parking brake
- landing gear indicator lights
- auxiliary landing gear indicator lights (as installed)

# Navigation


- ADF No. 1
- captain's RMI
- VHF NAV No. 1

## Warnings

- aural warnings
- master caution (AIR COND, FUEL, ANTI-ICE)


737 Flight Crew Operations Manual

## **Basic Equipment Operating – Instrument Panels Captain Instrument Panel**





## **First Officer Instrument Panel**



## **Electrical System Power Distribution No. 1 Generator Inoperative**

Failure In Flight, Transfer Busses Normal

| Inoperative Components                 | Indication                                           |
|----------------------------------------|------------------------------------------------------|
| No.1 tank forward fuel pump            | LOW PRESSURE light                                   |
| Center tank right fuel pump            | LOW PRESSURE light                                   |
| Aux. tank aft fuel pump (as installed) | LOW PRESSURE light                                   |
| Galley(s)                              | Inoperative                                          |
| No.1 Generator                         | GEN OFF BUS light                                    |
| Generator bus No. 1                    | BUS OFF light                                        |
| Left forward window heat               | ON light – extinguished                              |
| Right side window heat                 | ON light – extinguished                              |
| Left No. 4 & 5 window heat             | Inoperative                                          |
| Left elevator pitot heat               | L ELEV PITOT light                                   |
| No.1 system B hydraulic pump           | LOW PRESSURE light (if no. 2<br>system B pump is on) |
| Left outboard landing light            | Inoperative                                          |
| Right inboard landing light            | Inoperative                                          |
| Left runway turnoff light              | Inoperative                                          |
| Nose gear taxi light (as installed)    | Inoperative                                          |
| Equipment cooling normal               | OFF light                                            |

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **No. 2 Generator Inoperative**

Failure In Flight, Transfer Busses Normal

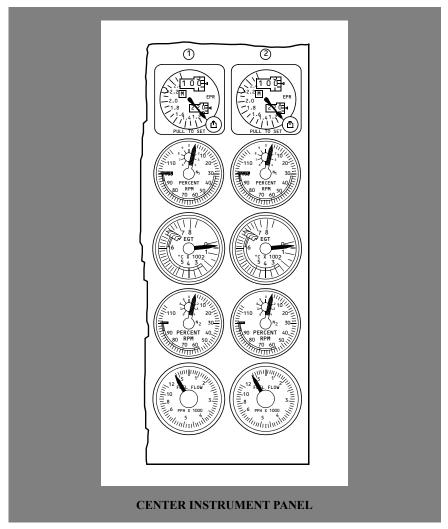
| Inoperative Components          | Indication                           |
|---------------------------------|--------------------------------------|
| No.2 tank forward fuel pump     | LOW PRESSURE light                   |
| Center tank left fuel pump      | LOW PRESSURE light                   |
| Aux. tank forward fuel pump (as | LOW PRESSURE light                   |
| installed)                      | Inoperative                          |
| Fuel temperature indicator      |                                      |
| Galley(s)                       | Inoperative                          |
| No.2 Generator                  | GEN OFF BUS light                    |
| Generator bus No. 2             | BUS OFF light                        |
| TR unit No. 3                   | TR No. 3 voltage - Zero              |
| Left side window heat           | ON light – extinguished              |
| Right forward window heat       | ON light – extinguished              |
| Right No. 4 & 5 window heat     | Inoperative                          |
| Right elevator pitot heat       | R ELEV PITOT light                   |
| TEMP PROBE Heat                 | TEMP PROBE light                     |
| No. 2 system B hydraulic pump   | LOW PRESSURE light (if no. 1         |
|                                 | system B pump is on)                 |
| Gasper fan                      | Inoperative                          |
| Right outboard landing light    | Inoperative                          |
| Left inboard landing light      | Inoperative                          |
| Right runway turnoff light      | Inoperative                          |
| Equipment cooling - Alternate   | If switch is to alternate, OFF light |

737 Flight Crew Operations Manual

| Engines, APU                               | Chapter 7   |
|--------------------------------------------|-------------|
| Table of Contents                          | Section TOC |
| Controls and Indicators                    | 7.10        |
| Engine Instruments Primary Panel           | 7.10.1      |
| Engine Pressure Ratio (EPR) Indications    | 7.10.2      |
| N1 Indications                             |             |
| EGT Indications                            |             |
| N2 Indications                             |             |
| Fuel Flow Indications                      | 7.10.4      |
| Engine Instruments Secondary Panel.        | 7.10.5      |
| Engine Oil Quantity Test Switch            | 7.10.6      |
| Caution Lights                             | 7.10.6      |
| Engine Oil Indications                     | 7.10.7      |
| Gravel Protection (As Installed)           | 7.10.8      |
| Engine Start Switches                      | 7.10.9      |
| Engine Controls                            | 7.10.10     |
| Thrust Reverser Override Switches          | 7.10.11     |
| PDCS Control Display Unit (CDU)            | 7.10.12     |
| Flight Mode Annunciator                    | 7.10.16     |
| PDCS Displays (Typical)                    | 7.10.16     |
| APU                                        | 7.10.18     |
| APU Hours Indicator                        | 7.10.20     |
| Engine System Description                  |             |
| System Description                         |             |
| Power Pliant Schemate                      |             |
| Engine Fuel System                         |             |
| Oil System                                 |             |
| Engine Fuel and Oil system Schematic       |             |
|                                            |             |
| Engine Start System                        |             |
| Engine Start and Ignition System Schematic |             |
| Engine Start and Ignition System Schematic | / .20. /    |

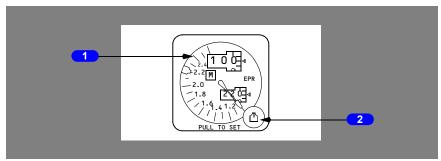
#### Engines, APU -Table of Contents

# **DO NOT USE FOR FLIGHT**


737 Flight Crew Operations Manual

| Thrust Reverser                            |         |
|--------------------------------------------|---------|
|                                            | 7.20.8  |
| Thrust Reverser Schematic                  |         |
| Gravel Protection (As Installed)           | 7.20.10 |
| PDCS System Description                    | 7.20.10 |
| General                                    | 7.20.10 |
| Computer Inputs                            | 7.20.11 |
| Computer Outputs                           | 7.20.12 |
| Systems Safeguards                         | 7.20.13 |
| PDCS Schematic                             | 7.20.14 |
| APU System Description                     |         |
| Introduction                               | 7.30.1  |
| APU Location                               | 7.30.1  |
| APU Operation                              |         |
|                                            |         |
| APU Fuel Supply                            | 7.30.1  |
|                                            |         |
| APU Fuel Supply                            |         |
| APU Fuel Supply APU Engine and Cooling Air |         |
| APU Fuel Supply                            |         |

737 Flight Crew Operations Manual


**Engines, APU** Controls and Indicators Chapter 7 Section 10

## **Engine Instruments Primary Panel**



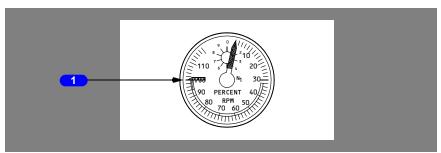
**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Engine Pressure Ratio (EPR) Indications**



#### **1** Engine Pressure Ratio (EPR) Indicator

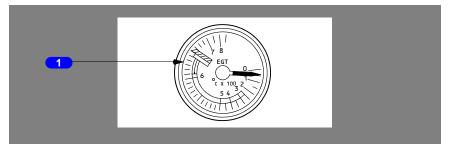
- Indicates the ratio of turbine discharge pressure (Pt7) to compressor inlet pressure (Pt2)
- Used as the primary thrust setting reference
- Provides digital display of indicated EPR; Read EPR on outer scale and in the large upper digital display for thrust settings
- Warning flag covers the indicated EPR digital display with electrical power loss or instrument failure. Failure of the PDC will result in a flag covering the lower digital window.


### **2** EPR Reference Selector

ROTATE – Positions the EPR reference "bug" and changes the reference EPR digital readout in the lower window correspondingly

- When the reference selector is pushed in, the lower digital window and "bug" will be set by an input signal from the PDC
- Pulling out the reference selector disconnects the PDC, and an "M" (indicating manual mode) appears on the dial face
- When pulled out, the reference selector can be rotated to set desired EPR in the lower digital window, the "bug" moves to the corresponding position on the outer scale.

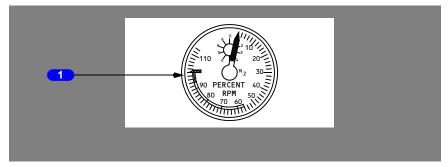
## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual


## **N1 Indications**



#### 1 N1 RPM Indicator

- · Indicates low pressure compressor speed in percent of RPM
- Self-powered.

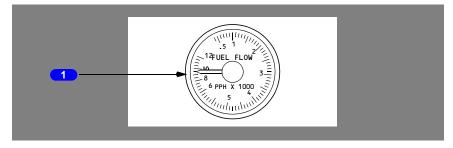

## **EGT Indications**



### **1** Exhaust Gas Temperature (EGT) Indicator

- Indicates turbine exhaust gas temperature in degrees C as sensed by thermocouples
- Uses AC power from the Standby Bus.

## N2 Indications

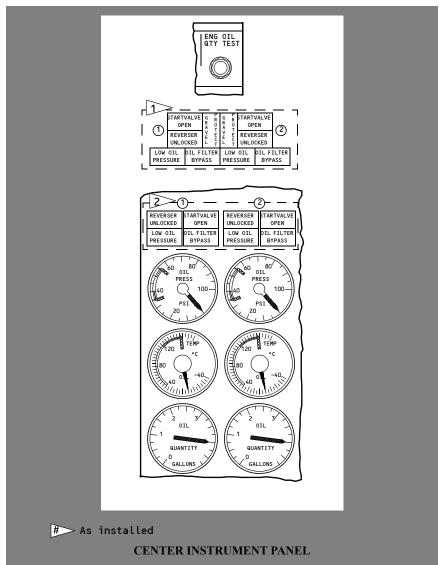





#### 1 N2 Indicator

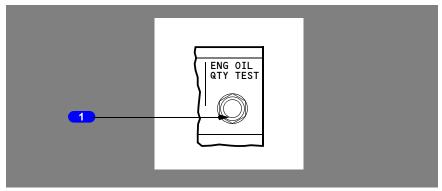
- · Indicates high pressure compressor speed in percent of RPM
- Self-powered.

## **Fuel Flow Indications**




#### 1 Fuel Flow Indicator

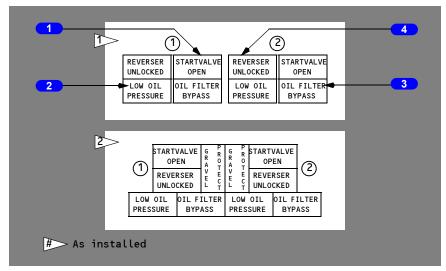
Indicates fuel consumption rate in pounds per hour.


737 Flight Crew Operations Manual

## **Engine Instruments Secondary Panel**



**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual


# **Engine Oil Quantity Test Switch**



## **1** Engine Oil Quantity Test (ENG OIL QTY TEST) Switch

Push - oil quantity indicators move toward zero.

## **Caution Lights**

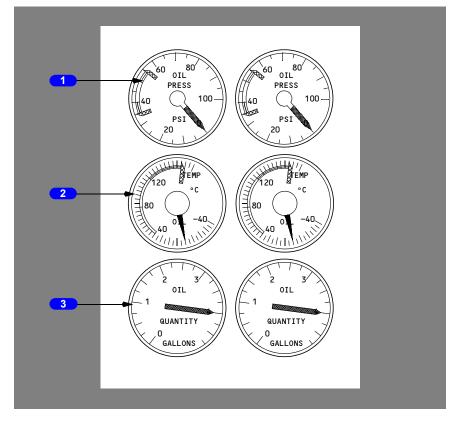


## START VALVE OPEN Light

Illuminated (amber) – indicates the engine starter valve is open and air is being supplied to the starter motor.

## **2** LOW OIL PRESSURE Light

Illuminated (amber) - indicates engine oil pressure is below 35 psi.


#### OIL FILTER BYPASS Light

Illuminated (amber) - indicates an impending bypass of the main oil filter.

#### **4** REVERSER UNLOCKED Light

Illuminated (amber) - indicates the thrust reverser doors are not locked.

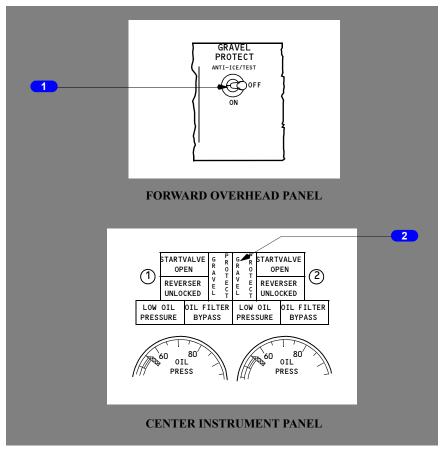
## **Engine Oil Indications**



#### **1** Oil Pressure (OIL PRESS) Indicator

Displays engine oil pressure in psi.

### **2** Oil Temperature (OIL TEMP) Indicator


Displays engine oil temperature in degrees C.

### **3** Oil Quantity (OIL QTY) Indicator

Displays engine oil quantity in gallons.



# **Gravel Protection (As Installed)**

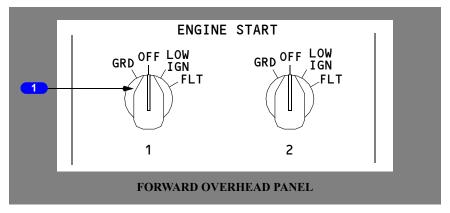


### **1** GRAVEL PROTECT Switch

ANTI-ICE TEST – activates the vortex dissipator for anti-icing or test of the system.

ON –

- · Arms the vortex dissipator system in the air for actuation on touchdown
- The vortex dissipator operates only when the airplane is on the ground with the engines running.


OFF – The vortex dissipator system is deactivated.

### **2** GRAVEL PROTECT Light

Illuminated (green) - Vortex dissipators are operating.

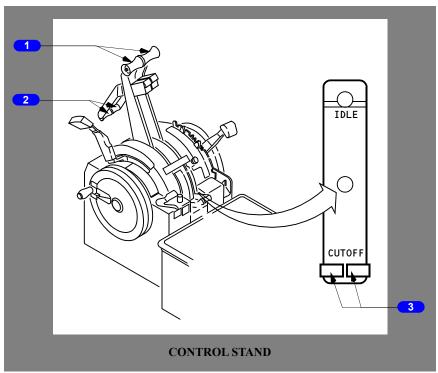
737 Flight Crew Operations Manual

### **Engine Start Switches**



#### **1** ENGINE START Switch

GRD – (solenoid held – spring loaded to OFF) Opens the starter valve and provides high energy ignition to two igniters when the Engine Start Lever is moved from CUTOFF to IDLE


OFF – No ignition

LOW IGN– Provides low energy ignition to one igniter with the Engine Start Lever in IDLE

FLT – Provides high energy ignition to two igniters when the Engine Start Lever is in IDLE.



## **Engine Controls**



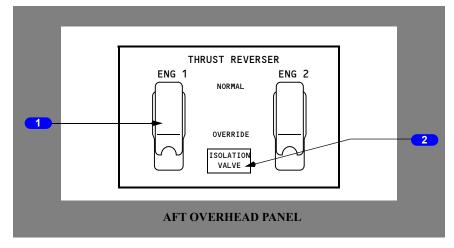
#### **1** Forward Thrust Lever

- · Controls engine thrust
- Cannot be advanced if the reverse thrust lever is in the reverser deployed position.

#### **2** Reverse Thrust Lever

- · Controls engine reverse thrust
- Reverse thrust cannot be selected unless the forward thrust levers are in IDLE.
- **Note:** When the reverse thrust levers are moved out of IDLE towards reverse thrust, pawls are forced into openings locking the forward thrust levers in the idle position.
- **Note:** The ability of each reverse thrust lever and its corresponding forward thrust lever to move depends on the position of the other lever because each is capable of "locking out" the other pawl attached to the forward thrust levers.

#### **3** Engine Start Lever


### IDLE

• Controlled fuel flow is supplied to the engine, and ignition circuits are energized.

### CUTOFF

- Closes the main fuel shutoff valve and the main engine control shutoff valve
- Ignition system is de-energized.

## **Thrust Reverser Override Switches**



## **1** OVERRIDE Switch

#### NORMAL

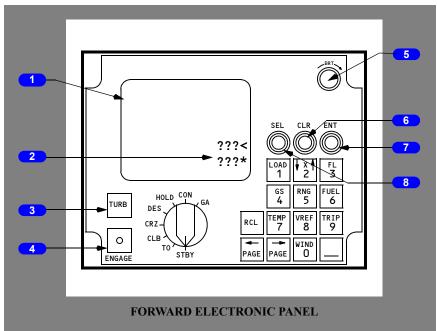
• The thrust reverser may be operated if the engine oil pressure is more than 35 psi, the fire switch is down and the air/ground safety sensor is in the ground mode (if hydraulic pressure is available).

### OVERRIDE

- Bypasses the engine oil pressure switch and the air/ground safety sensor
- Opens the isolation valve directing available hydraulic pressure to the thrust reverser selector valve.

## **2** ISOLATION VALVE LIGHT (amber)

### ILLUMINATED IN FLIGHT


- Hydraulic pressure is available to either or both thrust reverser selector valve
- The isolation valve is open.

737 Flight Crew Operations Manual

## ILLUMINATED ON THE GROUND

- Hydraulic pressure is not available to either or both thrust reverser selector valves
- The isolation valve is closed.

## PDCS Control Display Unit (CDU)



## **1** Cathode Ray Tube (CRT) Display

- Displayed data is called a page
- Each page can display 6 lines, 13 characters per line.

## **2** CRT Display Symbols

??? (question marks)

• Indicates lines of unentered data.

CARET

- Indicates the place where information is to be inserted
- Displaces the asterisk on that line.

\* (asterisk) - Identifies the line where an ENT (entry) can be made.

### **3** TURB (turbulence) KEY

PRESS -

- Causes the CRT to display the turbulent air penetration speed, pitch attitude and N1 settings
- The EPR indicator bugs move to values corresponding to the N1 values
- Overrides the CRZ flight mode position.

#### 4 ENGAGE KEY

PRESS (with a flight mode selected) -

- · Drives the EPR and/or airspeed bugs to the displayed values
- The key light extinguishes and the engaged mode is displayed on the flight mode annunciator
- Other CDU displays can be selected without changing the engaged mode.

ILLUMINATED -

- Indicates the data displayed is not driving the bugs
- When a performance function is displayed, the Engage Key does not illuminate since performance functions cannot be engaged.

### **5** BRT (brightness) Control

ROTATE – Controls CRT brightness.

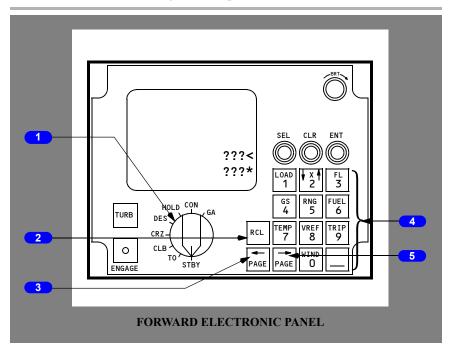


PRESS -

- Causes data on the line corresponding to the Caret to be removed from the display
- The CLR key must be pressed any time a new numeric entry is desired.



PRESS – Commands the computer to accept the data which has been keyed in and displayed.


### 8 SEL (Select)

PRESS -

- Moves the Caret down one line each time it is pressed
- The possible Caret positions are limited to those lines which display an asterisk
- The Caret cycles to the top line if at the lowest line.

Engines, APU -Controls and Indicators

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual



## 1 FLIGHT MODE SELECTOR

ROTATE - Selects the phase of flight for which data is desired.

STBY (Standby) – Used for data entry and automatic system verification.

TO (Takeoff) – Displays takeoff EPR limits for the temperature entered.

CLB (Climb) – Displays climb EPR and speeds for the desired climb profile: Best economy, maximum rate or crew selected speeds.

CRZ (Cruise) – Displays cruise EPR and speeds for the desired cruise schedule: Best economy, LRC (long range cruise) or crew selected speeds.

DES (Descent) – Provides descent speed, time and distance for best economy or crew selected speeds.

HOLD (Holding) - Used to obtain holding EPR, speed and endurance time.

CON (Continuous) – Provides maximum continuous EPR limit and engine out data.

GA (Go Around) – Displays go-around EPR limit for existing altitude and temperature.

## **2** RCL (Recall)

PRESS (with performance function displayed) – Changes the display to the selected flight mode.

## 3 PAGE REVERSE KEY

PRESS -

- Reverse the display one page for both flight modes and performance functions wit multiple pages.
- After the first page is reached, the system cycles back to the last page.

### 4 KEYBOARD

• The keyboard contains double function keys for entering numerics and selecting performance functions for display.

LOAD key – Permits flight data entry to enable the system to compute takeoff EPR, gross weight, optimum descent distance, and airspeeds.

ALTITUDE INTERCEPT key – Used to solve time, distance, and flight level intercept problems during climb and descent.

FL (Flight) key – Used to determine optimum flight level, maximum altitude capability and wind altitude trade considerations.

GS (Ground Speed) key – Computes ground speed and wind, or time and distance to a waypoint or destination.

RNG (Range) key – Displays total endurance, distance and time remaining to reserve fuel quantity or empty tanks at any flight level.

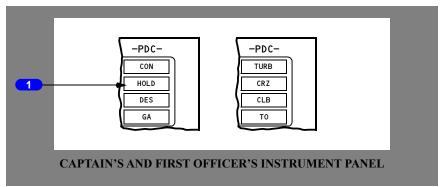
FUEL key – Displays total fuel, fuel reserves and fuel over destination.

TEMP (Temperature) key – Displays ISA deviation, TAT, SAT, TAS.

VREF key – Displays reference speeds for landing flaps and the current gross weight.

TRIP key – Displays most economical cruise flight level for trip distances, ISA deviation, and wind, if known.

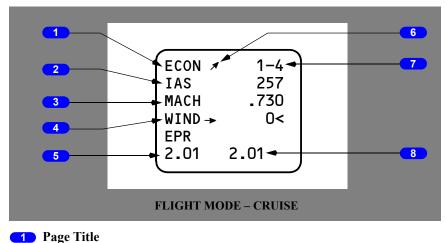
WIND key - Displays automatically computed or manually entered wind data.


## **5** PAGE FORWARD KEY

PRESS -

- Advances the display one page for both flight modes and performance functions with multiple pages.
- After the last page is reached, the system cycles back to the first page.




## **Flight Mode Annunciator**



## Flight Mode Annunciator

Indicates the flight mode to which the driven airspeed and EPR bugs are engaged.

## **PDCS Displays (Typical)**

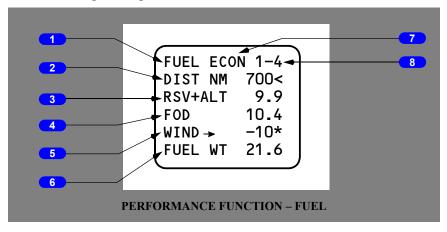


- **2** Target Airspeed
- 3 Target MACH

### 4 Wind Component

Unless a wind is entered the component reads zero.

## **5** No. 1 Engine Target/Limit EPR


#### **6** Indicating Arrow

IN VIEW –

- Optimum altitude is still more than 2000 feet above (or below if down arrow is showing)
- Arrow disappears when within 2000 feet of optimum altitude.



## **8** No. 2 Engine Target/Limit EPR



### **1** Performance Function

## 2 DIST NM (Distance Nautical Miles

Distance to go as entered. May be to a checkpoint or over destination.

### **3** RSV+ALT (Reserve + Alternate)

Reserve and alternate fuel quantity (LBS X 1000).

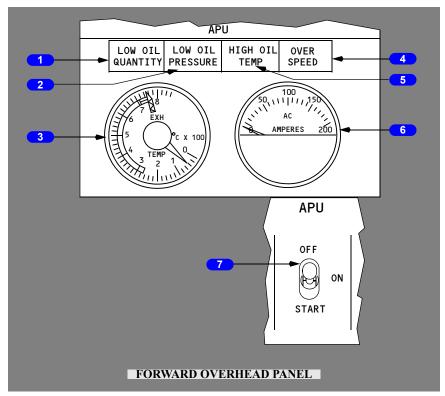
## **4** FOD (Fuel over distance)

Fuel remaining over destination or waypoint at the CRZ ECON speed for the present altitude and entered distance to go (LBS X 1000).

### 5 Wind

Wind component entered into computer (based on 10 kt. headwind).

## **6** Total fuel quantity remaining


(LBS X 1000)





#### 8 Page 1 of 4

## APU



## **1** LOW OIL QUANTITY Light

Illuminated (blue) -

- APU oil quantity is insufficient for extended operation.
- light is disarmed when APU switch is OFF.

## APU LOW OIL PRESSURE Light

Illuminated (amber) -

- during start until the APU oil pressure is normal
- oil pressure is low causing an automatic shutdown (after start cycle is complete)
- light is disarmed when APU switch is OFF.

### 3 APU Exhaust Gas Temperature (EGT) Indicator

Displays APU EGT

## 4 APU OVERSPEED Light

Illuminated (amber) -

- APU RPM limit has been exceeded resulting in an automatic shutdown
- · overspeed shutdown protection feature has failed a self-test during a normal APU shutdown
- APU start is aborted prior to reaching governed speed (light will extinguish following a normal start)
- light is disarmed when APU switch is OFF.

## **5** APU HIGH OIL TEMPERATURE Light

Illuminated (amber) -

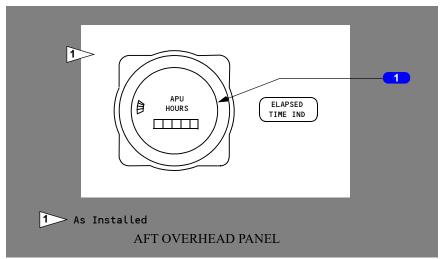
- · APU oil temperature is excessive, causing APU to initiate an automatic shutdown
- light is disarmed when APU switch is OFF.

## 6 APU Generator AC Ammeter

Displays APU generator load current



OFF – normal position when APU is not running.


• positioning switch to OFF with APU running initiates APU shutdown, trips APU generator off the bus(es), if connected, and closes APU bleed air valve.

ON – normal position when APU is running.

START (momentary) - positioning APU switch from OFF to START and releasing it to ON initiates an automatic start sequence.



## **APU Hours Indicator**



### **1** APU Hours Indicator

Indicates elapsed hours of APU operation since last reset.

737 Flight Crew Operations Manual

Engines, APU Engine System Description Chapter 7 Section 20

## **System Description**

The airplane is equipped with two Pratt and Whitney JT8D ducted turbofan engines having two rotors in series – N1 and N2.

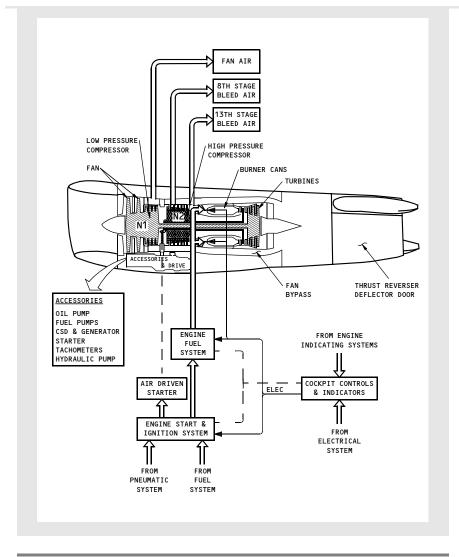
This is a forward fan type engine with a twin spool axial compressor, consisting of a low pressure unit (N1) and a high pressure unit (N2). The low pressure unit is connected by a through shaft to the turbine wheels for the low pressure compressor, and the high pressure compressor is connected independently by a hollow shaft to the turbine wheel for the high pressure compressor. The compressors deliver highly compressed air to the engine burner section, where a fuel/air mixture is ignited. The resulting high energy gasses enter the turbines, producing the power to drive the compressors and accessories as well as the fan at the front of the engine. Propulsion is produced by the forces within the engine that result in the discharge of high velocity gasses through the nozzle at the rear. A fuel controller schedules fuel flow to provide the thrust called for by the thrust lever setting in the cockpit.

The accessories are driven by the N2 compressor through a gear train and cooled by the fan duct air. A thrust reverser provides reverse thrust by blocking the engine exhaust gas flow and deflecting the flow forward.

Each engine has individual flight deck controls. Thrust is set by positioning the thrust levers. The forward thrust levers control forward thrust from idle to maximum. Advancing the thrust levers full forward provides some overboost and should be considered only during emergency situations when all other available actions have been taken and terrain contact is imminent. The reverse thrust levers control thrust from reverse idle to maximum reverse.

Engines, APU -




In the event of an N2 signal fail to the fuel control unit, engine RPM may change to or remain at high thrust with no observable movement of thrust lever and no engine response to thrust lever movement. This may be due to either complete or partial loss of the N2 signal to the fuel control unit (FCU). The FCU is designed to ensure the engine delivers high power during a critical phase of flight, such as takeoff or go-around should one of these conditions occur. Thrust will be set to 90-95% N2 (complete loss) or the FCU will add fuel in an attempt to reach target N2 (partial loss). Either of these conditions can occur any time, in-flight or on the ground and the only control the flight crew has is to shutdown the affected engine with the engine start lever or engine fire warning switch. This malfunction may be difficult to identify because, depending upon thrust setting at the time of occurrence, thrust on the affected engine may increase, decrease or remain nearly the same.

Note: It is recommended the flight crew not attempt to shut down the engine until a safe altitude is achieved, flight path is stabilized and the malfunctioning engine has been positively identified. If this condition occurs during ground maneuvers, landing rollout or rejected takeoff, thrust lever response will be lost and the engine must be shut down immediately to prevent possible loss of directional control.

Engines, APU -Engine System Description

737 Flight Crew Operations Manual

## **Power Pliant Schematc**



## **Engine Fuel System**

Fuel is delivered to the engines at pressures and flow rates required to obtain desired engine thrust. Fuel leaves the fuel tank and enters through the engine fuel shutoff valve. The engine fuel shutoff valve is controlled by the engine start lever and the engine fire warning switch. When the engine fuel shutoff valve is closed, the FUEL VALVE CLOSED light located on the forward overhead panel will illuminate dim.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 15, 2019 D6-27370-200A-TBC 7.20.3

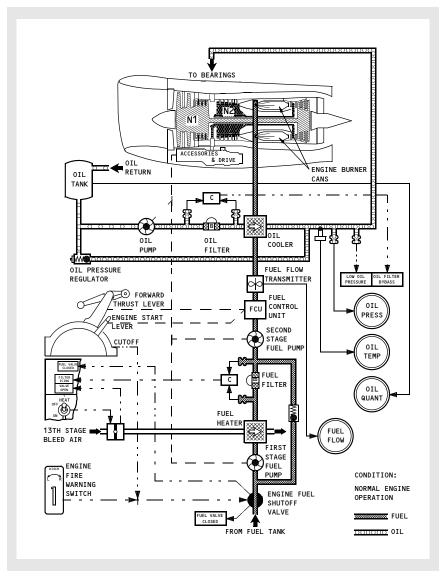
## Engines, APU -

## Engine System Description **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Fuel passes from the first stage of the engine driven fuel pump to a fuel heater and fuel filter. The heater uses 13th stage bleed air to increase fuel temperature and prevent blocking of the filter due to icing. The FILTER ICING light will illuminate when the filter is blocked. Provisions are made to bypass the first stage of the pump, the heater, or the filter in the event of failure or blockage.

The second stage of the fuel pump provides high pressure fuel to the fuel control unit (FCU). The FCU uses thrust lever position, diffuser case pressure, compressor inlet temperature, and N2 RPM to meter the correct amount of fuel to the burner cans. A fuel flow transmitter measures the rate of fuel flow from the FCU and provides an indication on the fuel flow indicator located on the center instrument panel. Fuel from the FCU passes through an oil cooler which is used to cool engine oil. Oil temperature varies with fuel flow or fuel temperature.

## **Oil System**


Oil from the individual engine tank is circulated under pressure, through the engine to lubricate the engine bearings and accessory gearbox. Oil quantity is displayed on the oil quantity indicator located on the center instrument panel.

The oil system is pressurized by the engine driven oil pump. The oil leaves the oil pump, passes through an oil filter, and continues to the engine bearings and gearbox. Should the filter become saturated with contaminants, oil will automatically bypass the filter. Prior to the oil bypassing the filter, the OIL FILTER BYPASS light, located on the center instrument panel, will illuminate.

The oil then passes through an oil cooler which requires fuel flow through the cooler to maintain proper oil temperature. The oil leaves the oil cooler, where sensors for the oil temperature indicator, oil pressure indicator and the LOW OIL PRESSURE light are located, and continues to the engine bearings and gearbox.

737 Flight Crew Operations Manual

## **Engine Fuel and Oil system Schematic**



## **Engine Start System**

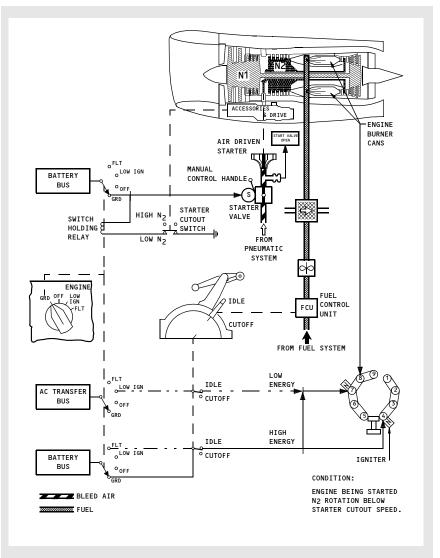
Low pressure air, a pneumatic starter, and electrical power are required for starter operation. The engines may be started with air from the APU, from a ground source, or by using engine crossbleed. Engine bleed air valves must be open to allow air from any source to reach the selected engine starter.

The Engine Start Switch GRD position uses DC power from the battery bus to open the starter valve and allow pressure from the pneumatic manifold to rotate the starter. When the starter valve is open, the amber START VALVE OPEN light, located on the center instrument panel, will illuminate. Should the engine start switch fail to open the starter valve, a manual control handle on the engine may be used to open the valve. The starter is a turbine-type air motor which rotates the N2 compressor through the accessory drive gear system. At cutout speed (35 to 40% N2 RPM), power is interrupted to the start switch holding solenoid, allowing the engine start switch to return to the OFF position and the starter valve to close.

Starter valve closure is indicated by a rapid rise in duct pressure. The START VALVE OPEN light monitors air pressure downstream of the starter valve. The light extinguishes shortly after closure of the starter valve.

When the engine has accelerated to the starting speed, and with the engine start lever advanced to the IDLE position, fuel ignites, resulting in an engine start.

## Engine Ignition System (4-Position Start Switch)


Two systems are provided. A high energy system is energized with the engine start switch in either the GRD or FLT position when the engine start lever is placed to the IDLE position. The high energy system furnishes pulsating power to ignitors in both No. 4 and No. 7 burner cans. The high energy system is used for all engine starts.

Low energy continuous ignition is provided when the engine start switch is in the LOW IGN position and the engine start lever is in the IDLE position. The low energy system furnishes continuous ignition through one plug only in the No. 7 burner can. The low energy system is used to improve igniter service life while minimizing the possibility of an engine flameout during takeoff and landing, in turbulence, or in icing conditions.

Engines, APU -Engine System Description

737 Flight Crew Operations Manual

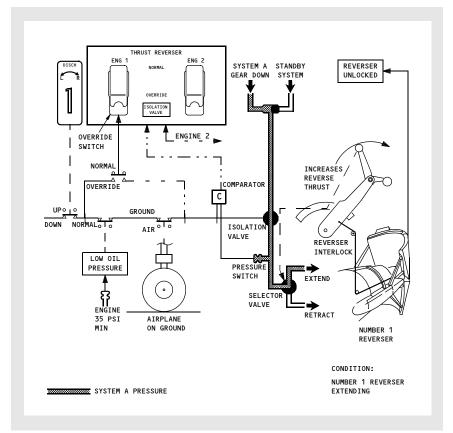
## **Engine Start and Ignition System Schematic**



## **Thrust Reverser**

Reverse thrust is accomplished by two doors which block engine exhaust and deflect the exhaust flow forward. The doors operate by system A hydraulic pressure through the gear down hydraulic line. Alternate operation at a reduced rate is available with the standby hydraulic system (the reverser may not stow). A REVERSER UNLOCKED light located on the center instrument panel will illuminate when either thrust reverse door is not in the stowed and locked position.

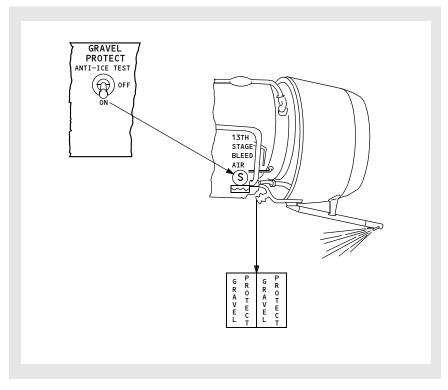
With the engine fire warning switch down and the engine low oil pressure switch sensing pressure, an electrical circuit including the nose gear, or main gear air/ground safety sensors, allows the thrust reversers to deploy. When all three electrical conditions are satisfied, the isolation valve will be solenoid-held to the open position. Loss of any electrical condition will cause the isolation valve to spring closed. The selector valve is controlled by the reverse thrust lever and directs hydraulic pressure to unlock, extend, retract or lock the doors.


The amber ISOLATION VALVE light will illuminate whenever a comparator senses a disagreement between the electrical condition to either isolation valve and the hydraulic pressure condition (the isolation valve open in flight, or closed on the ground). Positioning the guarded switch to the OVERRIDE position bypasses the oil pressure switch and the air/ground safety sensor and opens the isolation valve (if the fire switch is down). The override switches should not be used by flight crews for normal operations in flight or on the ground.

An engine control/reverser interlock system is provided. This interlock limits the thrust increase command if the reverser remains stowed when the reverse thrust lever is moved to a reverse position. The interlock is withdrawn during reverser translation from the stowed position to the deployed position. If the reverser remains deployed when the reverse thrust lever is moved to the forward thrust position, thrust increase commanded by the forward thrust lever is limited. The interlock is withdrawn during reverser translation from the deployed position to the stowed (flight) position. Freedom of motion of the forward thrust levers is not an absolute indication that the thrust reverser is fully deployed or stowed and locked, since the interlocks are withdrawn during reverser motion.

# WARNING: Actuation of the thrust reversers on the ground without suitable precautions is dangerous to ground personnel.

737 Flight Crew Operations Manual


## **Thrust Reverser Schematic**



## **Gravel Protection (As Installed)**

Airplanes with gravel protection have a vortex dissipator boom installed below and forward of each engine nose cowl. High pressure air is discharged toward the ground through nozzles at the boom end.

This prevents dirt, gravel and other debris which lie below the engine from being picked up by vortices and entering the engine.



## PDCS System Description General

The performance data computer system (PDCS) provides the crew with flight guidance data to assist in achieving the most efficient and economical operation of the airplane. The data is presented in the form of digital displays on the CDU and bug displays on the EPR indicator(s).

The PDCS is controlled by the crew and consists of a computer, a control display unit (CDU) and mode annunciator.

737 Flight Crew Operations Manual

The primary function of the PDCS is to compute and display target airspeed and EPR settings for each phase of flight: takeoff, climb, cruise, descent, holding, and go-around. For each of these phases of flight (flight modes) the PDCS computes and displays optimum EPR and airspeed values on the CDU and drives the EPR bug(s) to the computed values.

In addition to the phase of flight data, other flight guidance data (performance functions) are available from the PDCS. These functions are: altitude intercept, flight level calculations, ground speed, range, fuel, temperature, reference speed, trip altitude and wind. Performance functions are displayed on the CDU only and cannot drive the airspeed or EPR bugs.

Most flight modes and performance functions have too much data available to be displayed at one time. The data is therefore divided into separate displays called pages. Each page of data is selected individually for display.

The mode annunciator indicates when a flight mode is engaged.

To allow the crew to "look ahead" in the flight, a performance function or another flight mode may be selected for display on the CDU without disengaging the original mode.

## **Computer Inputs**

Some inputs from other airplane systems are required for system operation and performance computations.

## Temperature

The PDCS receives a total air temperature input for use in temperature dependent computations.

### Altitude and Airspeed

Pressure altitude and airspeed are obtained from the Air Data Computer.

## Fuel Weight

The total weight of fuel aboard the airplane is provided by a fuel summation unit which receives inputs from each of the airplane's fuel tank transmitters.

### **Bleed Logic**

The PDCS receives switch position logic to adjust limit EPR for engine anti-ice bleed, wing anti-ice bleed (except when PDCS is in takeoff mode), gravel protection (on some airplanes), and engine bleed air configurations.

## EPR

The existing EPR for each engine is furnished to the PDCS for use in computing actual airplane performance.

### Distance

The system also uses distance information from the airplane's DME. This data is used for automatic computation of wind and airplane ground speed.

## Computer Outputs Speed Schedules

For climb, cruise and descent, the PDCS provides a variety of speed schedules, enabling the crew to select that schedule which is best suited to their requirements.

For climb, there is a choice of ECON (minimum cost), RATE (maximum rate of climb) or MANUAL (the crew manually enters a desired speed). ECON is always the first page of data.

For cruise, the crew can select either ECON, LRC or MANUAL. The LRC mode differs from economy Cruise in that LRC computes speed for 99% best range where economy cruise computes speed for minimum trip cost. There is also the TURB (turbulence) speed schedule available in cruise by pressing the TURB key.

For descent, the PDCS offers ECON or MANUAL schedules.

The ECON schedule of climb cruise and descent is computed to provide data for minimum trip cost based on the "flight index" provided to the computer. Flight index is a number between zero and 200 which is a measure of the relative cost effects of flight time and fuel.

An index of zero implies that fuel economy is the exclusive criterion and the PDCS will schedule the ECON speed to minimize fuel consumption. A high flight index infers that flying time is of greater value than fuel. The ECON speed will then be faster, thus reducing flying time at the expense of fuel.

The flight index is programmed into the computer by the airline, but may be changed for any flight if desired from the CDU keyboard.

## **Engaging the Output**

Whenever the display can be engaged, the engage key is illuminated. Pressing the key causes the ENGAGE light to extinguish and the EPR bugs to drive to the displayed values. Engaging any PDC mode causes the EPR bugs to drive to the displayed values.

The PDC drives the airspeed cursors only when PDC SPEED is selected.

## Automatic Page Selection

Whenever a page of flight mode data has been engaged, pressing one of the performance function keys causes the PDCS to compute and display the data for the corresponding page of the performance function. For example, if CRZ LRC has been engaged and the RNG key is pressed, the display immediately shows RNG LRC.

### **Display of Speeds**

When a Mach/airspeed schedule is displayed on the manual page of the CDU the controlling value is underlined. For example, if climbing at a speed schedule of 320/.72 at low altitudes the 320 is underlined and at high altitudes the.72 underlined

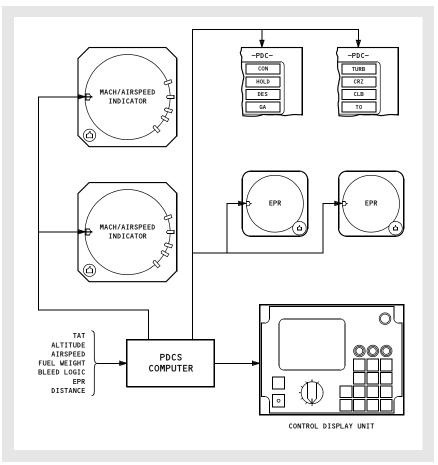
When accelerating, Mach numbers less than .65 are not displayed; when decelerating, Mach numbers are not displayed after the speed falls below Mach .60.

## **Systems Safeguards**

The PDCS has been integrated into the airplane in such a way that it is isolated from each of the primary instruments and sensors. This assures that failures within the PDCS do not affect the other systems.

The performance data computer has a complete built-in self-test capability which allows a complete checkout of the computer and all inputs and outputs. If the PDCS fails, the screen becomes blank. In addition, under some failure conditions, the airspeed bug moves to 440 knots, the EPR bugs move to 1.0, and the indicator inoperative flags appear. If the air data computer fails, the CDU displays a CADC fail message. Failure of CADC causes the PDCS to be inoperative.

Under certain mode conditions, if the fuel totalizer signal fails, the screen displays "Use EPR limit." Flight crews can initiate self-test procedures if desired.


When either airspeed or EPR validity is questioned, or a self-detection fault develops in the computation process, the computer normally drives the appropriate bugs to 440 knots and 1.0 EPR.

See Supplementary Normal Procedures for PDCS malfunctions.

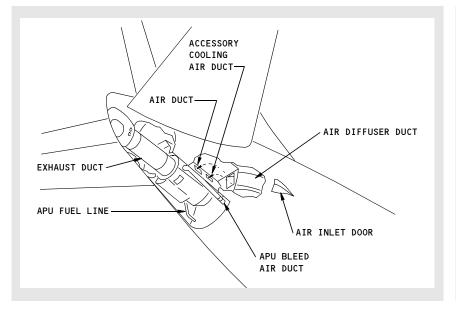
Engines, APU -



## **PDCS Schematic**



737 Flight Crew Operations Manual


Engines, APU APU System Description Chapter 7 Section 30

## Introduction

The auxiliary power unit (APU) is a self–contained gas turbine engine installed within a fireproof compartment located in the tail of the airplane.

The APU supplies bleed air for engine starting or air conditioning. An AC electrical generator on the APU provides an auxiliary AC power source.

## **APU Location**



## **APU Operation**

The APU operates up to the airplane maximum certified altitude.

The APU supplies bleed air for one air conditioning pack either on the ground or in flight. Both generator busses can be powered on the ground. In flight only one generator bus can be powered.

## **APU Fuel Supply**

Fuel to start and operate the APU comes from the left side of the fuel manifold when the AC fuel pumps are operating. If the AC fuel pumps are not operating, fuel is suction fed from the No. 1 tank. During APU operation, fuel is automatically heated to prevent icing.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 7, 2000 D6-27370-200A-TBC 7.30.1



With the APU operating and AC electrical power on the airplane busses, operate at least one fuel boost pump to supply fuel under pressure to the APU.

A DC operated APU fuel boost pump provides positive fuel pressure to the APU fuel control unit. During APU start and operation, the pump operates automatically.

## **APU Engine and Cooling Air**

APU engine and cooling air is routed to the APU through an automatically operated air inlet door located on the right side of the fuselage. APU exhaust gases are discharged overboard through an exhaust muffler.

The APU oil cooler and electrical generator are provided positive cooling airflow by a gear-driven fan.

## **Electrical Requirements for APU Operation**

APU operation requires the following:

- APU fire switch on the overheat/fire panel must be IN
- APU fire control handle on the APU ground control panel must be IN
- Battery switch must be ON.

Electrical power to start the APU comes from the airplane battery.

Moving the battery switch to OFF on the ground shuts down the APU.

## **APU Start**

The automatic start sequence begins by moving the APU switch momentarily to START. This initiates opening of the air inlet door. When the APU inlet door reaches the full open position the start sequence begins. After the APU reaches the proper speed, ignition and fuel are provided. When the APU is ready to accept a bleed air or electrical load the APU GEN OFF BUS light illuminates.

If the APU does not reach the proper speed with the proper acceleration rate within the time limit of the starter, the start cycle automatically terminates. The start cycle may take as long as 135 seconds.

Operate the APU for one full minute before using it as a bleed air source. This one minute stabilization is recommended to extend the service life of the APU.

## **APU Shutdown**

Operate the APU for one full minute with no bleed air load prior to shutdown. This cooling period is recommended to extend the turbine wheel life of the APU.

Moving the APU switch to OFF shuts down the APU, trips the APU generator, and closes the APU bleed air valve. Shutdown can also be accomplished by pulling the APU fire switch.

737 Flight Crew Operations Manual

## **Fuel Control Unit (FCU)**

A Fuel Control Unit (FCU) controls APU engine speed and exhaust gas temperature. Automatic shutdown protection is provided for overspeed conditions, low oil pressure, high oil temperature, APU fire, and fuel control unit failure. Control air input is provided to the fuel control unit through a solenoid operated three-way control valve.

The control air pressure is modulated in response to EGT changes. When electrical load and bleed air extraction combine to raise the EGT above acceptable levels, the bleed air valve will modulate toward the closed position. In the event of an over temperature, the bleed air valve will close rapidly, but the APU will continue to run without initiating an automatic shutdown.



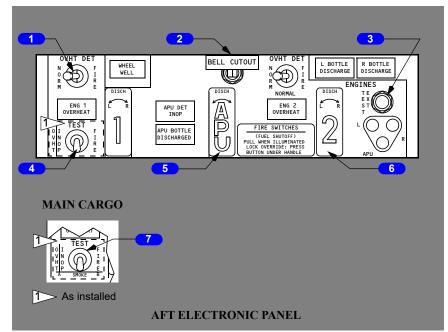
Intentionally Blank

737 Flight Crew Operations Manual

| Fire Protection                                                       | Chapter 8   |
|-----------------------------------------------------------------------|-------------|
| Table of Contents                                                     | Section TOC |
| Controls and Indicators                                               |             |
| Overheat/Fire Protection Panel Switches                               | 8.10.1      |
| Fire Switch Override                                                  | 8.10.3      |
| Overheat/Fire Protection Panel Lights                                 | 8.10.4      |
| Cargo Fire Panel                                                      | 8.10.5      |
| Cargo Compartment Smoke (Cargo airplanes only) SMOKE CLEARANCE Switch |             |
|                                                                       |             |
| Master Fire Warning Light                                             |             |
| APU Ground Control Panel                                              |             |
| Lavatory Fire                                                         |             |
| Lavatory Fire Extinguisher                                            | 8.10.10     |
| System Description                                                    |             |
| Introduction                                                          | 8.20.1      |
| Engine Fire Protection                                                | 8.20.1      |
| Engine Overheat and Fire Detection                                    | 8.20.1      |
| Engine Fire Extinguishing                                             |             |
| Engine Fire Extinguisher Schematic                                    | 8.20.3      |
| APU Fire Protection                                                   |             |
| APU Fire Detection                                                    | 8.20.3      |
| APU Fire Extinguishing                                                | 8.20.4      |
| Main Wheel Well Fire Protection                                       |             |
| Main Wheel Well Fire Detection                                        | 8.20.4      |
| Cargo Compartment Fire Protection (As Installed)                      | 8.20.5      |
| Cargo Compartment Smoke Detection                                     | 8.20.5      |
| Cargo Compartment Fire Warning                                        | 8.20.5      |
| Cargo Compartment Fire Extinguishing                                  |             |
| Cargo Fire Extinguisher Schematic                                     | 8.20.6      |
| Lavatory Fire Protection                                              |             |
| Lavatory Smoke Detection (As Installed)                               | 8.20.6      |

#### Fire Protection -Table of Contents

# **DO NOT USE FOR FLIGHT**


737 Flight Crew Operations Manual

| .6                                       |
|------------------------------------------|
| ).7                                      |
| ).7                                      |
| ).7                                      |
| ).8                                      |
| ).8                                      |
| ).8                                      |
| ).8                                      |
| ).9                                      |
|                                          |
| ).9                                      |
| 10                                       |
| 11                                       |
| 11                                       |
| 11                                       |
| 12                                       |
| 12                                       |
| 12                                       |
| () () () () () () () () () () () () () ( |

737 Flight Crew Operations Manual

Fire Protection Controls and Indicators Chapter 8 Section 10

## **Overheat/Fire Protection Panel Switches**



## **1** Overheat Detector (OVHT DET) Switch

NORMAL - detection system is connected to the amber OVERHEAT light

FIRE – detection system is connected to the fire warning lights bell.

**2** Fire Warning BELL CUTOUT Switch

Push –

- extinguishes both master FIRE WARN lights
- silences the fire warning bell
- silences the remote APU fire warning horn (on the ground only)
- resets the system for additional warnings.

## **3** Extinguisher Test (TEST EXT) Switch

PRESS - tests all three bottle discharge circuits and engine selector valves.

## **4** Overheat (OVHT)/Inoperative (INOP) and FIRE TEST Switch

(spring-loaded to center) Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2012 D6-27370-200A-TBC 8.10.1



OVHT/INOP – tests the engine overheat detector loops and the APU fire detection circuit.

FIRE – tests the fire detection loops on both engines and the fire detector on the APU, and wheel well fire detector

Note: See Fire and Overheat System Test in Section 20.

## **5** APU Fire Switch

Illuminated (red) -

- indicates fire in APU
- unlocks APU fire switch.
- **Note:** Master FIRE WARN lights illuminate, fire warning bell sounds, APU fire warning horn in main wheel well sounds (on ground only), and APU fire warning light in the wheel well flashes.

In – normal position, mechanically locked if no fire signal.

Up –

- arms APU extinguisher circuit
- closes fuel shutoff valve, bleed air valve, and APU inlet door
- trips generator control relay and breaker
- allows APU fire switch to rotate.

Rotate (left or right) -

• discharges APU fire bottle.

## **6** Engine Fire Switch

Illuminated (red) -

- indicates fire in related engine
- unlocks related engine fire switch.

Note: Master FIRE WARN lights illuminate and fire warning bell sounds.

In – normal position, mechanically locked if no fire signal.

Up –

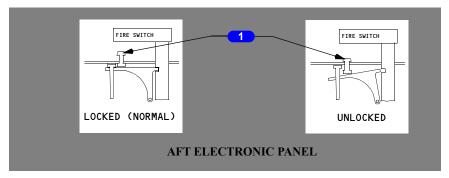
- arms one discharge squib on each engine fire extinguisher
- closes fuel, hydraulic shutoff and engine bleed air valves
- disables thrust reverser
- · trips generator control relay and breaker
- · deactivates engine driven hydraulic pump LOW PRESSURE light
- allows engine fire switch to rotate.

Rotate (left or right) – discharges related fire bottle.

737 Flight Crew Operations Manual

### **7** Overheat/Inoperative (OVHT/INOP) and FIRE TEST Switch (Cargo)

(spring-loaded to center)

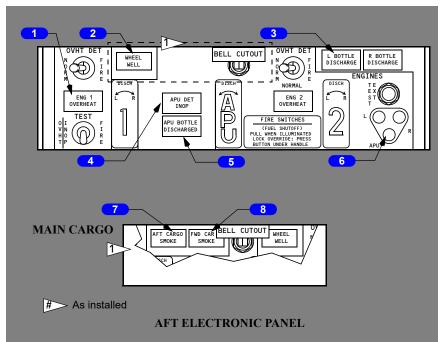

OVHT INOP A – tests engine overheat detector loops, aft "A" and forward "A" smoke detectors, and APU fire detection circuit.

Note: See Fire and Overheat System Test in Section 20.

FIRE B – tests fire detector loops on both engines, the APU, and the main wheel well, and aft "B" and forward "B" smoke detectors.

Note: See Fire and Overheat System Test in Section 20.

## **Fire Switch Override**




**1** Fire Switch Override

Push – unlocks fire switch.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Overheat/Fire Protection Panel Lights**



## Engine (ENG) OVERHEAT Light

Illuminated (amber) – indicates overheat in related engine.

**Note:** MASTER CAUTION and OVHT/DET system annunciator lights illuminate.

## **2** WHEEL WELL Fire Warning Light

Illuminated (red) - indicates fire in main gear wheel well

Note: Master FIRE WARN lights illuminate and fire warning bell sounds.

## **3** Engine BOTTLE DISCHARGE Light

Illuminated (amber) - indicates related fire extinguisher bottle has discharged.

## **4** APU Detector Inoperative (DET INOP) Light

Illuminated (amber) - indicates APU detector loop has failed.

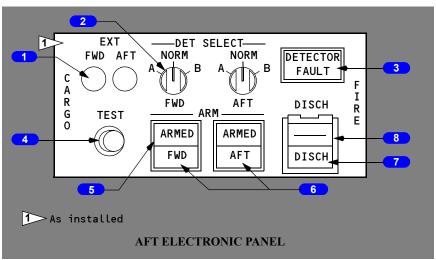
**Note:** MASTER CAUTION and OVHT/DET system annunciator lights illuminate.

## **5** APU BOTTLE DISCHARGE Light

Illuminated (amber) - indicates APU extinguisher bottle has discharged.

## **6** Extinguisher Test (TEST EXT) Lights

Illuminated (green) – EXT TEST switch is pressed and the discharge circuits are normal.


## 7 AFT CARGO SMOKE Light

Illuminated (amber) - indicates smoke in AFT "A" or "B" area

## **8** FWD CARGO SMOKE Light

Illuminated (amber) - indicates smoke in forward "A" or "B" area

**Cargo Fire Panel** 



## **1** Extinguisher (EXT) Test Lights

Illuminated (green) - Cargo Fire TEST switch is pushed and fire bottle discharge squib circuit continuity is normal.

## **2** Detector Select (DET SELECT) Switches

NORM - detection loop A and B are active.

- A detection loop A is active.
- B detection loop B is active.

## 3 DETECTOR FAULT Light

Illuminated (amber) - one or more detectors in the related loop(s) has failed.

### **4** Cargo Fire TEST Switch

PUSH - tests circuits for both forward and aft cargo fire detector loops and suppression system.

Note: See Cargo Fire System Tests in Section 20.

#### **5** Cargo Fire ARMED Switches

PUSH -

- FWD ARMED extinguisher armed for the forward cargo compartment
- AFT ARMED extinguisher armed for the aft cargo compartment.

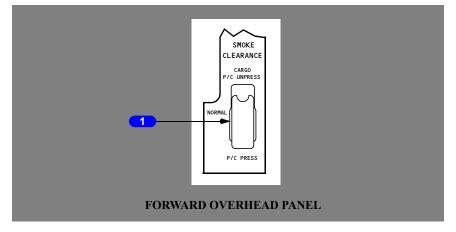
### **6** Cargo Fire (FWD/AFT) Warning Lights

Illuminated (red) -

- at least one detector in each loop detects smoke
- with power failed in one loop, at least one detector on the remaining loop detects smoke.

Note: Master FIRE WARN lights illuminate and fire warning bell sounds.

## **7** Cargo Fire Bottle Discharge (DISCH) Light


Illuminated (amber) - indicates the extinguisher bottle has discharged

## **8** Cargo Fire Discharge (DISCH) Switch

PUSH - if system is armed, discharges the extinguisher bottle.

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

# Cargo Compartment Smoke (Cargo airplanes only) SMOKE CLEARANCE Switch



#### **1** SMOKE CLEARANCE Switch

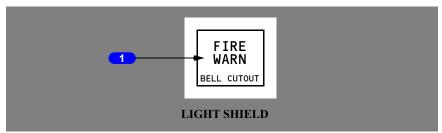
CARGO P/C UNPRESS – used to evacuate smoke in the main cargo compartment in an all–cargo configuration.

Depressurizes the airplane by causing the following:

- forward outflow valve drives open
- gasper fan off
- right A/C pack off
- left A/C pack low flow
- distribution shut-off valve closes.

NORMAL – used for all normal pressurized operations.

P/C PRESS – used to evacuate smoke in the main cargo compartment in a combined passenger/cargo configuration.


Airplane remains pressurized.

Causes the following:

- forward outflow valve drives open
- gasper fan off
- right A/C pack off
- left A/C pack normal flow
- · distribution shut-off valve remains open
- E & E cooling fan off.



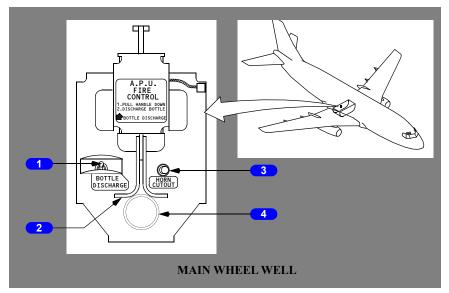
# Master Fire Warning Light



#### Master Fire Warning (FIRE WARN) Light

Illuminated (red) – indicates a fire warning (or system test) in engine, APU, main gear wheel well, or cargo compartments (on some airplanes)

- fire warning bell sounds
- if on ground, remote APU fire warning horn sounds.


Push -

- extinguishes both master FIRE WARN lights
- silences the fire warning bell
- silences the remote APU fire warning horn
- resets the system for additional warnings.

**Note:** Pushing fire warning bell cutout switch on overheat/fire protection panel results in same actions.

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

### **APU Ground Control Panel**



#### 1 APU BOTTLE DISCHARGE Switch

(spring-loaded to center)

Left or right - discharges APU extinguisher.

Note: Armed only if APU fire control handle is pulled at this panel.

#### **2** APU Fire Control Handle

Up - normal position.

Down –

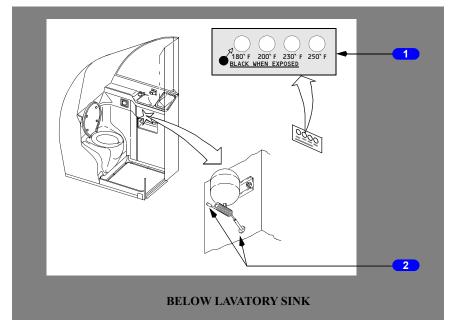
- arms APU BOTTLE DISCHARGE switch (on this panel only)
- closes APU fuel shutoff, bleed air valve and APU inlet door
- trips generator control relay and breaker.

#### **3** APU Fire Warning HORN CUTOUT Switch

#### Push –

- silences fire alarm bell
- silences APU fire warning horn
- causes APU fire warning light to stop flashing but remain illuminated.




#### APU Fire Warning Light

Illuminated (red flashing) - indicates fire in APU.

**Note:** Also, flight deck fire warning bell sounds and APU fire warning horn in main wheel well wails.

Illuminated (red steady) – indicates APU fire warning HORN CUTOUT switch has been pushed following an APU fire indication.

# Lavatory Fire Lavatory Fire Extinguisher



#### **1** TEMPERATURE INDICATOR Placard

White – normal condition.

Black - exposed to high temperatures.

#### 2 Heat Activated Nozzles

Flat black – normal condition.

Aluminum - indicates extinguisher has discharged.

One nozzle discharges toward the towel disposal container, the other under the sink.

737 Flight Crew Operations Manual

# Fire Protection System Description

Chapter 8 Section 20

# Introduction

There are fire detection and extinguishing systems for:

- engines
- APU

- lavatories
- cargo compartments (As Installed).

The engines also have overheat detection systems.

The main gear wheel well has a fire detection system, but no fire extinguishing system.

Cargo airplanes have main cargo compartment smoke and fire detection systems and a smoke evacuation system.

# **Engine Fire Protection**

Engine fire protection consists of these systems:

- engine overheat and fire detection powered by the battery bus
- engine fire extinguishing powered by the hot battery bus.

# **Engine Overheat and Fire Detection**

Each engine contains two overheat detector loops and two fire detection loops. Short circuit discriminators are installed to prevent shorts from causing false overheat or fire warnings. Amber INOP lights in the lower E & E compartment indicate "shorts" in the overheat or fire circuits.

If the fire detection circuit fails to test, placing the OVHT DET switch in the FIRE position allows the overheat circuit to be used to provide fire warning in order to dispatch.

The indications of an engine overheat are:

- both MASTER CAUTION lights illuminate
- the OVHT/DET system annunciator light illuminates
- the related ENG OVERHEAT light illuminates.

The indications of an engine fire are:

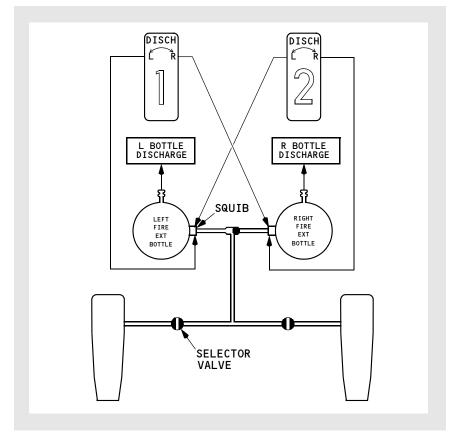
- the fire warning bell sounds
- both master FIRE WARN lights illuminate
- the related engine fire switch illuminates

# **Engine Fire Extinguishing**

The engine fire extinguisher system consists of two engine fire extinguisher bottles, two engine fire switches, two BOTTLE DISCHARGE lights, and an EXT TEST switch. Either or both bottles can be discharged into either engine.

The engine fire switches are normally locked down to prevent inadvertent shutdown of an engine. Illumination of an engine fire switch or ENG OVERHEAT light unlocks the engine fire switch. The switches may also be unlocked manually.

Pulling the engine fire switch up:


- closes the related engine fuel shutoff valve
- closes the related engine bleed air valve resulting in loss of wing anti-ice to the affected wing and closure of bleed air operated pack valve
- trips the generator control relay and breaker
- closes the hydraulic fluid shutoff valve. The engine driven hydraulic pump LOW PRESSURE light is deactivated
- disables thrust reverser for the related engine.
- allows the engine fire switch to be rotated for discharge
- arms the discharge squib on each engine fire extinguisher bottle.

Rotating the engine fire switch electrically "fires" the squib, discharging the extinguishing agent into the related engine. Rotating the switch the other way discharges the remaining bottle into the same engine.

The L or R BOTTLE DISCHARGE light illuminates a few seconds after the engine fire switch is rotated, indicating the bottle has discharged.

737 Flight Crew Operations Manual

# **Engine Fire Extinguisher Schematic**



### **APU Fire Protection**

APU fire protection consists of these systems:

- APU fire detection powered by the battery bus
- APU fire extinguishing powered by the hot battery bus.

# **APU Fire Detection**

A single fire detection loop is installed on the APU. As the temperature of the detector increases to a predetermined limit, the detector senses a fire condition. The APU fire switch remains illuminated until the temperature of the detector has decreased below the onset temperature.

The system contains a fault monitoring circuit. If the loop fails, the APU DET INOP light illuminates indicating the APU fire detection system is inoperative.

The indications of an APU fire are:

- the fire warning bell sounds
- both master FIRE WARN lights illuminate
- the APU fire switch illuminates
- the APU automatically shuts down
- the APU fire warning horn in the main wheel well sounds (on the ground only), and the APU fire warning light flashes.

# APU Fire Extinguishing

The APU fire extinguisher system consists of one APU fire extinguisher bottle, one APU fire switch, an APU BOTTLE DISCHARGE light, and an EXT TEST switch. The APU ground control panel located in the right main wheel well also contains an APU fire warning light, an APU BOTTLE DISCHARGE switch, an APU fire control handle and APU HORN CUTOUT switch.

The APU fire switch is normally locked down to prevent inadvertent shutdown of the APU. Illumination of the APU fire switch unlocks the switch. The switch may also be unlocked manually.

Pulling the APU fire switch up:

- provides backup for the automatic shutdown feature
- · deactivates the fuel solenoid and closes the APU fuel shutoff valve
- closes the APU bleed air valve
- closes the APU air inlet door
- trips the APU generator control relay and generator breaker
- allows the APU fire switch to be rotated for discharge
- arms the APU fire extinguisher bottle squib.

Rotating the APU warning switch electrically "fires" the squib, discharging the extinguishing agent into the APU. The APU BOTTLE DISCHARGED light illuminates after a few seconds, indicating the bottle has discharged.

# Main Wheel Well Fire Protection

Main wheel well fire protection consists of fire detection powered by the No. 1 AC transfer bus.

**Note:** The main wheel well has no fire extinguishing system. The nose wheel well does not have a fire detection system.

# Main Wheel Well Fire Detection

A single fire detector loop is installed in the main wheel well. As the temperature of the detector increases to a predetermined limit, the detector senses a fire condition. The WHEELWELL fire warning light remains illuminated until the temperature of the detector has decreased below the onset temperature.

The indications for a main wheel well fire are:

- the fire warning bell sounds
- both master FIRE WARN lights illuminate
- the WHEEL WELL fire warning light illuminates.

# Cargo Compartment Fire Protection (As Installed)

Cargo fire protection consists of these systems:

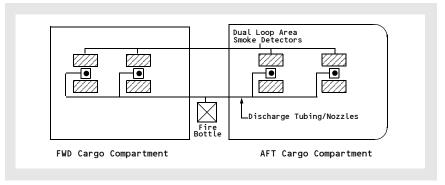
- cargo compartment smoke detection powered by DC bus 1 and DC bus 2
- cargo compartment fire extinguishing powered by the hot battery bus.

# **Cargo Compartment Smoke Detection**

The forward and aft cargo compartments each have smoke detectors in a dual loop configuration. Normally, both detection loops must sense smoke to cause an alert. These loops function in the same manner as the engine overheat/fire detection loops.

# **Cargo Compartment Fire Warning**

The indications of a cargo compartment fire are:


- the fire warning bell sounds
- both master FIRE WARN lights illuminate
- the FWD/AFT cargo fire warning light(s) illuminates.

# Cargo Compartment Fire Extinguishing

A single fire extinguisher bottle is installed in the air conditioning mix bay on the forward wing spar. Detection of a fire in either the forward or aft compartment will cause the FWD or AFT cargo fire warning light to illuminate. The extinguisher is armed by pushing the appropriate cargo fire ARMED switch. Once armed, the system is discharged by pushing the cargo fire DISCH switch. This results in the total discharge of the bottle contents into the selected compartment. The cargo fire DISCH light illuminates once the bottle is discharged. It may take up to 30 seconds for the light to illuminate.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

# **Cargo Fire Extinguisher Schematic**



# **Lavatory Fire Protection**

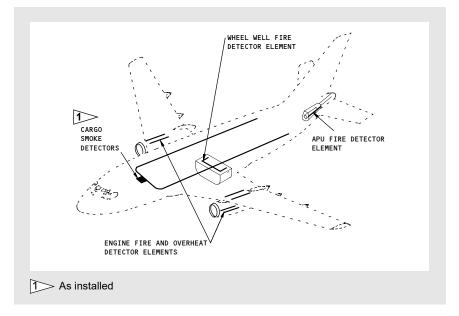
Lavatory fire protection consists of these systems:

- · lavatory smoke detection
- lavatory fire extinguishing (heat activated).

# Lavatory Smoke Detection (As Installed)

The lavatory smoke detection system monitors for the presence of smoke. When smoke is detected:

- an aural warning sounds over the passenger address system.
- the red alarm indicator light on the lavatory smoke detector panel illuminates
- pressing the interrupt switch silences the aural warning. If smoke is still present when the switch is released, the alarm will sound again.


There is no flight deck indication. When smoke is no longer present the system automatically resets.

# Lavatory Fire Extinguisher System

A fire extinguisher system is located beneath the sink area in each lavatory. When a fire is detected:

- fire extinguisher operation is automatic
- flight deck has no indication of extinguisher discharge.

#### **Fire and Overheat Detector Element Locations**



### Fire and Overheat System Tests

The fire and overheat detection systems can be tested by pushing and holding the OVHT/INOP and FIRE TEST switch. Extinguisher continuity can be tested by pushing and holding the TEST EXT switch. All test indications clear when switches are released.

### **Overheat/INOP Test Detection**

The fault detection circuits for both the engines and the APU are tested by pushing and holding the OVHT/INOP and FIRE TEST switch in the OVHT/INOP position.

The indications for the OVHT/INOP test are:

- both MASTER CAUTION lights illuminate
- the OVHT/DET system annunciator light illuminates
- the ENG 1 and ENG 2 OVERHEAT lights illuminate
- the APU DET INOP light illuminates.
- on cargo airplanes the MASTER FIRE WARN, and the AFT and FWD CARGO SMOKE lights illuminate.

# **FIRE Test Detection**

The overheat and fire detection loops on both engines, the APU, and the fire detector in the wheel well are tested by pushing and holding the OVHT/INOP and OVHT/FIRE TEST switch in the OVHT/FIRE position.

The indications for the OVHT/FIRE test are:

- the fire warning bell sounds
- both master FIRE WARN lights illuminate
- both engine fire switches illuminate
- the APU fire switch illuminates
- the WHEEL WELL fire warning light illuminates if AC power is available
- the APU fire warning horn sounds and the APU fire warning light in the main wheel well flashes
- on cargo airplanes, the AFT and FWD CARGO SMOKE lights illuminate.

# **Extinguisher Test**

When the TEST EXT switch is pressed, the green TEST EXT lights illuminate, verifying circuit continuity from the squib to the engine fire switch.

# **Cargo Fire System Tests (As Installed)**

The cargo fire detection and suppression system can be tested by pushing and holding the cargo fire TEST switch. This sends a test signal to the forward and aft cargo fire detector loops and verifies continuity of the extinguisher bottle squib circuits. All test indications clear when the TEST switch is released

# **Cargo Fire TEST**

The indications for the Cargo Fire test are:

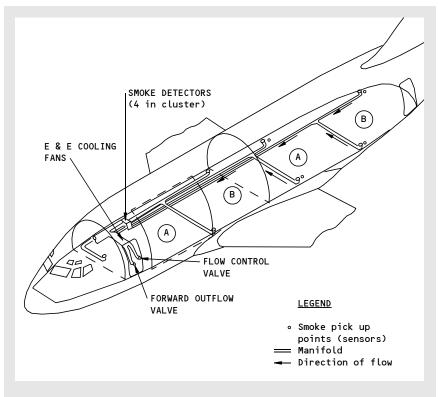
- the fire warning bell sounds
- both master FIRE WARN lights illuminate
- the extinguisher test lights illuminate

- the FWD and AFT cargo fire warning lights illuminate when all detectors in selected loop(s) respond to the fire test
- the cargo fire bottle DISCH light illuminates
- Note: The fire warning BELL CUTOUT switch on the Overheat/Fire Protection panel can silence the fire warning bell and extinguish the master FIRE WARN lights
- **Note:** During a Cargo Fire Test, the DETECTOR Fault light will illuminate if one or more detectors in the loop(s) has failed.
- **Note:** Individual detector faults can only be detected by a manually initiated test. The MASTER CAUTION light does not illuminate.
- **Note:** At the end of cargo fire testing, a four second delay allows all applicable indications to extinguish at the same time.

# **Cargo Fire Extinguisher Test**

When the Cargo Fire TEST button is pushed, the green EXT lights illuminate, verifying the fire bottle discharge squib circuit continuity is normal.

# Main Cargo Compartment Smoke and Fire Detection (Cargo airplanes)


The smoke detection system monitors main cabin air for the presence of smoke and provides visual and aural warning if smoke is detected. The fire alarm bell sounds, and the cargo smoke and master warning lights illuminate.

The equipment cooling fan draws air through the smoke detection tubing, past the detectors, and exhausts it overboard. Separate "A" and "B" detectors for both the forward and aft main cargo areas provide system redundancy.

If the FWD CARGO SMOKE light illuminates, smoke is present in the main cabin forward of the overwing emergency exits. If the AFT CARGO SMOKE light illuminates, smoke is present in the main cabin aft of the overwing emergency exits.



# Main Cargo Smoke Detector Locations



Smoke is evacuated from the airplane by actuating the SMOKE CLEARANCE switch which is located in the cockpit on the forward overhead panel.

The CARGO P/C UNPRESS position is to combat smoke/fire in the all–cargo configuration (class E cargo compartment). With the switch in this position, the airplane depressurizes. Ventilating airflow in the main cargo compartment reduces to a minimum, and the cockpit receives a supply of conditioned air. Smoke exits the main cargo compartment primarily through the main compartment vent located in the floor above the E & E compartment, then out of the airplane through the flow control valve. This position also provides smoke evacuation protection in the event the airplane is dispatched on a combined passenger/cargo unpressurized flight.

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

The P/C PRESS position of the switch is to combat smoke in the combined passenger/cargo configuration (class B cargo compartment). With the switch in this position, the airplane remains pressurized. A fire resistant smoke barrier partition separating the passenger and cargo areas, and the flight deck door (closed) prevent a hazardous quantity of smoke or extinguishing agent from entering any compartment occupied by crew or passengers. Smoke exits the main cargo compartment vent, then out of the airplane through the forward outflow valve. In this configuration, sufficient access is retained in flight for a crew member to reach any part of the cargo with the contents of a hand fire extinguisher.

**Note:** When the airplane is on the ground, if the equipment cooling fans become inoperative or are de-activated, the smoke detector system is inoperative. When airborne, air is forced through the system by pressure from the air conditioning system, therefore, the smoke detectors remain operative.

# **Cargo Compartment Fire Classifications**

The flight deck and passenger cabin are designated Class A compartments, meaning that a fire may be visually detected, reached, and combatted by a crew member. The engines are Class C compartments, and fire warning is provided by fire detectors. There two basic type of cargo compartments: class B, in which the crew member may reach and combat a source of fire; and Class D (now designated as C) or E, in which a crew member cannot reach the source of fire.

# Class A

Compartments are classified Class A when they comply with the following:

- provide for the visual detection of smoke
- accessible in flight
- fire extinguisher is available.

# Class **B**

Cargo and baggage compartments are classified Class B when they comply with the following:

- sufficient access provided while in flight to enable member of the crew to move by hand all contents; and to reach effectively all parts of the compartment with a hand extinguisher
- when the access provisions are being used, no hazardous quantity of smoke, flames, or extinguishing agent will enter any compartment occupied by the crew or passengers



- each compartment shall be equipped with a separate system of an approved type smoke detector or fire detector to give warning at the pilot station
- hand fire extinguishers shall be readily available for use in all compartments of this category.

# Class C

Compartments are classified Class C when they comply with the following:

- smoke and fire detectors installed
- built-in fire extinguisher system controlled from the flight deck.

# Class D

Cargo and baggage compartments are classified Class D if they are so designed and constructed that a fire occurring therein will be completely confined without endangering the safety of the airplane and its occupants. Compliance is required with the following:

- means provided to exclude hazardous quantities of smoke, flames or other noxious gases from entering into any compartment occupied by the crew or passengers
- ventilation and drafts controlled within each compartment so that any fire likely to occur in the compartment will not progress beyond safe limits
- compartment completely lined with fire resistant material.
- **Note:** The certification standards for fire safety in Class D cargo and baggage compartments have been changed. Class D compartments in airplanes used for passenger service must now comply with the standards for Class C compartments. Class C standards require that a compartment be equipped with smoke and fire detectors and with a built-in fire extinguisher system controlled from the flight deck. No inflight access is necessary, but the flight crew must be able to control the ventilating airflow into these compartments. Class D compartments in airplanes used only for cargo service must also comply with the standards for Class C, or with the detection standards for Class E compartments.

# Class E

On airplanes used to carry cargo only, the cabin area can be classified as a Class E compartment when it complies as follows:

- the window shades must be closed
- completely lined with fire-resistant material
- equipped with a separate system of an approved type smoke or fire detector

737 Flight Crew Operations Manual

- means provided to shut off the ventilating air flow to or within the compartment. Controls for such means shall be accessible to the flight crew on the flight deck
- means provided to exclude hazardous quantities of smoke, flames or noxious gasses from entering the flight deck
- required crew emergency exits accessible under all cargo loading conditions.



Intentionally Blank

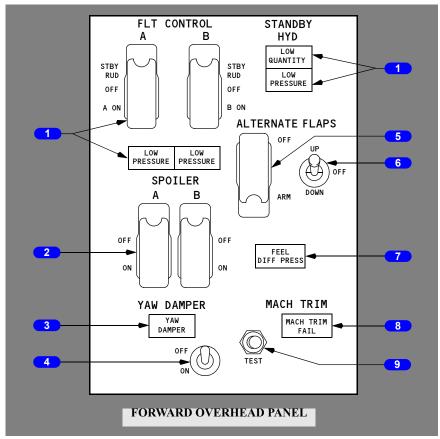
737 Flight Crew Operations Manual

| Flight Controls                                                            | Chapter 9     |
|----------------------------------------------------------------------------|---------------|
| Table of Contents                                                          | Section TOC   |
| Controls and Indicators                                                    |               |
| Flight Control Panel (before Rudder System Enhance<br>(RSEP) modification) |               |
| Flight Control Panel (after RSEP modification)                             |               |
| Stabilizer                                                                 |               |
| Rudder                                                                     |               |
| Aileron / Elevator / Flight Spoilers                                       |               |
| Speed Brakes                                                               |               |
| Trailing Edge Flaps                                                        |               |
| Leading Edge Devices                                                       |               |
| System Description                                                         |               |
| Introduction                                                               |               |
| Pilot Controls                                                             |               |
| Flight Control Surfaces                                                    |               |
| Flight Control Surfaces Location                                           |               |
| Roll Control                                                               |               |
| Ailerons.                                                                  |               |
| Flight Spoilers.                                                           |               |
| Roll Control Schematic.                                                    |               |
| Pitch Control Elevators                                                    |               |
| Stabilizer                                                                 |               |
| Yaw Control (before Rudder System Enhancement P                            | rogram (RSEP) |
| modification)                                                              |               |
| Rudder                                                                     |               |
| Yaw Control Schematic (before RSEP modification                            |               |
| Yaw Control (after RSEP modification)                                      | ,             |
| Rudder                                                                     |               |
|                                                                            |               |

#### Flight Controls -Table of Contents

# **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| Yaw Damper                                      | 9.20.12 |
|-------------------------------------------------|---------|
| Yaw Control Schematic (after RSEP modification) | 9.20.13 |
| Speed Brakes                                    | 9.20.14 |
| In Flight Operation                             | 9.20.14 |
| Ground Operation                                | 9.20.14 |
| Speed Brakes Schematic                          | 9.20.15 |
| Flaps and Slats                                 | 9.20.15 |
| Flap and Slat Sequencing                        | 9.20.16 |
| Flap Load Relief                                | 9.20.16 |
| Alternate Extension                             | 9.20.17 |
| High Lift Device Protection and Indication      | 9.20.19 |
|                                                 |         |


737 Flight Crew Operations Manual

**Chapter 9** 

Section 10

Flight Controls Controls and Indicators

# Flight Control Panel (before Rudder System Enhancement Program (RSEP) modification)



#### **1** Refer to Chapter 13 – Hydraulics

#### 2 Flight SPOILER Switches (guarded to ON)

Used for maintenance purposes only.

OFF - closes the respective flight spoilers shutoff valve.

#### YAW DAMPER Light

Illuminated (amber) – yaw damper is not engaged.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 3, 2003 D6-27370-200A-TBC 9.10.1

#### 4 YAW DAMPER Switch

- OFF disengages yaw damper.
- ON engages yaw damper to rudder power control unit.

#### **5** ALTERNATE FLAPS Master Switch (guarded to OFF)

OFF – normal operating position.

ARM – closes trailing edge flap bypass valve, activates standby pump, and arms the ALTERNATE FLAPS position switch.

#### 6 ALTERNATE FLAPS Position Switch

Functions only when the ALTERNATE FLAPS master switch is in ARM.

UP –

- electrically retracts trailing edge flaps
- leading edge devices remain extended and cannot be retracted by the alternate flaps system.

OFF - normal operating position.

DOWN (spring loaded to OFF)-

- (momentary) fully extends leading edge devices using standby hydraulic pressure
- (hold) electrically extends trailing edge flaps.

#### 7 Feel Differential Pressure (FEEL DIFF PRESS) Light

- Armed when the trailing edge flaps are up.

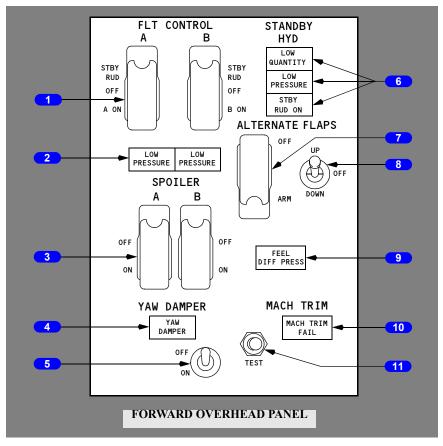
Illuminated (amber) – indicates excessive differential pressure in the elevator feel computer.

#### **8** MACH TRIM Failure (FAIL) Light

Armed when the trailing edge flaps are up.

Illuminated (amber) -

• indicates unreliable Mach Trim system or Mach Trim test in progress


#### MACH TRIM TEST switch

Press-tests Mach Trim system

- MACH TRIM FAIL light illuminates
- elevator surfaces moves up
- control column moves aft.

737 Flight Crew Operations Manual

# Flight Control Panel (after RSEP modification)



#### **1** FLIGHT CONTROL Switches

STBY RUD - activates standby pump, opens standby shutoff valve to pressurize standby rudder power control unit, and illuminates amber STBY RUD ON light.

OFF - closes flight control shutoff valve isolating ailerons, elevators and rudder from associated hydraulic system pressure.

ON (guarded position) - normal operating position.



#### 2 Flight Control LOW PRESSURE Lights

Illuminated (amber) -

- indicates low hydraulic system (A or B) pressure to ailerons, elevator and rudder.
- deactivated when associated FLIGHT CONTROL switch is positioned to STBY RUD and standby rudder shutoff valve opens.
- indicates A system pressure is low when normal system pressure is commanded.
- **Note:** The A system light will remain illuminated for approximately five seconds after A hydraulic system has been activated.

#### **3** Flight SPOILER Switches (guarded to ON)

Used for maintenance purposes only.

OFF - closes the respective flight spoilers shutoff valve.

### **4** YAW DAMPER Light

Illuminated (amber) - yaw damper is not engaged.

#### **5** YAW DAMPER Switch

OFF - disengages yaw damper.

ON - engages yaw damper to rudder power control unit.

### **6** STANDBY HYD Lights

#### STANDBY HYD LOW QUANTITY Light

Illuminated (amber) -

- indicates low quantity in standby hydraulic reservoi.r
- always armed.

#### STANDBY HYDRAULIC LOW PRESSURE Light

#### Illuminated (amber)

- indicates output pressure of standby pump is low
- armed only when standby pump operation has been selected or automatic standby function is activated.

#### STBY RUD ON Light

Illuminated (amber) - indicates the standby hydraulic system is commanded on to pressurize the standby rudder power control unit.

### **7** ALTERNATE FLAPS Master Switch (guarded to OFF)

OFF – normal operating position.

#### **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

ARM – closes trailing edge flap bypass valve, activates standby pump, and arms the ALTERNATE FLAPS position switch.

#### **8** ALTERNATE FLAPS Position Switch

Functions only when the ALTERNATE FLAPS master switch is in ARM.

UP –

- electrically retracts trailing edge flaps
- leading edge devices remain extended and cannot be retracted by the alternate flaps system.

OFF – normal operating position.

DOWN (spring loaded to OFF)-

- (momentary) fully extends leading edge devices using standby hydraulic pressure
- (hold) electrically extends trailing edge flaps.

#### 9 Feel Differential Pressure (FEEL DIFF PRESS) Light

- Armed when the trailing edge flaps are up.

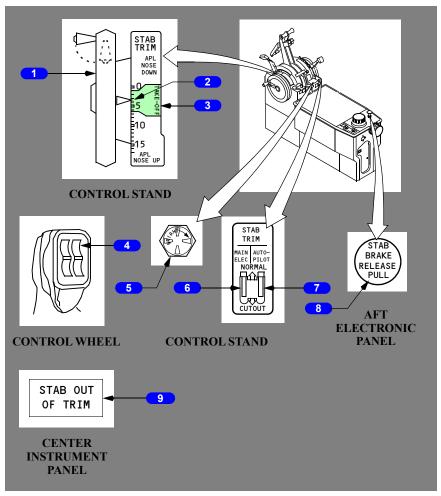
Illuminated (amber) – indicates excessive differential pressure in the elevator feel computer.

#### (10) MACH TRIM Failure (FAIL) Light

Armed when the trailing edge flaps are up.

Illuminated (amber) -

· indicates unreliable Mach Trim system or Mach Trim test in progress


#### **11** MACH TRIM TEST switch

Press - tests Mach Trim system

- MACH TRIM FAIL light illuminates
- elevator surfaces moves up
- control column moves aft.



# Stabilizer



#### **1** Stabilizer Trim Wheel

- provides for manual operation of stabilizer
- · overrides any other stabilizer trim inputs
- rotates when stabilizer is in motion.

Note: handle should be folded inside stabilizer trim wheel for normal operation

#### **2** Stabilizer Trim Indicator

Indicates units of airplane trim on the adjacent scale.

737 Flight Crew Operations Manual

#### **3** Stabilizer Trim Green Band Range

Corresponds to allowable range of trim settings for takeoff.

#### **4** Stabilizer Trim Switches (spring–loaded to neutral)

Push (both) -

- electrically commands stabilizer trim in desired direction
- autopilot disengages if engaged.

#### 5 Stabilizer Trim Light

Illuminated (amber) - indicates main electric trim motor is operating.

#### **6** Stabilizer Trim Main Electric (MAIN ELECT) Cutout Switch

NORMAL - normal operating position.

CUTOUT - removes power from stabilizer main electric trim motor.

#### **7** Stabilizer Trim AUTOPILOT Cutout Switch

NORMAL – normal operating position.

CUTOUT - removes autopilot servo power to stabilizer drive.

#### 8 Stabilizer BRAKE RELEASE Knob

Pull – releases stabilizer brake.



Refer to Chapter 4 – Automatic Flight.



# Rudder



#### **1** Rudder Pedals

Push -

- controls rudder position
- permits limited nose gear steering up to 7 degrees each side of center.

#### **2** Rudder Trim Wheel

Rotate - repositions the rudder neutral control position.

#### YAW DAMPER Indicator

- indicates yaw damper movement of rudder due to yaw damper input on the ground, in the air and during test.
- pilot rudder pedal inputs are not indicated.


737 Flight Crew Operations Manual

#### 4 YAW DAMPER TEST Switch

With the yaw damper engaged and hydraulic power available:

- L the YAW DAMPER indicator moves left; the YAW DAMPER indicator moves right when the TEST switch is released
- R the YAW DAMPER indicator moves right, the YAW DAMPER indicator moves left when the TEST switch is released

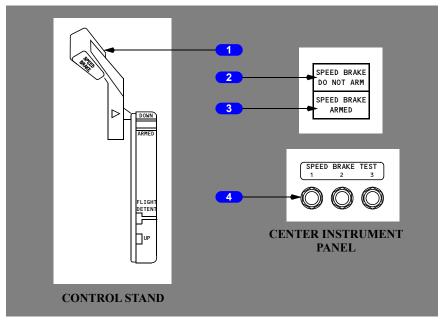
# Aileron / Elevator / Flight Spoilers



#### 1 AILERON TRIM Wheel

Rotate – repositions the aileron neutral control position.

#### **2** Control Wheel


Rotate - operates ailerons and flight spoilers in desired direction.

#### **3** Control Column

Push/Pull – operates elevators in the desired direction. Movement opposing stabilizer trim stops electric trimming.



# Speed Brakes



#### SPEED BRAKE Lever

DOWN (detent) - all flight and ground spoiler panels in faired position.

ARMED –

- automatic speed brake system armed
- upon touchdown, the SPEED BRAKE lever moves to the UP position, and all flight and ground spoilers extend.

FLIGHT DETENT – all flight spoilers are extended to their maximum position for inflight use.

UP – all flight and ground spoilers are extended to their maximum position for ground use.

#### SPEED BRAKE DO NOT ARM Light

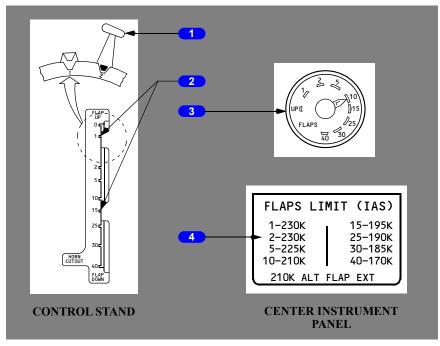
Light deactivated when SPEED BRAKE lever is in the DOWN position.

Illuminated (amber) – indicates abnormal condition or test inputs to the automatic speed brake system.

#### **3** SPEED BRAKE ARMED Light

Light deactivated when SPEED BRAKE lever is in the DOWN position.

737 Flight Crew Operations Manual


Illuminated (green) – indicates valid automatic speed brake system inputs.

#### 4 SPEED BRAKE Test Switches

Used for maintenance purposes only.

Tests fault detection circuits of the automatic speed brake system.

# **Trailing Edge Flaps**





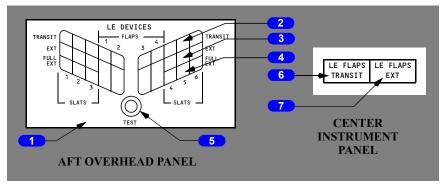
#### **1** Flap Lever

- · selects position of flap control valve, directing hydraulic pressure for flap drive unit
- position of the leading edge devices is determined by selecting trailing edge flap position
- At flaps position 40, arms the flap load relief system, which automatically will cause flap retraction to position 30 in the event of excess airspeed.

#### **2** Flap Gates

Prevents inadvertent flap lever movement beyond:

- position 1 to check flap position for one engine inoperative go-around
- position 15 to check flap position for normal go-around.


#### **3** Flap Position Indicator

- indicates position of left and right trailing edge flaps
- provides trailing edge flaps asymmetry protection circuit.

#### **4** FLAPS LIMIT Placard

Indicates maximum speed for each flap setting.

# Leading Edge Devices



#### **1** Leading Edge Devices (LE DEVICES) Annunciator Panel

Indicates position of individual leading edge flaps and slats.

Extinguished - corresponding leading edge device retracted.

#### **2** Leading Edge Devices TRANSIT Lights

Illuminated (amber) - corresponding leading edge device in transit.

#### **3** Leading Edge Devices Extended (EXT) Lights

Illuminated (green) – corresponding leading edge slat in extended (intermediate) position.

### Leading Edge Devices FULL Extended (FULL EXT) Lights

Illuminated (green) - corresponding leading edge device in full extended position.

#### **5** Leading Edge Annunciator Panel TEST Switch

Press - tests all annunciator panel lights.

#### 6 Leading Edge Flaps Transit (LE FLAPS TRANSIT) Light

Illuminated (amber) – any leading edge device in transit, or not in programmed position with respect to trailing edge flaps.

#### **7** Leading Edge Flaps Extended (LE FLAPS EXT) Light

Illuminated (green) -

• all leading edge flaps extended and all leading edge slats in extended (intermediate) position (trailing edge flap positions 1, 2 and 5)

OR:

• all leading edge devices fully extended (trailing edge flap positions 10 through 40).



Intentionally Blank

737 Flight Crew Operations Manual

Flight Controls System Description Chapter 9 Section 20

# Introduction

The primary flight control system uses conventional control wheel, column, and pedals linked mechanically to hydraulic power control units which command the primary flight control surfaces; ailerons, elevators and rudder. The flight controls are powered by redundant hydraulic sources; system A and system B. Either hydraulic system can operate all primary flight controls. The ailerons and elevators may be operated manually if required. The rudder may be operated by the standby hydraulic system if system A and system B pressure is not available.

The secondary flight controls, high lift devices consisting of Trailing Edge (TE) flaps and Leading Edge (LE) flaps and slats (LE devices), are powered by hydraulic system A. In the event hydraulic system A fails, the TE flaps can be operated electrically. The leading edge devices may be extended by the Standby hydraulic system. No alternate retraction system is provided for the leading edge devices.

# **Pilot Controls**

The pilot controls consist of:

- two control columns
- two control wheels
- two pairs of rudder pedals
- SPEED BRAKE lever
- FLAP lever
- STAB TRIM cutout switches
- stabilizer trim switches
- stabilizer trim wheel

- AILERON trim wheel
- RUDDER trim wheel
- YAW DAMPER switch
- ALTERNATE FLAPS master switch
- alternate flaps position switch
- FLT CONTROL switches
- flight SPOILER switches

The control wheels are connected through transfer mechanisms which allow the pilots to bypass a jammed control or surface.

There is a rigid connection between both pairs of rudder pedals.

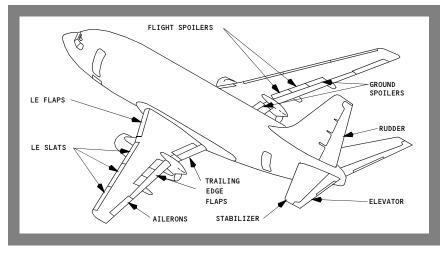
The SPEED BRAKE lever allows manual or automatic symmetric actuation of the spoilers.

# **Flight Control Surfaces**

Pitch control is provided by:

- two elevators
- a movable horizontal stabilizer.

Roll control is provided by:


- two ailerons
- four flight spoilers.

Yaw control is provided by a single rudder. During takeoff, the rudder becomes aerodynamically effective between 40 and 60 knots.

TE flaps, and LE flaps and slats provide high lift for takeoff, approach, and landing.

In the air symmetric flight spoilers are used as speed brakes. On the ground symmetric flight and ground spoilers destroy lift and increase braking efficiency.

# **Flight Control Surfaces Location**



# **Roll Control**

The roll control surfaces consist of hydraulically powered ailerons and flight spoilers, which are controlled by rotating either control wheel.

# Ailerons

The ailerons provide roll control around the airplane's longitudinal axis. The ailerons are positioned by the pilots' control wheels, which are linked together by cables to supply the mechanical input to two separate hydraulic power control units. Hydraulic Systems A and B provide pressure to the power control units to operate the ailerons. The A and B FLT CONTROL switches control hydraulic pressure shutoff valves for each aileron. Note that these same switches control hydraulic pressure to the elevator and rudder.

The Captain's control wheel is connected by cables to the aileron Power Control Units (PCUs) through the aileron feel and centering unit. The First Officer's control wheel is connected by cables to the spoiler PCUs through the spoiler mixer. The two control wheels are connected by a cable drive system which allows actuation of both ailerons and spoilers by either control wheel. With total hydraulic power failure the ailerons can be mechanically positioned by rotating the pilots' control wheels. Control forces are higher due to friction and aerodynamic loads.

### Aileron Transfer Mechanism

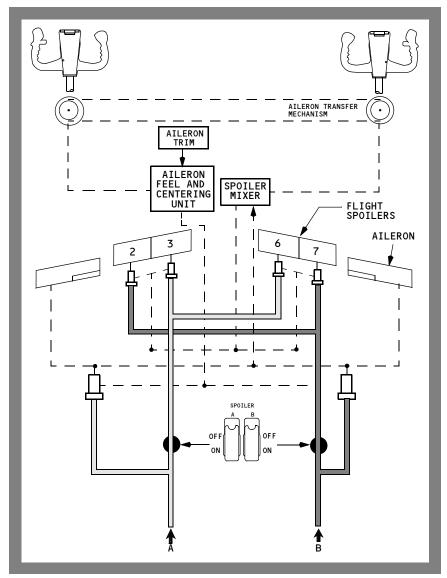
The right and left ailerons are bussed together by the cable-drive system. Either hydraulic system is capable of providing full power control. In the event of total hydraulic power failure, rotation of the pilots' control wheels mechanically position the ailerons. Manual control forces required are higher due to frictional and aerodynamic loads. If the aileron system were to jam, a transfer mechanism allows the First Officer to bypass the aileron system and operate the flight spoilers for roll control.

## Aileron Trim

Aileron trim is accomplished by rotating the Aileron Trim Wheel on the control stand. Rotating the trim wheel repositions the aileron feel and centering mechanism and redefines the ailerons' neutral position.

If aileron trim is used with the autopilot engaged, the aileron neutral point is repositioned. When the autopilot is disengaged, the wheel and ailerons move to the repositioned aileron neutral point. The airplane responds with roll proportional to the amount of aileron trim input.

## **Flight Spoilers**


Two flight spoilers are located on the upper surface of each wing. Hydraulic system A provides power to the inboard spoilers and Hydraulic system B provides power to the outboard spoilers. This provides isolation and maintains symmetric operation in the event of hydraulic system failure. Hydraulic pressure shutoff valves are controlled by the two flight SPOILER switches.

Flight spoiler panels are used as speed brakes to increase drag and reduce lift, both in flight and on the ground. The flight spoilers also supplement roll control in response to control wheel commands. A spoiler mixer, connected to the aileron cable–drive, controls the hydraulic power control units on each spoiler panel to provide spoiler movement proportional to aileron movement.

The flight spoilers rise on the wing with up aileron and remain faired on the wing with down aileron. When the control wheel is displaced more than approximately  $10^{\circ}$ , spoiler deflection is initiated.

## 737 Flight Crew Operations Manual

## **Roll Control Schematic**



## **Pitch Control**

The pitch control surfaces consist of hydraulically powered elevators and an electrically powered stabilizer. The elevators are normally controlled by forward or aft movement of the control column. The stabilizer is normally controlled by either the stabilizer trim switches on the control wheel or the autopilot.

## Elevators

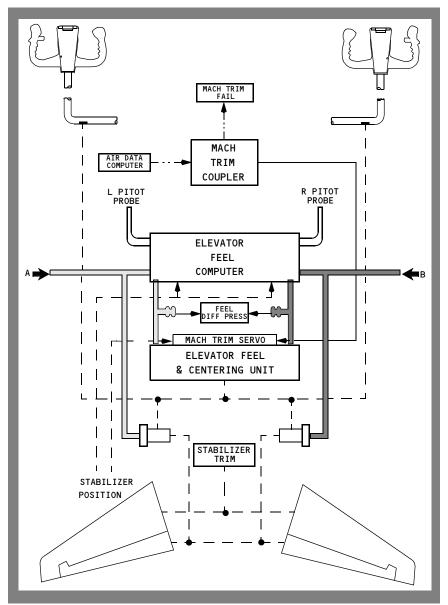
The elevators provide primary pitch control around the airplane's lateral axis. The elevators are interconnected by a torque tube and are normally powered by system A and system B power control units. Hydraulic pressure to the units is controlled by A and B FLT CONTROL switches on the forward overhead panel.

In the event of failure of both hydraulic system A and B, the elevators are controlled manually from either control column. During manual operation, elevator tabs operate to reduce the forces required to control the elevators.

## **Elevator Feel System**

Elevator system feel is provided by the elevator feel computer. The computer senses airspeed through the elevator pitot system, and stabilizer position to simulate aerodynamic forces to the control columns through the elevator feel and centering unit.

The elevator feel computer utilizes system A and system B pressure to operate the feel system. If either system A or system B were to fail, the computer will sense the imbalance and the FEEL DIFF PRESS light will illuminate when the flaps are up. The feel system will continue to operate normally with only one hydraulic system operating.


## Mach Trim System

The Mach trim system provides speed stability at the higher Mach numbers. Mach trim is automatically accomplished above Mach .715 by a programmed elevator adjustment with respect to the stabilizer as speed is increased. Engagement and disengagement are automatic as a function of airspeed.

Mach information received from the air data computer is used by the flight control computers to generate a servo position command signal. The signal causes a rotation of the elevator feel and centering unit which adjusts the control column neutral position.

Failure or unreliable Mach trim is indicated by the illumination of the MACH TRIM FAIL light. The light is armed only when trailing edge flaps are up.

#### **Pitch Control Schematic**



## Stabilizer

The horizontal stabilizer is positioned by the main electric trim motor controlled through either the stabilizer trim switches on the control wheel or by the autopilot trim servo motor. The stabilizer may also be positioned by manually rotating the stabilizer trim wheel.

## Stabilizer Trim

Stabilizer trim switches on each control wheel actuate the electric trim motor through the main electric stabilizer trim circuit when the airplane is flown manually. With the autopilot engaged, stabilizer trim is accomplished through the autopilot stabilizer trim circuit. If the autopilot is engaged, actuating either pair of stabilizer trim switches automatically disengages the autopilot. The stabilizer trim wheels rotate whenever electric stabilizer trim is actuated. The Stab Trim light will illuminate only when the main electric trim motor is operating.

The STAB TRIM MAIN ELEC cutout switch and the STAB TRIM AUTOPILOT cutout switch, located on the control stand, are provided to allow the autopilot or main electric trim inputs to be disconnected from the stabilizer trim motor.

Control column actuated stabilizer trim cutout switches stop operation of the main electric and autopilot trim when the control column movement opposes trim direction.

Manual stabilizer control is accomplished through cables which allow the pilot to position the stabilizer by rotating the stabilizer trim wheels.

A stabilizer brake can be applied to stop unwanted trim motion by moving the control columns opposite to the trim motion. The brake is released by pulling a Stabilizer Brake Release Knob on the control stand or by reversing the trim direction. Manual rotation of the trim wheels can be used to override autopilot or main electric trim. The effort required to manually rotate the stabilizer trim wheels may be higher under certain flight conditions. Grasping the stabilizer trim wheel will stop stabilizer motion.

## Stabilizer Trim Operation with forward or AFT CG

In the event the stabilizer is trimmed to the end of the electrical trim limits, additional trim is available through the use of the manual trim wheels. If manual trim is used to position the stabilizer beyond the electrical trim limits, the stabilizer trim switches may be used to return the stabilizer to electrical trim limits.

## Stabilizer Position Indication and Green Band

Stabilizer position is displayed in units on two STAB TRIM indicators located inboard of each stabilizer trim wheel. The STAB TRIM indicators also display the TAKEOFF green band indication.

The trim authority for each mode of trim is limited to:

- Main Electric Trim 2.6 to 12.5 units
- Autopilot Trim 2.3 to 13.0 units
- Manual Trim 0 to 17.0 units

The green band range of the STAB TRIM indicator shows the permissible takeoff trim range. An intermittent horn sounds if takeoff is attempted with the stabilizer trim outside the takeoff trim range.

# Yaw Control (before Rudder System Enhancement Program (RSEP) modification)

Yaw control is accomplished by a hydraulically powered rudder and a yaw damper system. The rudder is controlled by displacing the rudder pedals. The yaw damping functions are controlled by the yaw damper rate gyro.

## Rudder

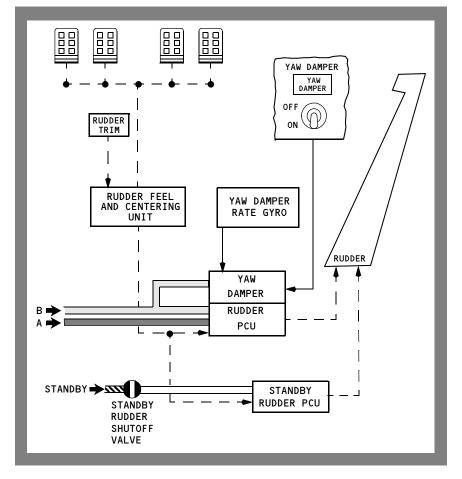
Each set of rudder pedals is connected by cables to the main and standby rudder PCUs through the rudder feel and centering unit. The main rudder PCU is powered by hydraulic systems A and B while the standby rudder PCU is powered by the standby hydraulic system. The standby hydraulic system is provided as a backup if system A and/or B pressure is lost. It can be activated manually through the FLT CONTROL switches or automatically. (Refer to Chapter 13, Hydraulics, Standby Hydraulic System)

On some airplanes, a rudder pressure reducer is connected to the A system hydraulic line upstream of the main rudder PCU. Hydraulic pressure to the rudder is reduced when the airplane climbs above 1000 feet AGL. Hydraulic pressure returns to normal when the airplane descends through 700 feet AGL or if B hydraulic system depressurizes.

## Rudder Trim

The Rudder Trim Wheel is located on the control stand. Operation of the trim wheel mechanically repositions the rudder feel and centering unit which results in a shift in the rudder neutral position. The rudder pedals are displaced proportionately. The rudder trim indicator displays the rudder trim position in units.

## Yaw Damper


The yaw damper system prevents unwanted (Dutch) roll. The yaw damper coupler receives inputs from the yaw rate gyro and the air data computer. It then provides inputs to the rudder through the main rudder PCU. At higher airspeeds the amount of yaw damper rudder deflection decreases. No rudder pedal movement results from yaw damper operation.



The yaw damper uses hydraulic system B pressure only. If hydraulic system B pressure is lost the yaw damper system is inoperative but the YAW DAMPER switch remains in the ON position until the B FLT CONTROL switch is positioned to OFF or STBY RUD. Then the YAW DAMPER switch disengages and the amber YAW DAMPER light illuminates and the YAW DAMPER cannot be reengaged.

**Note:** Moving the Yaw Damper Test switch causes rudder movement in the air as well as on the ground.

On airplanes with the rudder pressure reducer installed, the yaw damper test switch is inoperative.



## Yaw Control Schematic (before RSEP modification)

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. 9.20.10 D6-27370-200A-TBC April 2, 2004

## Yaw Control (after RSEP modification)

Yaw control is accomplished by a hydraulically powered rudder and a yaw damper system. The rudder is controlled by displacing the rudder pedals. The yaw damping functions are controlled by the Yaw Damper Coupler (YDC).

## Rudder

The rudder provides yaw control about the airplane's vertical axis. The A and B FLT CONTROL switches control hydraulic shutoff valves for the rudder and the standby rudder.

Each set of rudder pedals is mechanically connected by cables to the input levers of the main and standby rudder PCUs. The main PCU consists of two independent input rods, two individual control valves, and two separate actuators; one for Hydraulic system A and one for Hydraulic system B. The standby rudder PCU is controlled by a separate input rod and control valve and is powered by the standby hydraulic system. All three input rods have individual jam override mechanisms that allow input commands to continue to be transferred to the remaining free input rods if an input rod is hindered or jammed.

A Rudder Pressure Reducer (RPR) is connected to the Hydraulic system A line upstream of the main rudder PCU. A Rudder Pressure Limiter (RPL) is incorporated in the Hydraulic system B part of the main rudder PCU. Both the RPR and RPL limit hydraulic pressure to the rudder when full rudder authority is not required. Hydraulic pressure to the rudder is reduced when the airplane climbs above 1000 feet AGL. Hydraulic pressure returns to normal when the airplane descends through 700 feet AGL or if B hydraulic system depressurizes. This function limits full rudder authority in flight after takeoff and before landing. The Yaw Damper Coupler (YDC) module controls both the RPR and RPL respectively, for Hydraulic system A and Hydraulic system B of the main rudder PCU.

The main rudder PCU contains a Force Fight Monitor (FFM) that detects opposing pressure (force fight) between A and B actuators. This may occur if either system A or B input is jammed or disconnected. The FFM output is used to automatically turn on the Standby Hydraulic pump pressurizing the standby rudder PCU.

The standby rudder PCU is powered by the standby hydraulic system. The standby hydraulic system is provided as a backup if system A and/or B pressure is lost. With the standby PCU powered the pilot retains adequate rudder control capability. It can be operated manually through the FLT CONTROL switches or automatically by the Force Fight Monitor. (Refer to Chapter 13, Hydraulics, Standby Hydraulic System)

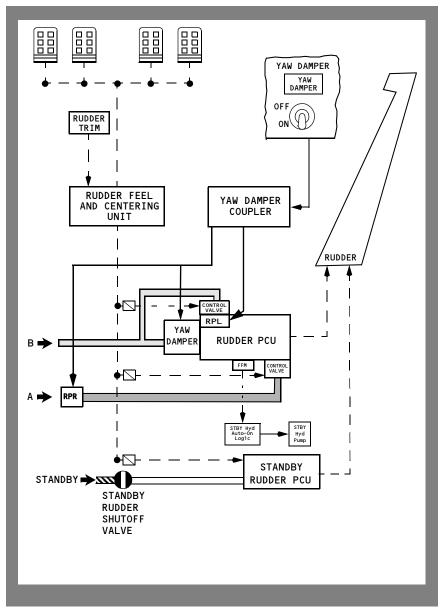
An amber STBY RUD ON light illuminates when the standby rudder hydraulic system is commanded on. The standby rudder system can be commanded on with either the FLT CONTROL switch or automatically by the Force Fight Monitor. The STBY RUD ON light illumination activates Master Caution and Flight Control warning lights on the Systems Annunciation Panel.

## **Rudder** Trim

The Rudder Trim Wheel is located on the control stand. Operation of the trim wheel mechanically repositions the rudder feel and centering unit which results in a shift in the rudder neutral position. The rudder pedals are displaced proportionately. The rudder trim indicator displays the rudder trim position in units.

## Yaw Damper

The yaw damper system prevents unwanted (Dutch) roll. The yaw damper coupler receives inputs from the yaw rate gyro and the air data computer. It then provides inputs to the rudder through the main rudder PCU. At higher airspeeds the amount of yaw damper rudder deflection decreases. No rudder pedal movement results from yaw damper operation.


The yaw damper uses hydraulic system B pressure only. If hydraulic system B pressure is lost the yaw damper system is inoperative but the YAW DAMPER switch remains in the ON position until the B FLT CONTROL switch is positioned to OFF or STBY RUD. Then the YAW DAMPER switch disengages and the amber YAW DAMPER light illuminates and the YAW DAMPER cannot be reengaged.

On airplanes with the Rudder System Enhancement Program (RSEP) installed, the yaw damper test switch is inoperative.

737 Flight Crew Operations Manual

Flight Controls -System Description

## Yaw Control Schematic (after RSEP modification)



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2012 D6-27370-200A-TBC 9.20.13

## **Speed Brakes**

The speed brakes consist of flight spoilers and ground spoilers. Hydraulic system A powers all four ground spoilers, two on the upper surface of each wing. The SPEED BRAKE lever controls the spoilers. When the SPEED BRAKE lever is actuated all the spoilers extend when the airplane is on the ground, and only the flight spoilers extend when the airplane is in the air.

## In Flight Operation

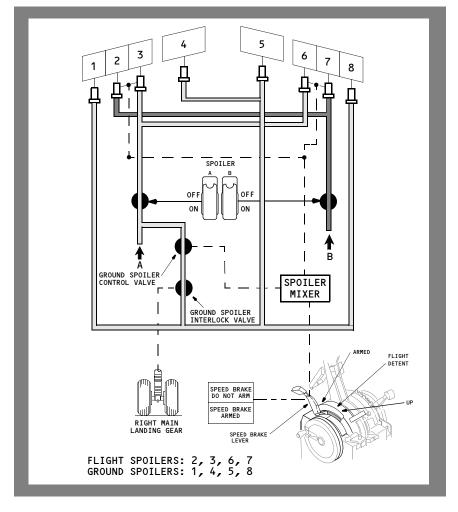
Operating the SPEED BRAKE lever in flight causes all flight spoiler panels to rise symmetrically to act as speed brakes. Caution should be exercised when deploying flight spoilers during a turn, as they greatly increase roll rate. When the speed brakes are in an intermediate position roll rates increase significantly. Moving the SPEED BRAKE lever past the FLIGHT detent causes buffeting and is not recommended in flight.

## **Ground Operation**

During landing, the auto speed brake system operates when these conditions occur:

- SPEED BRAKE lever is in the ARMED position
- SPEED BRAKE ARMED light is illuminated
- both thrust levers are retarded to IDLE
- main landing gear wheels spin up (more than 60 kts) SPEED BRAKE lever automatically moves to the UP position, and the flight spoilers deploy
- right main landing gear strut compresses on touchdown, causing the mechanical linkage to open the ground spoiler interlock valve, and the ground spoilers deploy

If a wheel spin–up signal is not detected when the air/ground system senses ground mode (right main landing gear strut compressed), the SPEED BRAKE lever moves to the UP position, and all spoiler panels deploy automatically.


During a Rejected Takeoff (RTO), the auto speed brake system operates when these conditions occur:

- main landing gear wheels spin up (more than 60 kts)
- takeoff is rejected, both thrust levers are retarded to IDLE and the reverse thrust levers are positioned for reverse thrust SPEED BRAKE lever automatically moves to the UP position and all spoilers deploy.

After a RTO or landing, if either thrust lever is advanced, the SPEED BRAKE lever automatically moves to the DOWN detent and all spoiler panels retract. The spoiler panels may also be retracted by manually moving the SPEED BRAKE lever to the DOWN detent.

A failure in the automatic functions of the speed brakes is indicated by the illumination of the SPEED BRAKE DO NOT ARM light. In the event the automatic system is inoperative, the SPEED BRAKE lever must be moved manually to the UP position.

## **Speed Brakes Schematic**



## **Flaps and Slats**

The flaps and slats are high lift devices that increase wing lift and decrease stall speed during takeoff, low speed maneuvering and landing.



LE devices consist of four flaps and six slats: two flaps inboard and three slats outboard of each engine. Flaps are hinged surfaces that extend by rotating downward from the lower surface of the wing leading edge. Slats are sections of the wing leading edge that extend forward to form a slotted leading edge. The TE devices consist of double slotted flaps inboard and outboard of each engine.

TE flap positions 1–15 provide increased lift; positions 15–40 provide increased lift and drag to permit slower approach speeds and greater maneuvering capability. Flaps 15, 30 and 40 are normal landing positions. Flaps 15 is normally limited to airports where approach climb performance is a factor. Runway length and condition must be taken into account when selecting a landing flap position.

To prevent excessive structural loads from increased Mach at higher altitude, flap extension above 20,000 feet should not be attempted.

## Flap and Slat Sequencing

LE devices and TE flaps are normally extended and retracted by hydraulic power from system A. When the FLAP lever is in the UP detent, all flaps and LE devices are commanded to the retracted or up position. Moving the FLAP lever aft allows selection of flap detent positions 1, 2, 5, 10, 15, 25, 30 or 40. The LE devices deployment is sequenced as a function of TE flaps deployment.

When the TE flaps leave the UP position, the LE:

- flaps extend to the full extended position, and
- slats extend to the extend (intermediate) position.

As the TE flaps extend past the 5 position the LE:

- flaps remain at the full extended position, and
- slats extend to the full extended position.

The LE devices sequence is reversed upon retraction.

Mechanical gates hinder inadvertent FLAP lever movement beyond flaps 1 for one engine inoperative go-around, and flaps 15 for normal go-around.

Indicator lights on the center instrument panel provide overall LE devices position status. The LE DEVICES annunciator on the aft overhead panel indicates the positions of the individual flaps and slats.

## Flap Load Relief

A flap load limiter provides a TE flap load relief function which protects the flaps from excessive air loads. This function is operative at the flaps 40 position only. The FLAP lever does not move, but the flap position indicator displays flap retraction and re-extension.

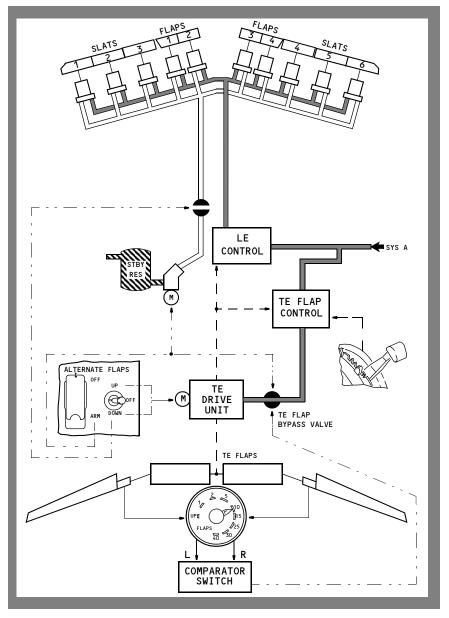
737 Flight Crew Operations Manual

When the flaps are set at 40 the TE flaps:

- retract to 30 if airspeed exceeds 157 knots
- re-extend when airspeed is reduced to 152 knots.

## **Alternate Extension**

In the event that hydraulic system A fails, an alternate method of extending the LE devices, and extending and retracting the TE flaps is provided.


The TE flaps can be operated electrically through the use of two alternate flap switches. The guarded ALTERNATE FLAPS master switch closes a flap bypass valve to prevent hydraulic lock of the flap drive unit and arms the ALTERNATE FLAPS position switch. The ALTERNATE FLAPS position switch controls an electric motor that extends or retracts the TE flaps. The switch must be held in the DOWN position until the flaps reach the desired position. No asymmetry protection is provided through the alternate (electrical) flap drive system.

When using alternate flap extension the LE flaps and slats are driven to the full extended position using power from the standby hydraulic system. In this case the ALTERNATE FLAPS master switch energizes the standby pump, and the ALTERNATE FLAPS position switch, held in the down position momentarily, fully extends the LE devices.

Note: The LE devices cannot be retracted by the standby hydraulic system.



#### Leading Edge Devices and Trailing Edge Flaps Schematic



## High Lift Device Protection and Indication Trailing Edge Flap Asymmetry

When a trailing edge asymmetry develops, a comparator switch closes the TE flap bypass valve, removing hydraulic power from the flap drive unit. The flap position will be displayed as a needle split on the flap position indicator.

### Leading Edge Device Improper Position

When a leading edge device is in an improper position the LE FLAPS TRANSIT light remains illuminated and one of the following indications is displayed on the LE Devices Annunciator Panel:

- amber TRANSIT light illuminated
- incorrect green EXT or FULL EXT light illuminated
- no light illuminated.



Intentionally Blank

737 Flight Crew Operations Manual

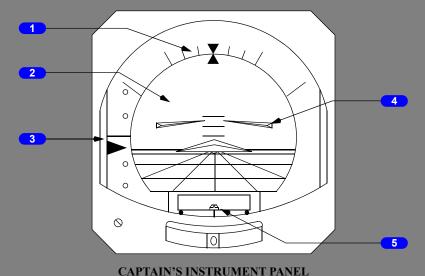
| Flight Instruments, Displays         | Chapter 10  |
|--------------------------------------|-------------|
| Table of Contents                    | Section TOC |
| Controls and Indicators              |             |
| Attitude Director Indicator (ADI)    | 10.10.1     |
| Vertical Gyro Transfer Switch        | 10.10.3     |
| Horizontal Situation Indicator (HSI) | 10.10.4     |
| Compass Transfer Switch              | 10.10.6     |
| Instrument Comparator                | 10.10.7     |
| Mach/Airspeed Indicator              | 10.10.8     |
| Electric Mach/Airspeed Indicator     | 10.10.8     |
| Pneumatic Mach/Airspeed Indicator    | 10.10.9     |
| Altimeter                            |             |
| Electric Altimeter                   |             |
| Pneumatic Altimeter                  |             |
| Marker Beacon                        | 10.10.12    |
| Radio Altimeter                      |             |
| Radio Altimeter Lights               | 10.10.14    |
| Radio Magnetic Indicator (RMI)       | 10.10.14    |
| Vertical Speed Indicator.            | 10.10.15    |
| Total Air Temperature                | 10.10.17    |
| Clock                                | 10.10.17    |
| Standby Flight Instruments           | 10.10.18    |
| Standby Horizon                      | 10.10.18    |
| Static Source Selector               |             |
| Standby Magnetic Compass             | 10.10.20    |
| Flight Recorder                      | 10.10.21    |
| TCAS                                 | 10.10.23    |
| TCAS Resolution Advisory Commands    |             |
| TCAS VSI Messages                    |             |
| TCAS Symbology                       | 10.10.26    |

#### Flight Instruments, Displays

Table of Contents

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

| System Description                 |         |
|------------------------------------|---------|
| Introduction                       |         |
| Air Data System                    |         |
| Pitot Static System                |         |
| Air Data Computer                  |         |
| Pitot–Static System Schematic      |         |
| Total Air Temperature (TAT) System |         |
| Angle–of–Attack                    |         |
| Primary Flight Instruments         |         |
| Attitude Director Indicator        |         |
| Attitude Systems                   | 10.20.7 |
| Vertical Gyro Attitude Error       |         |
| Attitude System Schematic          |         |
| Attitude Switching Table           |         |
| Compass Systems                    |         |
| Compass System Schematic           |         |
| Compass Switching Table            |         |
| Instrument Comparator              |         |
| Mach/Airspeed Indicators           |         |
| Altimeters                         |         |
| Radio Altimeter                    |         |
| Vertical Speed Indicators          |         |
| Marker Beacons                     |         |
| Clocks                             |         |
| Standby Flight Instruments         |         |
| Standby Horizon Indicator          |         |
| Standby Magnetic Compass           |         |
| Flight Recorder                    |         |


737 Flight Crew Operations Manual

**Flight Instruments** 

**Controls and Indicators** 

Chapter 10 \_\_\_\_\_Section 10

## **Attitude Director Indicator (ADI)**



FIRST OFFICER'S INSTRUMENT PANEL

## **1** Bank Indicator and Scale

- index indicates roll angle against calibrated scale
- scale has minor markings at 10 degrees and 20 degrees and major markings at 30 degrees and 60 degrees.

### 2 Attitude Display

- tape moves relative to symbolic airplane, displaying pitch and roll signals from the vertical gyro
- pitch up scaled in 5 degree increments to 15 degrees then with marks at 30, 50, 70, and 90 degrees
- pitch down scaled with marks at 5, 10, 20, 30, 50, 70, and 90 degrees.

## **3** Glideslope Pointer and Deviation Scale

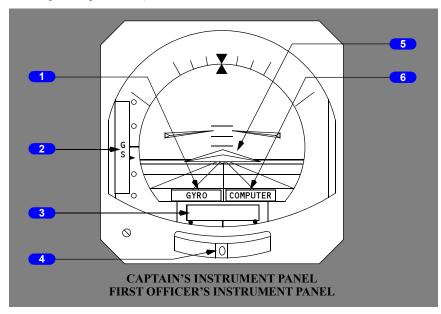
- · pointer indicates glideslope position
- scale indicates deviation
- glideslope flag covers the display when the signal is not valid.

Pointer out of view – a VOR frequency is tuned.

### 4 Flight Director Command Bars

(yellow) – Displays computed pitch and/or roll commands.

Biased out of view -


- flight director switch is positioned OFF
- the required signal inputs are unreliable.

Refer to Chapter 4, Automatic Flight.

### **5** Localizer Symbol and Deviation Scale

In view -

- · localizer frequency is tuned and localizer signal is valid
- scale indicates localizer deviations of one dot or less (one dot is one degree displacement).



## GYRO Warning Flag

In view -

- display is unreliable (some failures cause indications of 90 degrees left bank)
- electrical power loss.

**2** Glideslope (GS) Warning Flag

In view –

- glideslope information is unreliable with ILS frequency tuned
- parallels the glideslope warning flag on the HSI.

## **3** Localizer Symbol Shutter

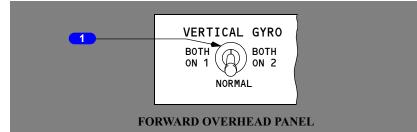
In view –

- glideslope not captured
- glideslope capture but VOR LOC flag on HSI in view.

## 4 Slip/Skid Indicator

Ball monitors slip or skid for coordinated flight.

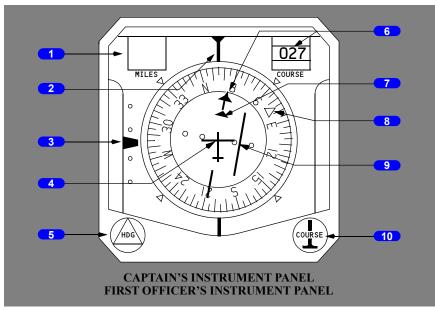
**5** Symbolic Airplane


(orange) - Represents airplane attitude relative to the horizon.

## **6** Flight Director COMPUTER Warning Flag

In view –

- vertical gyro information unreliable
- · electrical power loss
- causes flight director command bars to retract.


## Vertical Gyro Transfer Switch



## **1** VERTICAL GYRO Transfer Switch

- BOTH ON 1 switches both attitude sources to vertical gyro No. 1
- NORMAL captain's attitude source vertical gyro No. 1; first officer's attitude source vertical gyro No.2
- BOTH ON 2 switches both attitude sources to vertical gyro No. 2.

## Horizontal Situation Indicator (HSI)



### **1** DME MILES Window

Inoperative.

## 2 Lubber Line

Displays heading on compass card.

### **3** Glideslope Pointer and Scale

Indicates displacement above or below glideslope.

Pointer in view - localizer frequency tuned and HSI powered.

## **4** Airplane Symbol

- fixed in the center of the instrument
- displays position of the airplane in relation to movable portions of the indicator.

## **5** HSI Heading (HDG) Selector

- selects desired flight director heading
- captain's selector can set desired heading for autopilot.

737 Flight Crew Operations Manual

#### **6** Course Pointer and COURSE Counter

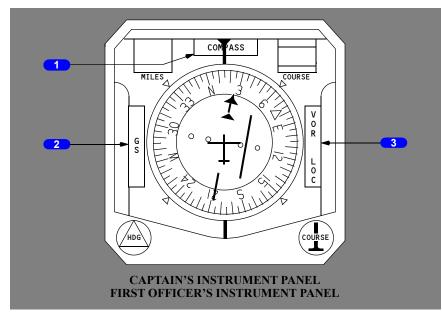
Reflects the course set by the HSI course selector.

### To/From Ambiguity Indicator

Displays direction to a VOR station along the radial selected by the HSI course selector.

#### **8** Heading Marker

Displays the heading set by the HSI heading selector.


#### **9** Course Deviation Bar

VOR: 1 dot = 5 degrees.

LOC: 1 dot = 1 degree.

#### **10** HSI COURSE Selector

- · selects VOR radial or LOC course for flight director
- captain's selector can set VOR radial or localizer course for autopilot.



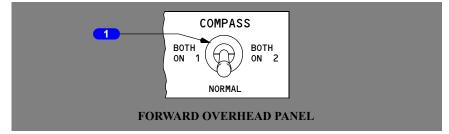
### COMPASS Failure Flag

#### In view -

- · selected compass is invalid
- · electrical power loss to HSI
- compass card malfunction.

## Clideslope (GS) Failure Flag

In view - only with localizer frequency tuned

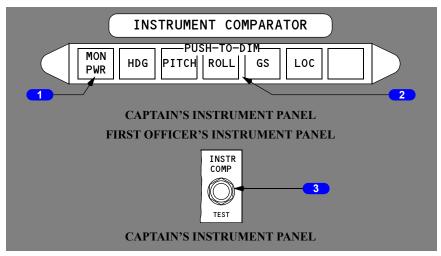

- glideslope signal below acceptable level
- failed glideslope receiver
- electrical power loss.

## 3 VOR LOC Failure Flag

In view -

- VOR or LOC signal below acceptable level
- NAV receiver malfunction
- · electrical power loss.

## **Compass Transfer Switch**




### **1** COMPASS Transfer Switch

- BOTH ON 1 switches both compass sources to the No. 1 compass system
- NORMAL captain's compass source is the No. 1 compass system; first officer's compass source is the No. 2 compass system
- BOTH ON 2 switches both compass sources to the No. 2 compass system.

737 Flight Crew Operations Manual

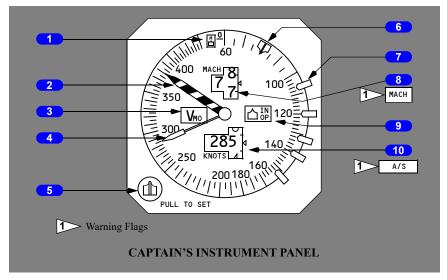
## **Instrument Comparator**



## Monitor Power Light

Illuminated (amber) – 115 volt ac power loss to comparator unit.

#### **2** Instrument Comparator Lights


Illuminated (amber) – instrument being compared have exceeded established tolerances.

### **3** Instrument Comparator Test (INSTR COMP TEST) Switch

Push - illuminates all instrument comparator lights, except MON PWR.



## Mach/Airspeed Indicator Electric Mach/Airspeed Indicator



## **1** Airspeed Cursor Mode Annunciator

- auto mode: out of view
- manual mode: in view.

## **2** Vmo Pointer

Indicates the maximum operating (indicated) airspeed in knots.

## **3** Vmo Flag

In view – indicates the Vmo pointer is inoperative.

## **4** Airspeed Pointer

Indicates airspeed in knots.

## **5** Airspeed Cursor Control

Push in -

- auto mode
- airspeed cursor is positioned from the PDCS.

Pull out -

- manual mode
- airspeed cursor is positioned by rotating the control.

#### 6 Airspeed Cursor

- indicates target airspeed
- positioned manually or automatically, as selected by the airspeed cursor control.

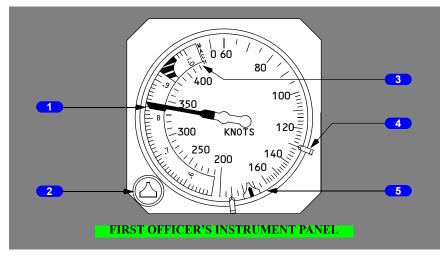
#### **7** Airspeed Reference Markers (Bugs)

Positioned manually to the desired airspeed reference.

### 8 MACH Digital Counter

- shows Mach number, from .40 to .99 Mach, in digital form
- masked below .40 Mach
- digits are covered by a warning flag when the display is unreliable.

### 9 Airspeed Cursor Flag


Manual mode: flag retracted.

Auto mode: flag in view if airspeed cursor signals, as determined by the PDCS, are unreliable.

### **10** Airspeed Digital Counter

- · digital display of indicated airspeed in knots
- warning flag covers the counter when the airspeed pointer and airspeed digital counter are unreliable.

## **Pneumatic Mach/Airspeed Indicator**





### **1** Mach/Airspeed Pointer

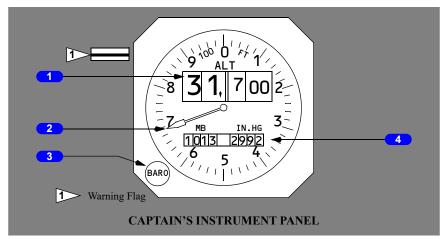
Indicates Mach and airspeed in knots.

## **2** Airspeed Cursor Control

Rotate - manually positions the airspeed cursor.

### MACH Dial

Rotates - Mach number read under Mach/Airspeed pointer.


#### **4** Airspeed Reference Markers (Bugs)

Positioned manually to the desired airspeed reference.

#### **5** Airspeed Cursor

- indicates target airspeed
- positioned manually by the airspeed cursor control.

## Altimeter Electric Altimeter



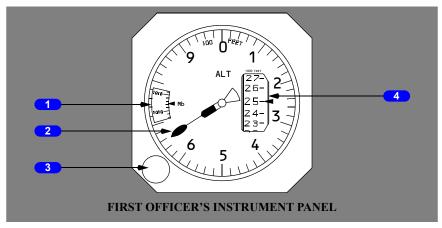
#### **1** Digital Altitude Counter

Indicates current altitude in increments of thousands, hundreds, and twenty feet.

- warning flag appears whenever the ADC signal is lost or a malfunction exists
- blue flag appears in the left window when the altitude is below 10,000 feet
- a NEG flag appears in the two left-hand windows when altitude below zero feet is displayed.



Makes one revolution each one thousand feet.


## **3** Barometric (BARO) Setting Control

Rotate - adjusts barometric settings.

## **4** Barometric Setting Window

Displays barometric correction (in millibars and inches of mercury) as set by the barometric setting control.

## **Pneumatic Altimeter**



## **1** Barometric Setting Window

Displays barometric correction (in millibars of mercury) as set by the barometric setting control.

## **2** Altitude Pointer

Makes one revolution each one thousand feet.




## **3** Barometric Setting Control

Rotate - adjusts barometric settings.

## **4** Digital Altitude Counter

Indicates current altitude in increments of thousands of feet.

## Marker Beacon



### Marker Beacon Lights


AIRWAYS (white) – illuminates over an inner or airways marker beacon. MIDDLE (amber) – illuminates over a middle marker beacon. OUTER (blue) – illuminates over an outer marker beacon.

### **2** Marker Beacon Sensitivity Switch

HIGH - selects high sensitivity of receiver.

LOW - selects low sensitivity of receiver.

## **Radio Altimeter**



## **1** Minimum Descent Altitude (MDA) Light

Illuminated (amber) - altitude pointer is at or below MDA cursor.

## 2 Radio Altimeter Test Switch

Push –

- altitude pointer drives to 100 feet
- warning flag in view
- the MDA light illuminates if the altitude pointer drives to a position at or below the altitude indicated by the minimum descent altitude cursor.

### **3** Minimum Descent Altitude (MDA) Cursor

Displays selected altitude reference selected by the MDA cursor control.

#### **4** Warning Flag

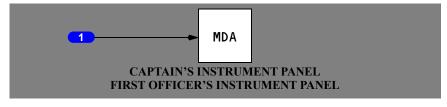
In view –

- power failure
- loss of return signal below 2500 feet
- incorrect altitude tracking
- radio altimeter test switch pushed.

### 5 Altitude Pointer

Power off – pointer moves to the top of the scale under the mask.




#### Power on -

- up to 2500 feet pointer reads true altitude above ground level
- above 2500 feet pointer is behind the mask.

## **6** Minimum Descent Altitude (MDA) Cursor Control

Rotate – sets the MDA cursor.


## Radio Altimeter Lights Minimum Descent Altitude Light



## Minimum Descent Altitude (MDA) Light

Illuminated (amber) - altitude pointer is at or below MDA cursor setting.

## **Radio Magnetic Indicator (RMI)**



## Synchronizing Annunciator

Indicates the compass is out of synchronization if arrow is pointed toward dot or cross.

737 Flight Crew Operations Manual

#### **2** ADF/VOR Bearing Pointers

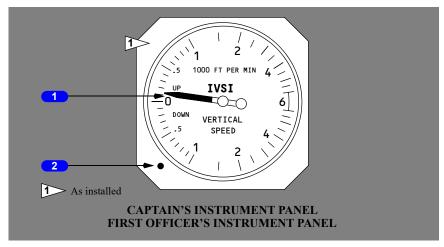
- narrow pointer uses signals from selected ADF or VOR receiver No. 1
- wide pointer uses signals from selected ADF or VOR receiver No. 2.

### **3** Compass Warning Flag

In view – electrical power failure to compass system.

#### 4 ADF/VOR Bearing Pointer Switches

Rotate - selects ADF or VOR bearing.


**Note:** Instrument transfer switching table provides VHF NAV signal sources to pointer.

**5** Synchronizing Control

Rotate -

- · synchronizes RMI with compass system
- direction of rotation determined by synchronizing annunciator.

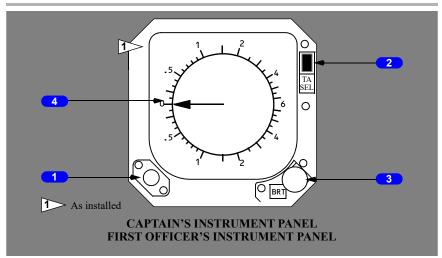
## **Vertical Speed Indicator**



## **1** Vertical Speed Pointer

Displays rate of climb or descent from 0 to 6,000 feet per minute.

### **2** Zero Adjustment Screw


Used to set vertical speed pointer to zero.

**Note:** Airplane should be on the ground or stabilized in level flight during adjustment.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 5, 2012 D6-27370-200A-TBC 10.10.15

#### Flight Instruments -Controls and Indicators





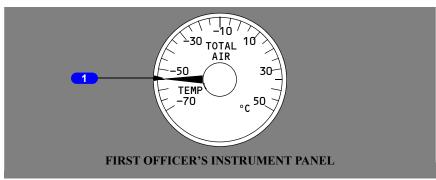
## Light Sensor

Automatically adjusts display contrast for ambient light conditions.

## TA Select Push–button

Push - changes display between modes:

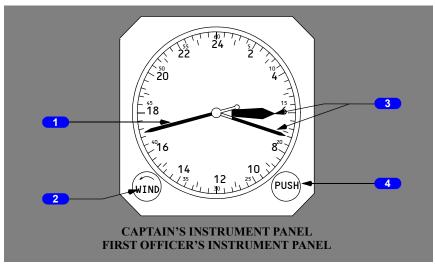
- full-time mode traffic information is displayed full-time
- popup mode traffic information is displayed only when a TA or RA is generated. Display remains for the duration of the alert.


### Brightness Control

Rotate - adjusts brightness of the VSI display.

### **4** Vertical Speed Pointer

Displays rate of climb or descent from 0 to 6,000 feet per minute.


## **Total Air Temperature**



#### **1** Total Air Temperature Indicator

Displays TAT from -70 degrees C to +50 degrees C.





**1** Sweep Second Hand

- controlled by push button
- rotates once each minute.



## **2** Winding (WIND) and Setting Control

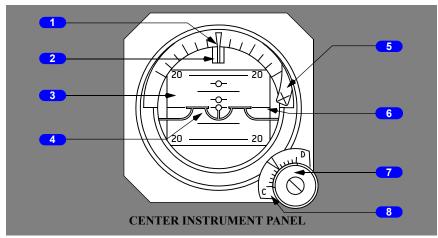
Rotate counter clockwise -

- winds clock
- one winding powers clock for 8 days.

Pull – sets hour and minute hands.

## Hour and Minute Hands

Twenty-four hour format.


## PUSH Control

Controls sweep hand.

With sweep second hand at zero (60):

- Push starts sweep hand timing
- Push again stops sweep hand timing
- Push again resets sweep second hand to zero.

## Standby Flight Instruments Standby Horizon



## Bank Angle Scale

Measures bank angles up to 60° in 10° increments (freedom of roll 360°).

## **2** Bank Angle Indicator

Indicates airplane bank angle against bank angle scale.

737 Flight Crew Operations Manual

#### 3 Horizon Drum

Provides indication of airplane pitch attitude (freedom of pitch 90°).

#### **4** Symbolic Airplane

Provides an adjustable attitude reference.

#### **5** Warning Flag

In view – loss of power.

#### **6** Horizon Bar

#### **7** Pitch Trim and Gyro Caging Control

In – rotate to adjust symbolic airplane pitch presentation.

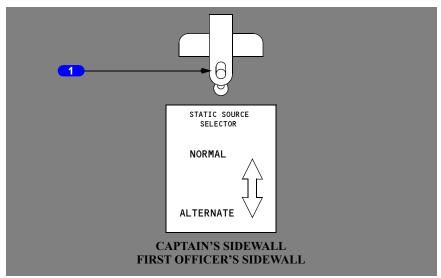
Pull (momentary) - provides fast erection (caging) of gyro.

Release - control retracts.

Note: Airplane should be level during procedure.

#### 8 Pitch Trim Scale

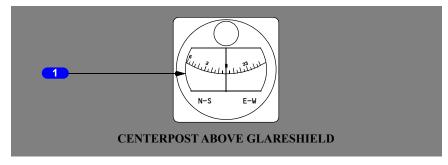
Provides a reference for adjusting the symbolic airplane pitch presentation.


Marked in 1 degree increments

- C climb
- D dive.

Flight Instruments -Controls and Indicators




## **Static Source Selector**



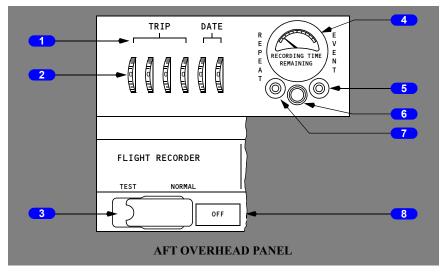
#### **1** Static Source Selector Switch

- NORMAL (guarded position) primary pitot-static system is providing static inputs to respective pilot's system
- ALTERNATE alternate static system is providing static inputs to respective pilot's system.

## **Standby Magnetic Compass**



#### Standby Magnetic Compass


Displays magnetic heading.

The magnetic compass may be folded out of view for an unobstructed view through the windshield.

737 Flight Crew Operations Manual

A standby magnetic compass correction card provides appropriate heading corrections.

## **Flight Recorder**



**1** TRIP and DATE Encoder



#### **2** Trip and Date Selectors

Rotate - sets trip number and date.

## **3** FLIGHT RECORDER TEST Switch

NORMAL (guarded position) -

- in flight the recorder operates anytime electrical power is available
- on the ground either engine must also be operating.

TEST – bypasses the engine oil pressure switches and the air ground switch to power the flight recorder on the ground.

Allow 15 seconds for complete test.

#### 4 RECORDING TIME REMAINING Indicator

- · Displays the number of recording hours remaining on tape
- full scale deflection indicates more than 200 hours. ٠

#### 5 EVENT Switch

Push (5 seconds) – transcribes a mark on the tape to identify the time of an event. Do not use until 5 minutes after the trip and date light is extinguished.

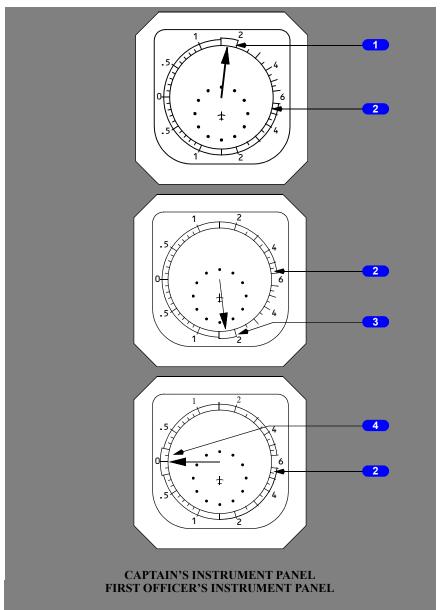
Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

#### **6** Trip and Date Light

Illuminated (amber) -

- trip and date information is being recorded
- the 15 minute transcribing cycle does not interfere with the recording of other information.

#### 7 REPEAT Switch


Push (5 seconds) - initiates or repeats transcribing of the trip and date information.

#### **8** OFF Light

Illuminated (amber) -

- indicates the recorder is not operating or the test is invalid
- may indicate power failure, broken tape or not moving, or access door open.

## TCAS TCAS Resolution Advisory Commands

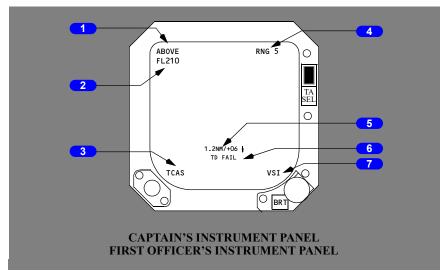


## **1** RA Pitch Command (green) (UP Advisory)

Indicates vertical speed range to ensure traffic separation.

#### **2** Command Arc (red)

Indicates vertical speed range to avoid.


#### **3** RA Pitch Command (green) (DOWN Advisory)

Indicates vertical speed range to ensure traffic separation.

#### **4** RA Pitch Command (green) (LEVEL Advisory)

Indicates vertical speed range to ensure traffic separation.

## **TCAS VSI Messages**



#### ABOVE/NORM/BELOW Annunciation

Shows the position of the TAU envelope switch on the transponder control panel

- ABOVE (blue) vertical display range for other traffic is biased above the airplane
- BELOW (blue) vertical display range for other traffic is biased below the airplane
- Blank NORM is selected on the transponder control panel. Vertical display range for other traffic is equal above and below the airplane.

737 Flight Crew Operations Manual

#### **2** Ownship Altitude Readout (blue))

Shows FL followed by the first three numbers of the airplane's altitude if the FL switch is selected on the transponder control panel.

#### **3** TCAS Mode Display

Indicates current TCAS mode/system status

- TCAS (amber) TCAS system has failed
- TA ONLY (blue) TCAS TA only mode is selected
- TCAS STBY (blue) TCAS standby mode is selected
- TEST (amber) TCAS is in test mode.

#### **4** TCAS Range

Displays TCAS range in nautical miles.

#### **5** NO BEARING Messages

Displayed when no bearing information is available for traffic (distance, altitude, trend arrow).

#### **6** Fault Annunciations

TD FAIL (amber) – failure in the operation of the traffic display.

RA FAIL (amber) – RA information is not available.

#### **7** VSI Flag (amber)

Indicates that vertical speed is unreliable.

**Note:** See Company provided material for specific TCAS VSI messages, and actual message locations.

## **TCAS Symbology**

| SYMBOL                 | NAME                                             | REMARKS                                                                                                                                                                    |
|------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | RA traffic symbol (R)                            | Displayed during TCAS Resolution<br>Advisory when traffic selected on the VSI<br>or Weather Radar Indicator.                                                               |
|                        | RA off-scale traffic<br>symbol (A)               | Displayed when traffic selected on the VSI<br>or Weather Radar Indicator and traffic is<br>not within the display range.                                                   |
|                        | TA traffic symbol (A)                            | Displayed during TCAS Traffic Advisory<br>when traffic selected on the VSI or Weather<br>Radar Indicator.                                                                  |
|                        | TA off-scale traffic<br>symbol (A)               | Displayed when traffic selected on the VSI<br>or Weather Radar Indicator and traffic is<br>not within the display range.                                                   |
| •                      | Proximate traffic<br>symbol (W)                  | Displayed when traffic selected on the VSI<br>or Weather Radar Indicator and traffic is<br>within 1200 feet vertical and 6 miles<br>horizontal from present position.      |
| $\diamond$             | Other traffic symbol<br>(W/outlined)             | Displayed when traffic selected on the VSI<br>or Weather Radar Indicator and traffic is<br>greater than 1200 feet vertical or 6 miles<br>horizontal from present position. |
| + 05<br>- 05           | Relative altitude<br>(R,A,W)                     | With traffic selected on the VSI or Weather<br>Radar Indicator, displays relative traffic<br>altitude in hundreds of feet.                                                 |
| $\uparrow$             | Vertical motion<br>arrow (R,A,W)                 | Displayed when traffic vertical speed is<br>greater than 500 feet per minute and traffic<br>selected on the VSI or Weather Radar<br>Indicator.                             |
| 6.8NM/-11<br>3.6NM/+04 | No bearing data<br>(Red for RA;<br>Amber for TA) | Displayed when no bearing information is<br>available. Displays distance and altitude<br>and trend arrow.                                                                  |

737 Flight Crew Operations Manual

# Flight Instruments System Description

Chapter 10 Section 20

## Introduction

The flight instruments provide information to aid the pilots in controlling the airplane throughout its flight regime. The electric flight instruments receive input from an air data computer. The pneumatic flight instruments receive input directly from the pitot–static system. An alternate static system is also available and may be selected from the flight deck.

## Air Data System

The air data system consists of the pitot-static system and one or two air data computers. The system provides pitot and/or static pressure information to various flight instruments and airplane systems. The pressure information is provided in one of two ways; either directly from the pitot-static system, or indirectly from an air data computer.

## Pitot Static System

The pitot-static (P/S) system provides pitot and static pressure inputs to pressure-sensing instruments and systems which have functions that vary with altitude and/or airspeed.

There are four primary P/S systems; the Captain's, the First Officer's, No. 1 auxiliary, and No. 2 auxiliary. The pilots' systems are used by the flight instruments and air data computer(s). The auxiliary systems are used by various airplane systems.

An alternate static system provides each pilot with a standby source of static pressure that may be selected with the related static source selector. The alternate static system cannot be connected to the auxiliary systems. There is no alternate pitot system.

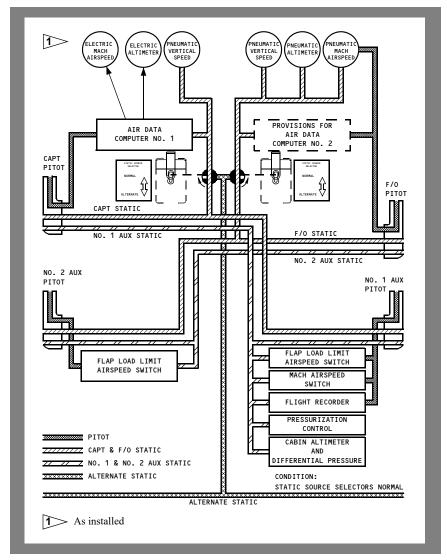
Pressure inputs to the primary P/S systems are provided by four combination pitot and static probes located on the forward fuselage. Each probe provides one pitot and two static outputs. The alternate static ports are located on each side of the fuselage. All static systems are cross–connected for dynamic balance.

A separate pitot system with probes mounted on the vertical stabilizer is provided for the elevator feel system.

A blocked or frozen pitot and/or static system may affect the following primary airplane system:

- · Mach/airspeed indicator
- Vmo/Mmo warning

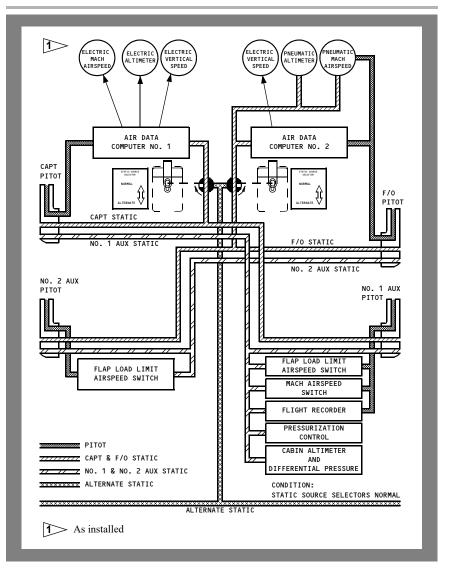
- altimeter
- · vertical speed indicator
- true airspeed
- static air temperature
- flap load relief system
- elevator feel system
- autopilot
- ground proximity warning system
- altitude alert
- cabin pressure
- flight recorder
- transponder altitude reporting
- flight director altitude hold
- TAT or TAT/EPRL
- yaw damper
- Mach trim


## Air Data Computer

One or two air data computers (ADCs) are installed. The ADC receives pitot and static pressure inputs from the respective pilot's P/S system, or from the alternate static system, if selected. The ADCs converts these pressure inputs to electrical signals used to operate various flight instruments and airplane systems. The ADC computers are powered whenever the AC busses are powered.

Flight Instruments -System Description

#### 737 Flight Crew Operations Manual

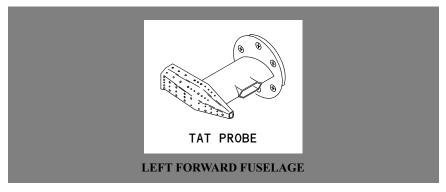

## **Pitot-Static System Schematic**



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 7, 2000 D6-27370-200A-TBC 10.20.3

#### Flight Instruments -System Description

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual




737 Flight Crew Operations Manual

## Total Air Temperature (TAT) System

One externally-mounted TAT probe is installed. The TAT indicator receives temperature information from the probe.

TAT indications are only valid in flight.



The inflight TAT indication is comprised of outside air temperature (OAT) plus all of the ram rise. On the ground, the TAT indication is approximately OAT if pitot heat is OFF. In flight, the following table is used to convert indicated TAT to true OAT.

|                           | INDICATED MACH NUMBER |                                          |      |      |     |     |     |     |     |     |     |
|---------------------------|-----------------------|------------------------------------------|------|------|-----|-----|-----|-----|-----|-----|-----|
|                           | .30                   | .40                                      | .50  | .60  | .70 | .73 | .76 | .78 | .80 | .82 | .84 |
| IND TAT - °C              |                       | TRUE OUTSIDE AIR TEMPERATURE - DEGREES C |      |      |     |     |     |     |     |     |     |
| 70                        |                       |                                          |      | 47   | 39  | 37  | 35  | 33  | 31  | 29  | 27  |
| 65                        |                       |                                          | 49   | 42   | 35  | 33  | 30  | 28  | 26  | 25  | 23  |
| 60                        |                       | 49                                       | 44   | - 37 | 30  | 28  | 25  | 24  | 22  | 21  | 19  |
| 55                        | 49                    | 45                                       | . 40 | 33   | 26  | 24  | 21  | 19  | 18  | 16  | 14  |
| 50                        | 45                    | 40                                       | 35   | 28   | 21  | 19  | 17  | 15  | 13  | 11  | 10  |
| 45                        | 40                    | 35                                       | 30   | 23   | 17  | 15  | 12  | 11  | 9   | 7   | 5   |
| 40                        | 35                    | 30                                       | 25   | 19   | 12  | 10  | 8   | 6   | 4   | 3   | 1   |
| 35                        | 30                    | 26                                       | 20   | 14   | 8   | 6   | 3   | 1   | 0   | - 2 | - 3 |
| 30                        | 25                    | 21                                       | 16   | 10   | 3   | 1   | - 1 | - 3 | - 5 | - 6 | - 7 |
| 25                        | 20                    | 16                                       | 11   | 5    | - 2 | - 3 | - 6 | - 7 | - 9 | -11 | -12 |
| 20                        | 15                    | 11                                       | 6    | 0    | - 6 | - 8 | -10 | -12 | -13 | -15 | -16 |
| 15                        | 10                    | 6                                        | 2    | - 5  | -11 | -13 | -15 | -16 | -18 | -19 | -21 |
| 10                        | 5                     | 1                                        | - 3  | - 9  | -15 | -17 | -19 | -21 | -22 | -24 | -25 |
| 5                         | 0                     | - 3                                      | - 8  | -14  | -20 | -21 | -24 | -25 | -27 | -28 | -29 |
| 0                         | - 5                   | - 8                                      | -13  | -18  | -24 | -26 | -28 | -30 | -31 | -33 | -34 |
| - 5                       | -10                   | -13                                      | -18  | -23  | -29 | -31 | -33 | -34 | -35 | -37 | -38 |
| -10                       | -15                   | -18                                      | -22  | -28  | -33 | -35 | -37 | -39 | -40 | -41 | -43 |
| -15                       | -20                   | -23                                      | -27  | -32  | -38 | -39 | -42 | -43 | -44 | -46 | -47 |
| -20                       | -24                   | -27                                      | -32  | -37  | -42 | -44 | -46 | -47 | -49 | -50 | -51 |
| -25                       | -29                   | -32                                      | -36  | -42  | -47 | -49 | -51 | -52 | -53 | -55 | -56 |
| -30                       | -34                   | -37                                      | -41  | -46  | -51 | -53 | -55 | -57 | -58 | -59 | -60 |
| -35                       | -39                   | -42                                      | -46  | -51  | -56 | -58 | -60 | -61 | -62 | -63 | -65 |
| -40                       | -44                   | -47                                      | -51  | -56  | -61 | -62 | -64 | -65 | -66 | -68 | -69 |
| <u>NOTE</u> : Probe Recov | ery Fa                | ctor is                                  | 100% | 1    |     |     |     |     |     |     |     |

## Angle-of-Attack

There is one angle–of–attack sensor, located on the left side of the forward fuselage. The vane measures airplane angle–of–attack relative to the air mass.

## Primary Flight Instruments Attitude Director Indicator

An attitude director indicator (ADI), on each pilot's panel, displays a view of the pitch and roll attitude of the airplane. The attitude display is shown on a colored tape with pitch and roll reference provided by vertical gyros.

Computed steering commands from the flight director computer are presented on the ADI by command bars. These commands are viewed with respect to a fixed symbolic airplane.

When the GYRO warning flag is in view, use the Vertical Gyro transfer switch to transfer the associated systems to an operating vertical gyro. When the GS flag is in view, use the VHF NAV switch to transfer to an operating system.

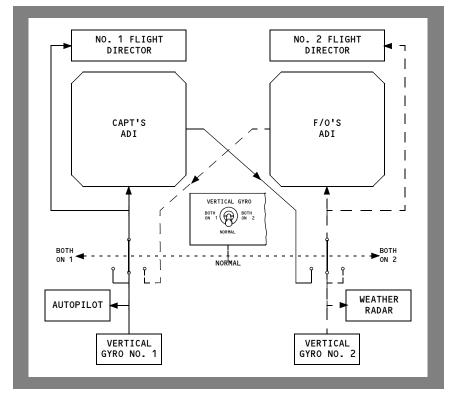
The localizer symbol moves left or right to indicate deviation from localizer centerline. The localizer signal is covered by a mask until the flight director captures the glideslope. After glideslope capture, a VOR LOC failure flag on the HSI will cause the mask to cover the localizer symbol.

The localizer pointer and warning flag remain out of view with VOR frequencies selected.

The COMPUTER flag monitors the flight director system. Switching is not installed for this problem.

## **Attitude Systems**

Two attitude systems are installed. The vertical gyros (VGs) provide attitude information.


Whenever a vertical gyro is unable to provide proper attitude reference, the Vertical Gyro transfer switch should be moved to an operating vertical gyro.

## Vertical Gyro Attitude Error

Vertical gyros have an inherent characteristic that can cause associated ADI's to give false attitude indications in pitch and roll. The errors can be induced by slow longitudinal acceleration or deceleration, or prolonged shallow turns. Accelerations of 50 knots per minute or less, and bank angles of 6 degrees or less, can cause the gyro erection circuitry to establish a false vertical reference. If the airplane is flown straight and level following maneuvers that cause errors, the erection circuitry will correct the attitude errors. Corrections may require five minutes or more.

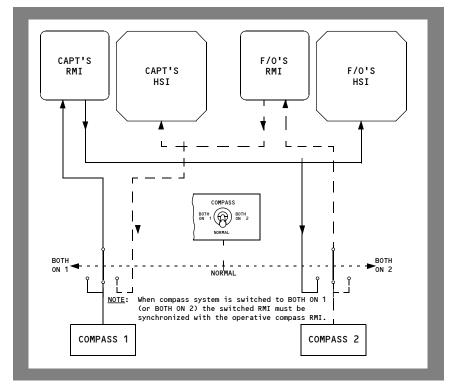


## **Attitude System Schematic**



## **Attitude Switching Table**

|                                     | RO TRA      |                 |                |                  |             |             |  |  |  |
|-------------------------------------|-------------|-----------------|----------------|------------------|-------------|-------------|--|--|--|
| VERTICAL GYRO                       |             | EQUIPMENT/INPUT |                |                  |             |             |  |  |  |
| BOTH<br>ON 1 BOTH<br>ON 2<br>NORMAL | CAPT<br>ADI | F/O<br>ADI      | AUTO-<br>PILOT | WEATHER<br>RADAR | NO. 1<br>FD | NO. 2<br>FD |  |  |  |
| NORMAL                              | 1           | 2               | 1              | 2                | 1           | 2           |  |  |  |
| BOTH ON 1                           | 1           | 1               | 1              | INOP             | 1           | 1           |  |  |  |
| BOTH ON 2                           | 2           | 2               | INOP           | 2                | 2           | 2           |  |  |  |


## **Compass Systems**

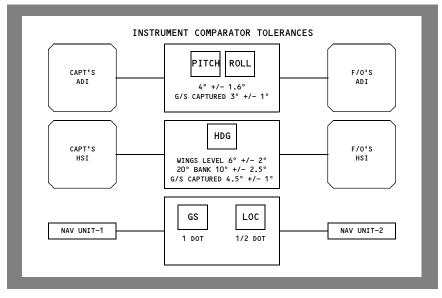
Two compass systems are installed. Directional gyros are connected to the RMI compass cards. The RMI compass card is then connected to the HSI compass card. The flux valves are installed in the vertical stabilizer.

The flux valves sense the direction of the earth's magnetic field. The directional gyros have random drift. Therefore, the flux valves are used to align the directional gyros with magnetic north and provide a stable compass system.

Synchronizing the flux valves and directional gyro can be observed with the synchronizing annunciator on the RMI.

The synchronizing process is relatively slow. The synchronizing control on the RMI can be used to manually provide rapid synchronizing of the flux valve and directional gyro.




## **Compass System Schematic**

# **Compass Switching Table**

| COMPASS TR                  | ANSFE                                                                                                                   | R    |        |         |                                  |         |        |   |   |   |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------|------|--------|---------|----------------------------------|---------|--------|---|---|---|
| BOTH<br>ON 1 BOTH<br>NORMAL | EQUIPMENT/INPUT<br>CAPT F/O CAPT F/O AUTO- NO. 1 NO. 2 FLIGHT NO. 1 NO.<br>RMI RMI HSI HSI PILOT FD FD RECORDER NAV NAV |      |        |         |                                  |         |        |   |   |   |
| NORMAL                      | 1                                                                                                                       | 2    | 2      | 1       | 1                                | 1       | 2      | 2 | 1 | 2 |
| BOTH ON 1                   | 1                                                                                                                       | 1    | 1      | 1       | 1                                | 1       | 1      | 1 | 1 | 1 |
| BOTH ON 2                   | 2                                                                                                                       | 2    | 2      | 2       | 2                                | 2       | 2      | 2 | 2 | 2 |
|                             | NOTE                                                                                                                    | or ( | вотн о | N 2) th | tem is s<br>ne swito<br>n the go | ched RM | I must |   |   |   |

## **Instrument Comparator**

An instrument warning system is installed which provides comparison of the captain's and first officer's compass headings, pitch and roll attitude indications, localizer, and glideslope deviation outputs from the No. 1 and No. 2 VHF navigation unit.



## **Mach/Airspeed Indicators**

Two Mach/airspeed indicators display indicated airspeed, Mach, and Vmo.

The electric Mach/Airspeed indicator displays information derived from the air data computer.

The pneumatic Mach/Airspeed indicators derives information from the respective captain's or first officer's pitot-static system (or an alternate static input, if selected).

## Altimeters

An electric altimeter is installed on the captain's instrument panel. Altitude is derived from the air data computer.

A pneumatic altimeter is installed on the first officer's instrument panel. It utilizes the first officer's pitot-static source (or alternate static system, if selected).

## **Radio Altimeter**

One low range radio altimeter and two indicators provide indication of airplane height above the ground up to 2500 feet absolute altitude. A radio altimeter indicator is located on each pilot instrument panel.

When the captain's radio altimeter is inoperative, all modes of the GPWS are inoperative.

## **Vertical Speed Indicators**

Two pneumatic vertical speed indicators display vertical speed derived from the respective pilots' static system (or alternate static, if selected). On some airplanes, vertical speed information is displayed by two electric vertical speed indicators that receive information derived from their respective air data computer.

On some airplanes, a TCAS VSI display shows air traffic information detected by the TCAS system, and provides resolution advisory (RA) Pitch Commands (refer to Chapter 10-10; TCAS section, and Chapter 15, Warning Systems, for further information).

## **Marker Beacons**

Each pilot has a set of marker beacon lights that show airways, middle, and outer beacon passage. Both sets are operated by one marker beacon receiver.

The marker beacon sensitivity switch is used to adjust the sensitivity of the receiver.

## Clocks

Two spring powered, eight day clocks are installed.

Each clock displays time in a 24-hour format and has a stop-watch timer.

## Standby Flight Instruments Standby Horizon Indicator

The standby horizon indicator provides attitude information that is independent of the primary attitude displays. The indicator is powered by the battery bus and remains powered after the loss of all normal AC power as long as battery power is available. The gyro reaches operational speed approximately 60 seconds after power is applied. The indicator requires three minutes to achieve accuracy requirements.

## **Standby Magnetic Compass**

A standard liquid–damped magnetic standby compass is provided. A card located near the compass provides heading correction factors.

## **Flight Recorder**

The flight recorder provides a permanent record on tape of selected operational and systems information such as altitude, heading, and airspeed. The recorder is housed in a sealed, fire–resistant container located behind an access door in the aft cabin ceiling.

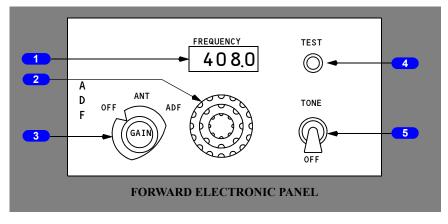
The pilots manually enter the trip number and date for subsequent transcribing onto the tape.

Operational and systems information is automatically recorded whenever the flight recorder is powered. Electrical power is provided from the transfer bus No. 1 and the battery bus. On the ground, the recorder begins operating as the low oil (35psi) pressure switch closes during either engine start. Oil pressure switches are bypassed in the air, and the flight recorder is powered, even with both engines shut down, as long as electrical power is available.

737 Flight Crew Operations Manual

| Flight Management, Navigation             | Chapter 11  |
|-------------------------------------------|-------------|
| Table of Contents                         | Section TOC |
| Controls and Indicators                   |             |
| Radio Navigation Systems                  |             |
| Automatic Direction Finding (ADF) Control |             |
| Distance Measuring Equipment (DME)        |             |
| VHF Navigation Control                    |             |
| VHF NAV Transfer Switch                   |             |
| Secondary Navigation Systems              |             |
| Transponder Panel                         |             |
| Weather Radar Panel                       |             |
| Navigation Systems Description            |             |
| Introduction                              |             |
| Radio Navigation Systems                  |             |
| Automatic Direction Finding (ADF)         |             |
| VHF Navigation System (VHF NAV)           |             |
| VHF Navigation System Schematic           |             |
| VHF Navigation Switching Table            |             |
| Secondary Navigation Systems              |             |
| ATC Transponder                           |             |
| Weather Radar                             |             |

Intentionally Blank


737 Flight Crew Operations Manual

# Flight Management, Navigation

**Controls and Indicators** 

Chapter 11 Section 10

## Radio Navigation Systems Automatic Direction Finding (ADF) Control



## **1** FREQUENCY Indicator

Indicates the frequency selected with the related frequency selector.

#### **2** Frequency Selector

Rotate -

- outer knob sets the hundreds number
- middle knob sets the tens number
- inner knob sets the tenths and ones number.

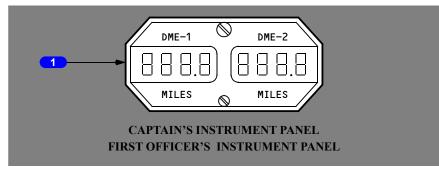
#### 3 ADF Mode Selector

OFF - removes power from selected receiver.

- ANT only station audio received.
- ADF ADF bearing and station audio received.
- GAIN adjusts receiver gain.

#### 4 TEST Switch

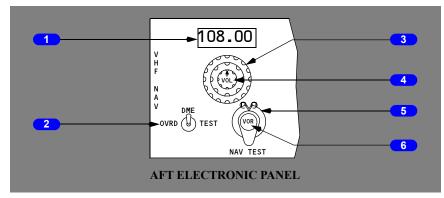
Push – ADF bearing pointer indicates 45 degrees left of lubber line.


#### **5** TONE Switch

TONE - adds tone to receiver audio.

737 Flight Crew Operations Manual

#### OFF – disables tones.


## **Distance Measuring Equipment (DME)**



### **1** Digital DME Indicator

- displays slant range to DME station
- blank with electrical loss
- · dashes when not receiving DME station
- brightness controlled by center knob located on pilot's light control panel.

## **VHF Navigation Control**



## Frequency Indicator

Indicates the frequency selected by the frequency selector.

#### **2** DME Mode Selector

OVRD - DME searches to 390 nm.

DME - DME searches to 200 nm. Search limited to 50 nm for TVOR.

737 Flight Crew Operations Manual

#### TEST – Digital DME indicator is:

- blank for one second
- dashes for one second
- · zeros for as long as held in test position.



#### **3** Frequency Selector

Rotate – manually selects the desired frequency.

#### 4 Volume (VOL) Selector

Rotate - controls volume of selected station.

#### **5** Navigation Test (NAV TEST) Switch

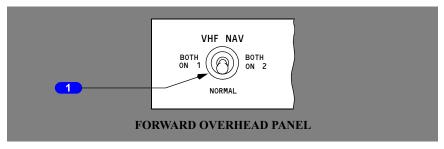
With an ILS frequency selected:

Rotate Knob Left -

- the glideslope indicates one dot up •
- localizer indicates one dot left.

Rotate Knob Right -

- the glideslope indicates one dot down
- localizer indicates one dot right. ٠



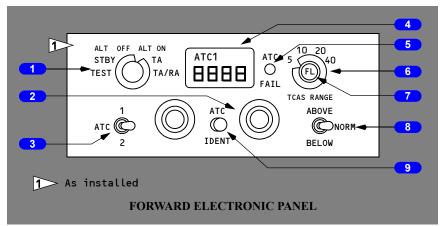

With a VOR frequency tuned and a course of 000 selected:

Push -

- course deviation bar centers
- VOR bearing pointer indicates 180 degrees
- TO-FROM ambiguity indicator show a FROM indication.

## VHF NAV Transfer Switch




## Flight Management, Navigation NOT USE FOR FLIGHT Controls and Indicators

737 Flight Crew Operations Manual

#### **1** VHF NAV Transfer Switch

- BOTH ON 1 switches the VHF navigation source to VHF NAV receiver No. 1
- NORMAL VHF navigation source is from default VHF NAV receiver
- BOTH ON 2 switches the VHF navigation source to VHF NAV receiver No. 2.

## Secondary Navigation Systems Transponder Panel



#### Transponder Mode Selector

- TEST starts ATC transponder functional test.
- STBY does not transmit.
- **Note:** Transponder modes are enabled only when the airplane is airborne, except for mode S, which operates continuously when the transponder mode selector is out of STBY.
- ALT OFF deactivates altitude reporting.
- ALT ON enables altitude reporting.

TA – enables display of traffic advisory TCAS targets. Refer to Chapter 15, Warning Systems.

TA/RA – enables display of traffic advisory and resolution advisory TCAS targets. Refer to Chapter 15, Warning Systems.

#### **2** Air Traffic Control (ATC) Code Selector

Rotate – sets transponder code in transponder.

737 Flight Crew Operations Manual

#### **3** Transponder (ATC) Switch

1 – selects transponder No. 1.

2 – selects transponder No. 2.

## **4** ATC Code Indicator

Displays transponder code. Displays operating transponder (1 or 2). Displays response indicator (R).

### **5** Transponder FAIL (ATC FAIL) Light

Illuminated – indicates transponder malfunction.

**6** Traffic Collision Avoidance System (TCAS) Range Selector Selects range for TCAS operation.

### **7** Flight Level (FL) Switch

Push - displays relative altitude of TCAS information for 15 seconds.

### **TAU Envelope Switch**

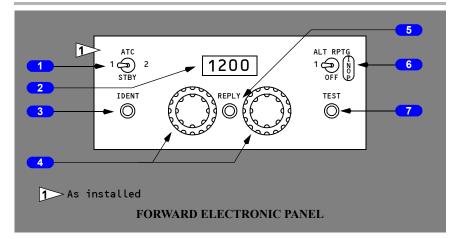
ABOVE – sets TCAS display at upper elevation limit.

NORM – sets TCAS display for normal limit.

BELOW - sets TCAS display at lower elevation limit.

#### **8** TAU Envelope Switch

1 – sets TCAS display at upper elevation limit.


ALT - sets TCAS display for normal limit.

2 - sets TCAS display at lower elevation limit.

## **9** Identification (ATC IDENT) Switch

Push – transmits an identification signal.

737 Flight Crew Operations Manual



## **1** Transponder Air Traffic Control (ATC) Switch

- 1 selects transponder No. 1.
- STBY does not transmit.
- 2 selects transponder No. 2.



## **2** ATC Code Indicator

Displays transponder code.

## **3** Identification (IDENT) Switch

Push - transmits an identification signal.

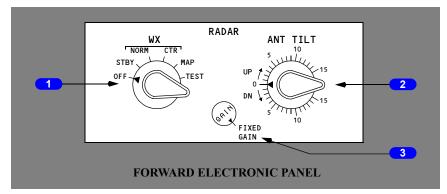
#### 4 ATC Code Selectors

Rotate - sets transponder code in transponder.

## **5** REPLY Light

Illuminated (green) -

- transponder replying to ground interrogation
- test in progress.


#### 6 Altitude Reporting (ALT RPTG) Switch

- 1 enables altitude reporting from air data computer No. 1.
- OFF transponder operates without altitude reporting.
- 2 inoperative.

#### 7 TEST Switch

Push – with the transponder air traffic control (ATC) switch in position 1 or 2, the reply light illuminates to indicate the selected transponder is operational.

## Weather Radar Panel



#### **1** Weather (WX) Radar Function Selector

OFF - removes power to the radar system.

STBY (Standby) – apply warm-up power for 3 minutes prior to operation.

NORM (Normal) -

- antenna radiates symmetrical beam
- weather area of greatest intensity appears as brightest return.

CTR (Contour) -

- · identifies areas of greatest intensity reversed
- weather area of greatest intensity appears as darkest return.

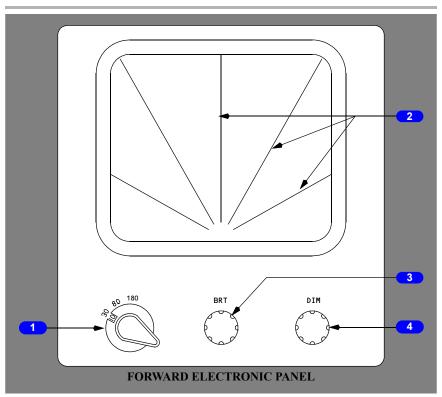
MAP - antenna radiates wide beam for ground mapping.

TEST - de-energizes transmitter and tests system. Displays test pattern.

## **2** Antenna Tilt (ANT TILT) Control

Rotate - radar antenna tilts 0 to 15 degrees above or below horizon.

Stabilization from vertical gyro maintains antenna sweep at a constant tilt angle relative to the earth's horizon.


## **3** GAIN Control

Rotate - manually sets receiver sensitivity.

FIXED GAIN (detent) – used in NORM or CTR modes.

Flight Management, Navigation NOT USE FOR FLIGHT

737 Flight Crew Operations Manual



#### 1 Range Selector

Rotate - selects desired range for weather radar indicator.

- 30 Miles Three 10 mile range marks
- 80 Miles Three 25 mile range marks
- 180 Miles Seven 25 mile range marks.

#### **2** Azimuth Marks

#### **3** Brightness (BRT) Control

Rotate - controls brightness of display.

#### **4** Dimmer (DIM) Control

Rotate - controls intensity of background panel lights.

737 Flight Crew Operations Manual

## Flight Management, Navigation Navigation Systems Description

Chapter 11 Section 20

## Introduction

Navigation systems include the radio navigation systems, transponder, and weather radar.

## Radio Navigation Systems Automatic Direction Finding (ADF)

An automatic direction finding (ADF) system enables automatic determination of magnetic and relative bearings to selected facilities.

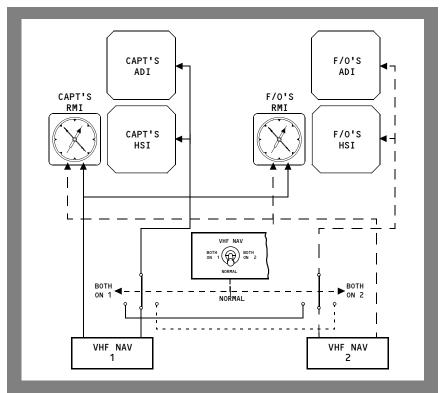
Two ADF receivers are installed. The No. 1 receiver uses the narrow pointer on the RMIs. The No. 2 receiver uses the wide pointer. The audio is heard by using the ADF receiver control on the audio selector panel.

ADF bearing pointers will not display correct magnetic bearing when the compass information is lost or invalid. Relative bearings are indicated by pointers if the receiver is operating.

## VHF Navigation System (VHF NAV)

Two NAV receivers and controls panels are installed. The VHF navigation control panel is used to tune VOR and ILS frequencies.

VOR information is displayed on the RMIs when a valid in-range VOR station is tuned. The HSI displays course deviation when operating in the VOR mode.


Should either VHF NAV receiver fail, the VHF NAV transfer switch enables selection of the opposite VHF NAV receiver for display.

The deviation bar and glideslope pointer are controlled by the controls for the operating system.

Flight Management, Navigation NOT USE FOR FLIGHT Navigation Systems Description

737 Flight Crew Operations Manual

## **VHF Navigation System Schematic**



## **VHF Navigation Switching Table**

#### VHF NAVIGATION TRANSFER

| VHF NAV   | EQUIPMENT/INPUT |     |     |     |       |   |       |       |       |  |  |
|-----------|-----------------|-----|-----|-----|-------|---|-------|-------|-------|--|--|
|           | CAFT            | F/0 |     |     | RMI'S |   | NO. 1 | NO. 2 | AUTO- |  |  |
|           | HSI             | HSI | ADI | ADI | Å     | Å | FD    | FD    | PILOT |  |  |
| NORMAL    | 1               | 2   | 1   | 2   | 1     | 2 | 1     | 2     | 1     |  |  |
| BOTH ON 1 | 1               | 1   | 1   | 1   | 1     | 2 | 1     | 1     | 1     |  |  |
| BOTH ON 2 | 2               | 2   | 2   | 2   | 1     | 2 | 2     | 2     | 2     |  |  |

## Secondary Navigation Systems ATC Transponder

Two ATC transponders are installed and controlled by a single control panel. The ATC transponder system transmits a coded radio signal when interrogated by ATC ground radar. Altitude reporting capability is provided allowing altitude information from the air data computer to be transmitted to an ATC radar facility.

Transponders may also transmit information, such as flight number, airspeed or groundspeed, magnetic heading, altitude, GPS position, etc., depending on the level of enhancement. Airport equipment monitors airplane position on the ground when the transponder is active through Mode S capability (mode selector not in STANDBY or OFF). TCAS modes should not be used on the ground for ground tracking.

On airplanes with TCAS, TCAS is controlled from the transponder panel. The TCAS system is described in Chapter 15.

## Weather Radar

The weather radar system detects and locates various types of precipitation bearing clouds along the flight path of the airplane and gives the pilot a visual indication of the clouds' intensity.

In NORM mode, the radar displays a cloud's rainfall intensity by displaying areas of greatest intensity with the brightest returns.

In CTR mode, the areas of strongest return are inverted. This mode clearly defines the location and extent of a storm cell by blacking out all radar returns above a predetermined level. Weather areas of greatest intensity appear as a "black hole".

In MAP mode, a wide radar beam is used to display ground surfaces (the most reflective surfaces appear brighter).

These displays enable identification of coastlines, hilly or mountainous regions, cities, or large structures. Ground mapping mode can be useful in areas where ground-based navigation aids are limited.

The radar system performs only the functions of weather detection and ground mapping. It should not be used or relied upon for proximity warning or anticollision protection.

Intentionally Blank

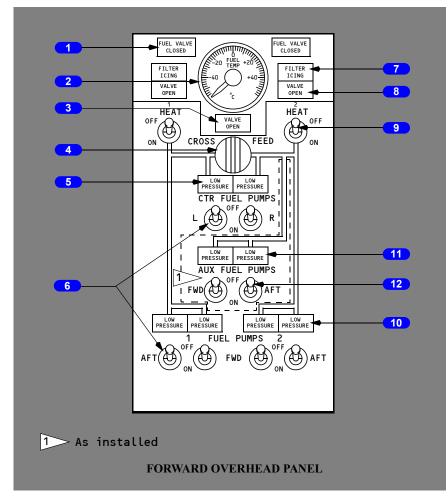
737 Flight Crew Operations Manual

| Fuel                                            | Chapter 12  |
|-------------------------------------------------|-------------|
| Table of Contents                               | Section TOC |
| Controls and Indicators                         |             |
| Fuel Control Panel                              |             |
| Fuel Quantity Indications                       | 12.10.4     |
| Fueling / Defueling / Measurement               |             |
| Test Gauges & Fueling Panel                     | 12.10.8     |
| Total Fuel and VREF Indicator                   | 12.10.9     |
| System Description                              | 12.20       |
| Introduction                                    | 12.20.1     |
| Airplanes with Auxiliary Fuel Tank              | 12.20.1     |
| Fuel Feed                                       | 12.20.1     |
| Fuel Pumps                                      |             |
| Fuel Crossfeed                                  | 12.20.2     |
| Fuel Shutoff Valves                             | 12.20.2     |
| Fuel Vent System                                | 12.20.2     |
| Fuel Temperature                                | 12.20.2     |
| APU Fuel Supply                                 | 12.20.3     |
| DC Operated APU Fuel Pump                       | 12.20.3     |
| Fueling/Defueling/Ground Transfer               | 12.20.3     |
| Fuel Quantity Indication                        | 12.20.3     |
| Total Fuel and VREF Indicator                   | 12.20.3     |
| Fuel Tank Location and Capacities (Usable Fuel) | 12.20.4     |
| Fuel Schematic                                  | 12.20.5     |



Intentionally Blank

737 Flight Crew Operations Manual


## Fuel

**Controls and Indicators** 

Chapter 12

Section 10

## **Fuel Control Panel**



## **1** FUEL VALVE CLOSED Light

Extinguished - related engine fuel shutoff valve is open.

Illuminated (blue) -

- bright related fuel shutoff valve is in transit, or valve position and engine start lever or engine fire switch disagree.
- dim related fuel shutoff valve is closed.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 9, 2008 D6-27370-200A-TBC 12.10.1



#### 737 Flight Crew Operations Manual

#### **2** Fuel Temperature (FUEL TEMP) Indicator

Indicates fuel temperature in No. 1 tank.

#### **3** Crossfeed VALVE OPEN Light

Illuminated (blue) -

- bright crossfeed valve is in transit, or valve position and CROSSFEED selector disagree.
- dim crossfeed valve is open.

Extinguished – crossfeed valve is closed.

#### CROSSFEED Selector

Controls fuel crossfeed valve.

Closed - isolates engine No. 1 and No. 2 fuel feed lines.

Open - connects engine No. 1 and No. 2 fuel feed lines.

#### **5** Center Tank Fuel Pump LOW PRESSURE Light

Illuminated (amber) – fuel pump output pressure is low and FUEL PUMP switch is ON.

- Note: With both Center(CTR) tank FUEL PUMP switches ON, illumination of both LOW PRESSURE lights illuminates MASTER CAUTION and FUEL system annunciator lights. Illumination of one LOW PRESSURE light illuminates MASTER CAUTION and FUEL system annunciator lights on MASTER CAUTION light recall.
- **Note:** With one CTR tank FUEL PUMP switch OFF, illumination of opposite CTR tank LOW PRESSURE light illuminates the MASTER CAUTION and FUEL system annunciator lights.

Extinguished – fuel pump output pressure is normal, or FUEL PUMP switch is OFF.

#### **6** FUEL PUMP Switch

ON - activates fuel pump.

OFF - deactivates fuel pump.

## **7** FILTER ICING Light

Extinguished – fuel filter operating normally.

Illuminated (amber) - indicates an iced or contaminated filter.

8 Fuel Heat VALVE OPEN Light

Illuminated (blue) -

- bright fuel heat valve is in transit, or valve position and fuel HEAT switch disagree.
- dim fuel heat valve is open.

Extinguished - fuel heat valve is closed.

#### **9** Fuel HEAT Switch

ON – The solenoid switch opens the respective engine fuel heat valve allowing bleed air to heat the fuel and de-ice the fuel filter. The switch automatically moves to OFF after one minute.

#### (10) Main Tank Fuel Pump LOW PRESSURE Light

Illuminated (amber) – fuel pump output pressure is low, or FUEL PUMP switch is OFF.

**Note:** Two LOW PRESSURE lights illuminated in same tank illuminates MASTER CAUTION and FUEL system annunciator lights. One LOW PRESSURE light causes MASTER CAUTION and FUEL system annunciator lights to illuminate on MASTER CAUTION light recall.

Extinguished – fuel pump output pressure is normal.

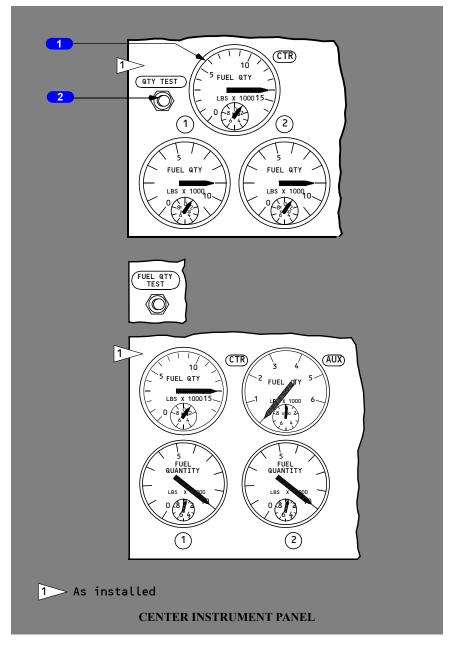
## **(11)** Aux Tank Fuel Pump LOW PRESSURE Light

Illuminated (amber) – fuel pump output pressure is low, or FUEL PUMP switch is OFF.

**Note:** Illumination of two LOW PRESSURE lights illuminates MASTER CAUTION and FUEL system annunciator lights. One LOW PRESSURE light causes MASTER CAUTION and FUEL system annunciator lights to illuminate on MASTER CAUTION light recall.

Extinguished – fuel pump output pressure is normal, or the FUEL PUMP switch is OFF.

## (12) Aux Tank FUEL PUMP Switch


ON – activates fuel pump.

OFF – deactivates fuel pump.

Fuel -Controls and Indicators



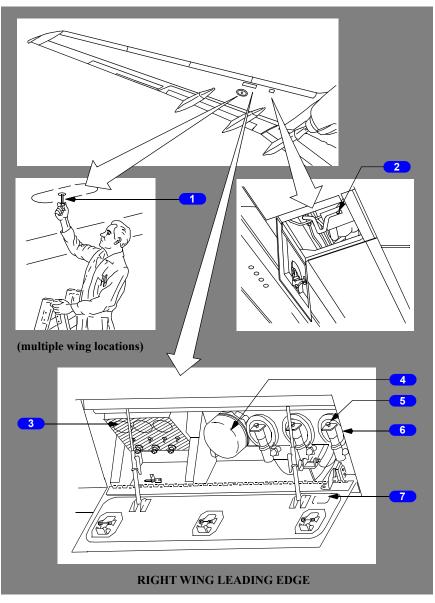
## **Fuel Quantity Indications**



Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. **12.10.4 D6-27370-200A-TBC April 7, 2000**  737 Flight Crew Operations Manual

#### Fuel Quantity Indicator

- indicates usable fuel in the related tank.
- standby AC power is required.


#### **2** Fuel Quantity Test (QTY TEST) Switch

Indicator test is described in Supplementary Procedures.

Fuel -Controls and Indicators



## Fueling / Defueling / Measurement



#### Fuel Measuring Stick

Allows comparison of fuel quantity or weight as determined from measuring stick reading and fuel weight indicated by fuel quantity indicators.

- five fuel measuring sticks are installed in each main tank
- reading is obtained by withdrawing measuring stick from tank until a steady drip of fuel commences at the drip hole near the base.

#### **2** Manual Defueling Valve

Open - interconnects engine feed system and fueling station for:

- defueling
- ground transfer of fuel.

Closed - isolates engine feed system from fueling station.

#### **3** TEST GAUGES & FUELING Panel

See Test Gauges and Fueling Panel section.

#### **4** Fueling Receptacle

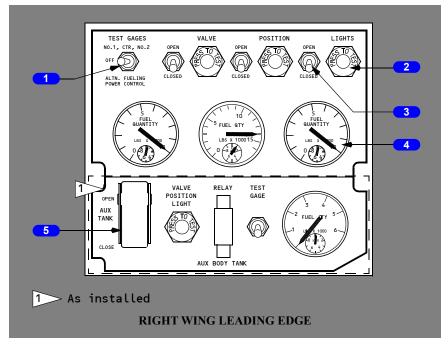
Hose connection receptacle for single point underwing fueling.

#### **5** Solenoid Override

Mechanically opens solenoid operated valve. Fuel valve opens if fuel pressure is available.

#### **6** Fueling Valves

With battery switch ON, fuel pressure opens valve, if energized.


#### **7** Fueling Power Control Switch

Door closed - proximity sensor deactivates power to fueling system.

Door open - the fueling system is powered and panel lights illuminate.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Test Gauges & Fueling Panel



## **1** TEST GAUGES & FUELING Switch

(spring-loaded to OFF position)

TEST GAUGES - checks operation of fuel quantity indicators.

AUX FUELING POWER CONTROL – energizes the fueling system if the fueling power control switch fails to activate the system when the door is open.

#### **2** Fueling VALVE POSITION Lights

Extinguished -

- fueling valve switch is OPEN and related tank is full
- fueling valve switch is CLOSED.

Illuminated (blue) - fueling valve switch is OPEN and related tank is not full.

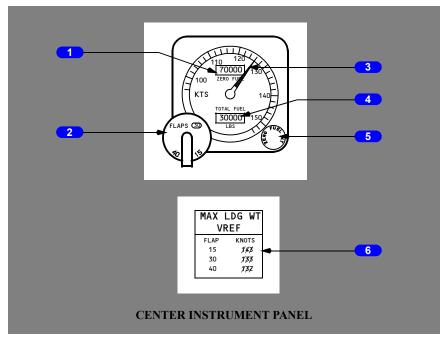
## **3** Fueling Valve Switches

OPEN - energizes fueling valve in related tank.

CLOSED - de-energizes fueling valve in related tank.

737 Flight Crew Operations Manual

#### FUEL Quantity Indicators


Indicates total usable fuel tank quantity in related tank.

#### **5** AUX TANK Fueling Valve Switch

Controls refueling of the aft body auxiliary tank.

Raise - the crossfeed selector is overridden, and the crossfeed valve opens.

## **Total Fuel and VREF Indicator**



#### ZERO FUEL Weight Counter

Indicates airplane zero fuel weight selected by the ZERO FUEL weight selector.

#### **2** Landing Flap Selector

Adjusts the VREF pointer for the landing flap setting.

#### **3** Vref Pointer

Indicates VREF speed for landing.

#### **4** TOTAL FUEL Weight Counter

Indicates the total usable fuel remaining in all tanks.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. October 4, 2013 D6-27370-200A-TBC 12.10.9



#### **5** ZERO FUEL Weight Selector

Used to set the ZERO FUEL weight counter to the correct zero fuel weight.

#### **6** Maximum Landing Weight VREF (MAX LDG WT VREF) Placard

Airspeeds on this placard depend on the maximum allowable landing gross weight of the airplane.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Fuel

**System Description** 

## Introduction

The fuel system supplies fuel to the engines and the APU. Fuel is contained in three tanks located within the wings and wing center section.

Refer to Engine and APU chapter for a description of the engine and APU fuel systems.

## **Airplanes with Auxiliary Fuel Tank**

With an auxiliary fuel tank installed, fuel is contained in four tanks located within the wing, wing center section, and aft lower body. The auxiliary tank is comprised of two rubber bladder cells located at the forward end of the aft cargo compartment.

## **Fuel Feed**

Both engines are normally pressure fed from the center tank until the center tank quantity decreases to near zero. The engines are normally then pressure fed from their respective main tanks. Check valves are located throughout the fuel system to ensure the proper direction of fuel flow and to prevent transfer of fuel between tanks.

## **Fuel Pumps**

Each fuel tank uses two AC powered fuel pumps which are fuel cooled and lubricated. Center tank check valves open at a lower pressure than do the main tank check valves. This ensures that center tank fuel is used before main tank fuel, even though all fuel pumps are operating. Individual pressure sensors monitor the output pressure of each pump.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Mechanical engine–driven fuel pumps provide suction feed in the event that normal electrical fuel pump operation is not available. The engine pumps draw fuel through bypass valves located in main tanks No. 1 and No. 2. The main tank bypass valves may also be used for suction defueling. No bypass valves are provided in the center tank.

- **Note:** Fuel pump LOW PRESSURE lights may flicker when tank quantity is low and the airplane is in a climb, descent, or on the ground with a nose-down attitude.
- **Note:** Center tank fuel pump LOW PRESSURE lights may flicker when tank quantity is low and the airplane is in cruise. One pump may indicate low pressure sooner than the other due to aircraft attitude and/or slight variation between pump inlet position. Low pressure indication may occur after center tank quantity reads zero. Low pressure light flickering can continue for as long as 5 minutes before the Fuel System Annunciator light and the Master Caution lights are illuminated for the associated center tank pump.

## **Fuel Crossfeed**

The engine fuel manifolds are interconnected by use of the crossfeed valve. The valve is DC motor operated from the battery bus. The valve provides a means of directing fuel to both engines from any tank.

## **Fuel Shutoff Valves**

Fuel shutoff valves are located at the engine-mounting wing stations. The valves are DC motor operated from the hot battery bus. They close whenever the respective engine fire switch is pulled or engine start lever is placed to CUTOFF.

## **Fuel Vent System**

The purpose of the fuel vent system is to prevent damage to wings due to excessive buildup or positive or negative pressures inside the fuel tanks and to provide ram air pressure within the tanks. The tanks are vented into surge tanks which vent through a single opening at each wing tip.

## **Fuel Temperature**

The FUEL TEMP indicator located on the fuel control panel displays fuel temperature. A sensor in main tank No. 1 allows monitoring of fuel temperature. The temperature indicating system uses AC electrical power.

## **APU Fuel Supply**

When AC fuel pumps are operating, fuel for the APU is supplied from the left side of the fuel manifold. If the AC fuel pumps are not operating, fuel is suction fed from main tank No. 1.

## **DC Operated APU Fuel Pump**

The DC operated APU fuel boost pump is installed to ensure positive fuel pressure to the APU fuel control unit. The pump operates automatically.

## Fueling/Defueling/Ground Transfer

Rapid fueling and defueling is accomplished at the single–point pressure fueling station in the right wing. The fueling station is also used for the ground transfer of fuel between tanks.

Standard overwing fueling receptacles for main tanks No. 1 and No. 2 are provided for gravity fueling. In the absence of underwing pressure fueling facilities, center tank servicing can only be accomplished through the ground tank to tank fuel transferring operation.

The manual defueling valve, located outboard of engine No. 2, interconnects the engine feed system and the fueling station. It is opened for defueling and tank to tank transfer operations.

A shutoff system is used during fueling to automatically close the fueling valve in each fuel tank when the tank is full.

## **Fuel Quantity Indication**

The fuel quantity indication system calculates the usable fuel quantity in each tank. The fuel quantity in each tank is displayed on the center instrument panel and on the fueling station panel.

## **Total Fuel and VREF Indicator**

This instrument uses airplane weight (zero fuel weight plus total fuel remaining) and landing flap selected to give the pilot a constant VREF speed indication.

The pilot can calculate airplane weight at any time by adding the zero fuel weight and total fuel weight counters. The instrument itself electronically sums the preset zero fuel weight and the existing total fuel weight.

Selection of desired landing flap on the flap selector knob biases the VREF pointer to the correct VREF speed.

Maximum landing weight VREF for the flaps selected may be read from a placard adjacent to the indicator.

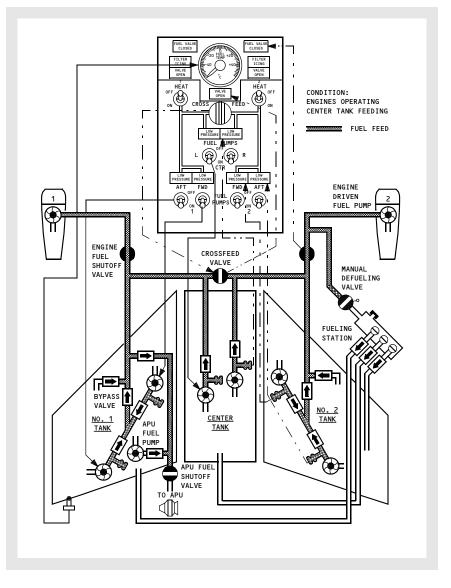
Power for the instrument is 115V AC. A power failure will result in the pointer remaining at its last position to give an increasingly conservative VREF as more fuel is used.

## Fuel Tank Location and Capacities (Usable Fuel)

Main tanks No. 1 and No. 2 are integral with the wing structure. The center tank lies between the wing roots within the fuselage area and extends out into the wing structure.

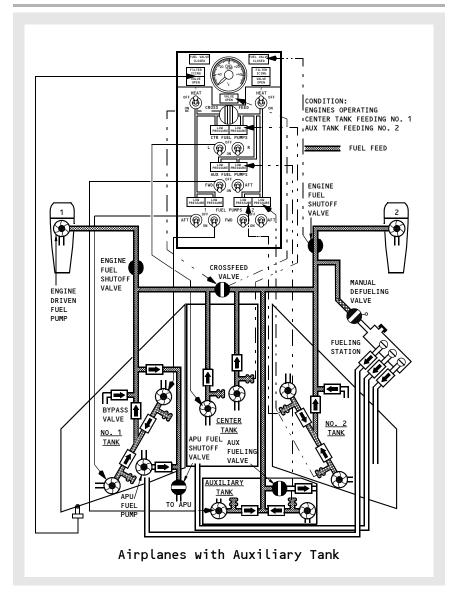
These figures represent approximate amounts of usable fuel. The appropriate weight and balance control and loading manual gives exact figures for all conditions.

| TANK   | GALLONS | POUNDS* |
|--------|---------|---------|
| NO. 1  | 1,430   | 9,580   |
| NO. 2  | 1,430   | 9,580   |
| CENTER | 2,303   | 15,430  |
| TOTAL  | 5,163   | 34,590  |


\* Usable fuel at level attitude, fuel density = 6.7 pounds per US gallon

| TANK      | GALLONS | POUNDS* |
|-----------|---------|---------|
| AUXILIARY | 810     | 5,429   |
| TOTAL     | 5,973   | 40,019  |

\* Usable fuel at level attitude, fuel density = 6.7 pounds per US gallon


## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Fuel Schematic**



#### Fuel -System Description

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

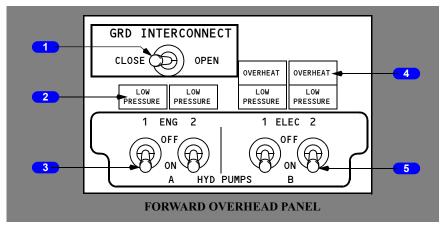


Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. **12.20.6** D6-27370-200A-TBC April 7, 2000

737 Flight Crew Operations Manual

| Hydraulics                                                            | Chapter 13  |
|-----------------------------------------------------------------------|-------------|
| Table of Contents                                                     | Section TOC |
| Controls and Indicators                                               |             |
| Hydraulic Panel                                                       |             |
| Hydraulic Indications                                                 |             |
| Flight Control Panel (before Rudder System E (RSEP) modification)     | ÷           |
| Flight Control Panel (after Rudder System Enl<br>(RSEP) modification) | -           |
| System Description                                                    |             |
| Introduction                                                          |             |
| Hydraulic Power Distribution Schematic                                |             |
| A and B Hydraulic Systems                                             |             |
| Hydraulic System A                                                    |             |
| Hydraulic System B                                                    |             |
| Standby Hydraulic System                                              |             |
| System Operation                                                      |             |
| Automatic Operation (after RSEP modifica                              | ,           |
| Standby Hydraulic System Schematic (before modification)              |             |
| Standby Hydraulic System Schematic (afte modification)                |             |
| Variations in Hydraulic Quantity Indications .                        |             |




Intentionally Blank

737 Flight Crew Operations Manual

## Hydraulics Controls and Indicators

Chapter 13 Section 10

## **Hydraulic Panel**



## **1** GROUND INTERCONNECT Switch

CLOSE - isolates system A using units from system B output.

OPEN – connects system A pressure to system B pressure for ground functional checks. The ground interconnect valve will open only if the parking brake is set, the airplane is on the ground and electrical power is available.

#### 2 Hydraulic Pump LOW PRESSURE Lights

Illuminated (amber) - output pressure of associated pump is low

**Note:** When an engine fire switch is pulled, the associated engine-driven hydraulic pump low pressure light is deactivated.

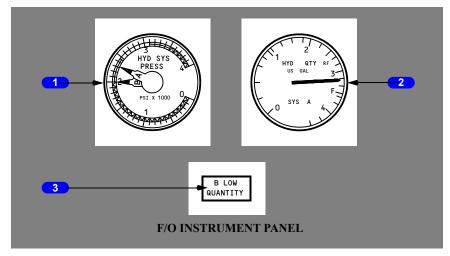
## **3** Engine Hydraulic Pump Switches

ON – de–energizes blocking valve in pump to allow pump pressure to enter system.

Note: Should remain ON at shutdown to prolong solenoid life.

OFF - energizes blocking valve to block pump output.

## **4** Electric Hydraulic Pump OVERHEAT Lights


Illuminated (amber) – hydraulic pump or fluid used to cool and lubricate the corresponding electric motor driven pump has overheated.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

#### **5** Electric Hydraulic Pump Switches

- ON provides power to corresponding electric motor-driven pump.
- OFF electrical power removed from pump.

## **Hydraulic Indications**



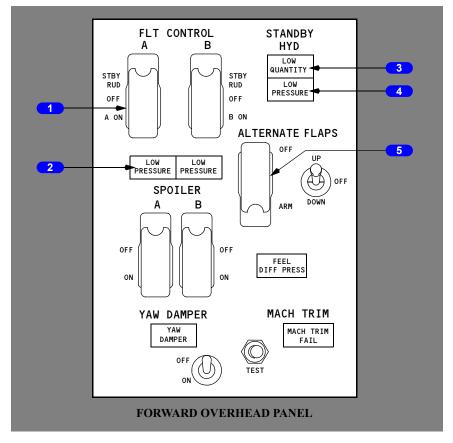
#### HYDRAULIC System PRESSURE Indications

Indicates system A and B pressures:

- Normal pressure 3000 psi
- Maximum pressure 3500 psi.

Note: When both pumps for a system are OFF, respective pointer reads zero.

#### **2** SYSTEM A HYDRAULIC QUANTITY Indicator


- Full 3.5 U.S. gallons.
- Refill 2.4 U.S. gallons.

#### **3** Hydraulic System B LOW QUANTITY Light

Illuminated (amber) - indicates reservoir fluid level is low

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

# Flight Control Panel (before Rudder System Enhancement Program (RSEP) modification)



#### **1** FLIGHT CONTROL Switches

STBY RUD – activates standby pump and opens standby rudder shutoff valve to pressurize standby rudder power control unit.

OFF – closes flight control shutoff valve isolating ailerons, elevators and rudder from associated hydraulic system pressure.

ON (guarded position) – normal operating position.

#### **2** Flight Control LOW PRESSURE Lights

Illuminated (amber) -

- indicates low hydraulic system (A or B) pressure to ailerons, elevator and rudder.
- deactivated when associated FLIGHT CONTROL switch is positioned to STBY RUD and standby rudder shutoff valve opens.
- on airplanes with the rudder pressure reducer installed, indicates A system pressure is low when normal system pressure is commanded.
- **Note:** On airplanes with the rudder pressure reducer installed, the A system light will remain illuminated for approximately five seconds after A hydraulic system has been activated.

#### **3** STANDBY HYDRAULIC LOW QUANTITY Light

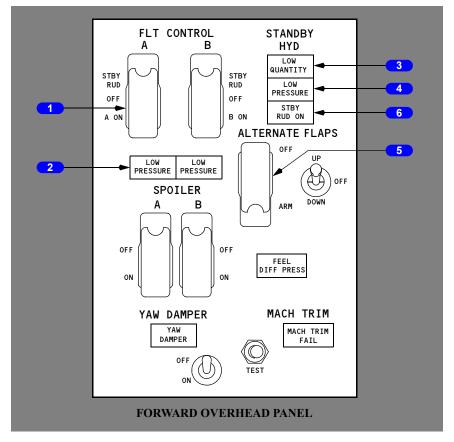
Illuminated (amber) -

- indicates low quantity in standby hydraulic reservoir.
- always armed.

## 4 STANDBY HYDRAULIC LOW PRESSURE Light

Illuminated (amber) -

- indicates output pressure of electric motor driven standby pump is low.
- armed only when standby pump operation has been selected.


#### **5** ALTERNATE FLAPS Master Switch

OFF (guarded position) - normal operating position.

ARM – closes trailing edge flap bypass valve, activates standby pump, and arms ALTERNATE FLAPS position switch.

**DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

# Flight Control Panel (after Rudder System Enhancement Program (RSEP) modification)



#### **1** FLIGHT CONTROL Switches

STBY RUD – activates standby pump and opens standby rudder shutoff valve to pressurize standby rudder power control unit.

OFF – closes flight control shutoff valve isolating ailerons, elevators and rudder from associated hydraulic system pressure.

ON (guarded position) – normal operating position.



737 Flight Crew Operations Manual

#### **2** Flight Control LOW PRESSURE Lights

Illuminated (amber) -

- indicates low hydraulic system (A or B) pressure to ailerons, elevator and rudder.
- deactivated when associated FLIGHT CONTROL switch is positioned to STBY RUD and standby rudder shutoff valve opens.
- indicates A system pressure is low when full RPR pressure is commanded.
- **Note:** The A system light will remain illuminated for approximately five seconds after A hydraulic system has been activated.

## **3** STANDBY HYDRAULIC LOW QUANTITY Light

Illuminated (amber) -

- indicates low quantity in standby hydraulic reservoir.
- always armed.

## 4 STANDBY HYDRAULIC LOW PRESSURE Light

Illuminated (amber) -

- indicates output pressure of electric motor driven standby pump is low.
- armed only when standby pump operation has been selected.

## **5** ALTERNATE FLAPS Master Switch

OFF (guarded position) - normal operating position.

ARM – closes trailing edge flap bypass valve, activates standby pump, and arms ALTERNATE FLAPS position switch.

## **6** STBY RUD ON Light

Illuminated (amber) - indicates the standby hydraulic system is commanded on to pressurize the standby rudder power control unit.

737 Flight Crew Operations Manual

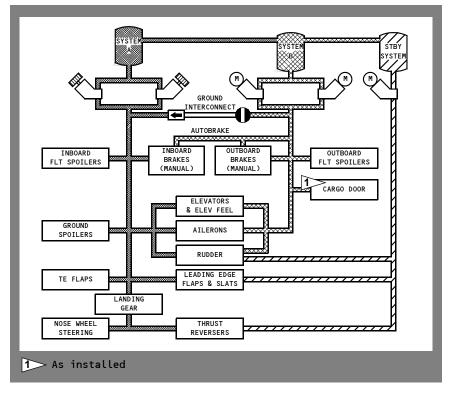
## Hydraulics System Description

Chapter 13 Section 20

## Introduction

The airplane has three hydraulic systems: A, B and standby. The standby system is used if system A and/or B pressure is lost. The hydraulic systems power the following airplane systems:

- flight controls
- leading edge flaps and slats
- trailing edge flaps
- spoilers
- landing gear
- wheel brakes


- nose wheel steering
- thrust reversers
- yaw damper
- autopilots
- cargo door (cargo airplanes only)

Each hydraulic system has a fluid reservoir located in the main wheel well area. The reservoirs are pressurized by engine bleed air directed into the system A reservoir. Fluid balance lines interconnect all reservoirs. Pressurization of all reservoirs ensures positive fluid supply to all hydraulic pumps and controls the fluid level in the reservoirs.

The ground interconnect valve allows system B to pressurize system A for systems check when the airplane is on the ground, the parking brake is set and electrical power is available.

737 Flight Crew Operations Manual

## Hydraulic Power Distribution Schematic



## A and B Hydraulic Systems

Components powered by hydraulic systems A and B are:

#### System A

- ailerons
- rudder
- elevator
- inboard flight spoilers
- inboard brakes
- ground spoilers
- thrust reversers
- nose wheel steering
- landing gear
- leading edge flaps and slats
- trailing edge flaps

#### System B

- aileronsrudder
- inducerelevator
- outboard flight spoilers
- outboard hight spe
   outboard brakes
- outboard brake
- yaw damper
- autobrake
- autopilot B
- cargo door (cargo airplanes only)

## Hydraulic System A

System A pressure is provided by an engine driven pump on each engine. The ENG 1 and ENG 2 pump ON/OFF switch controls the engine–driven pump output pressure. Positioning the switch to OFF isolates fluid flow from the system components. However, the engine–driven pump continues to rotate as long as the engine is operating. Pulling the engine fire switch shuts off the fluid flow to the engine–driven pump and deactivates the related LOW PRESSURE light.

Hydraulic fluid used for cooling and lubrication of the pumps passes through a heat exchanger before returning to the reservoir. The heat exchanger is located in main fuel tank No. 1 and must be covered with fuel for operation of the pumps.

Pressure switches, located in the pump output lines, send signals to illuminate the related LOW PRESSURE light if pump output pressure is low. A check valve, located in each output line, isolates each pump from the system. The A system pressure transmitter sends the combined pressure of the pumps to the A HYDRAULIC SYSTEM PRESSURE indicator needle.

## Hydraulic System B

System B pressure is provided by two electrically driven hydraulic pumps. The ELEC 1 or ELEC 2 pump ON/OFF switch controls the related electric motors.

The system B reservoir is connected to the system A reservoir and the standby reservoir through balance lines for single point pressurization and servicing. The B LOW QUANTITY light illuminates when reservoir fluid is low.

Hydraulic fluid used for cooling and lubrication of the pumps passes through a heat exchanger before returning to the reservoir. The heat exchanger for system B is in main fuel tank No. 2. If a pump or the fluid becomes overheated, the OVERHEAT light illuminates.

#### CAUTION: Minimum fuel for ground operation of electric pumps is 760 Kgs (1675 Lbs) in fuel tank No. 2.

Pressure switches, located in the pump output lines, send signals to illuminate the related LOW PRESSURE light if pump output pressure is low. Check valves isolate the two pumps. The system pressure transmitter sends the combined pressure of the electric motor–driven pumps to the B HYDRAULIC SYSTEM PRESSURE indicator needle.

The automatic load shedding feature deactivates the respective system B hydraulic pump when a generator is lost. The LOW PRESSURE light illuminates and the pump switch remains in the on position. When the bus is powered again, the pump is activated and the LOW PRESSURE light extinguishes

## **Standby Hydraulic System**

The standby hydraulic system is provided as a backup if system A and/or B pressure is lost. The standby system reservoir is connected to the System B reservoir through a balance line for pressurization and servicing. The standby system LOW QUANTITY light is always armed and indicates low quantity in the standby reservoir. The LOW PRESSURE light is armed only when standby pump operation has been selected. The standby system uses a single electric motor–driven pump to power:

- thrust reversers
- rudder
- leading edge flaps and slats (extend only)

## **System Operation**

Positioning either FLT CONTROL switch to STBY RUD:

- activates the standby electric motor-driven pump
- shuts off the related hydraulic system pressure to ailerons, elevators and rudder by closing the flight control shutoff valve
- opens the standby rudder shutoff valve
- deactivates the related flight control LOW PRESSURE light when the standby rudder shutoff valve opens
- allows the standby system to power the rudder.
- (after RSEP modification) illuminates the STBY RUD ON, Master Caution, and Flight Controls (FLT CONT) lights.

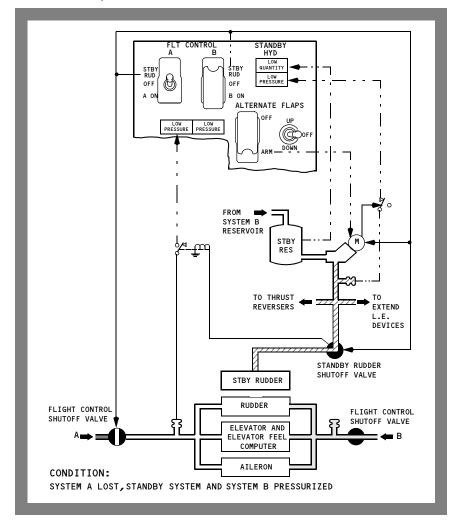
Positioning the ALTERNATE FLAPS master switch to ARM (see the Flight Controls chapter for a more complete explanation):

- activates the standby electric motor-driven pump
- arms the ALTERNATE FLAPS position switch
- allows the standby system to power the leading edge flaps and slats and thrust reversers.

With the loss of System A the standby system will provide pressure to operate the thrust reversers.

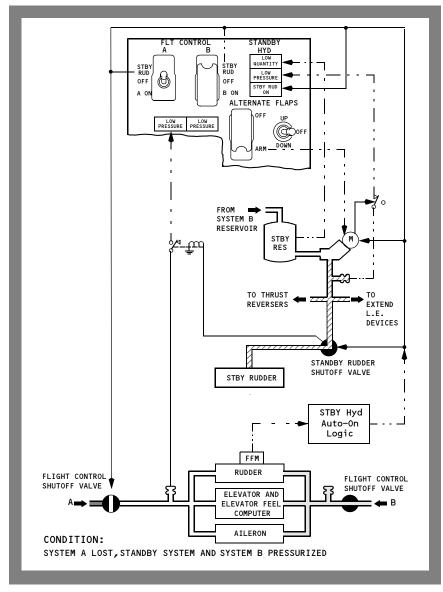
## Automatic Operation (after RSEP modification)

Automatic operation is initiated when the following conditions exist:


- FLT CONTROLS switch A is not in the STBY RUD position,
- FLT CONTROLS switch B is in the ON position,
- ALTERNATE FLAPS arming switch is in the OFF position
- the main PCU Force Fight Monitor (FFM) trips.

737 Flight Crew Operations Manual

Automatic operation:


- opens the standby rudder shutoff valve
- activates the standby electric motor-driven pump
- allows the standby system to power the rudder
- illuminates the STBY RUD ON, Master Caution, and Flight Controls (FLT CONT) lights.

# Standby Hydraulic System Schematic (before RSEP modification)





# **Standby Hydraulic System Schematic (after RSEP modification)**



## Variations in Hydraulic Quantity Indications

During normal operations, variations in System A hydraulic quantity indications occur when:

- · the system becomes pressurized after engine start
- raising or lowering the landing gear or leading edge devices
- cold soaking occurs during long periods of cruise.

These variations have little effect on systems operation.

If the hydraulic system is not properly pressurized, foaming can occur at higher altitudes. Foaming can be recognized by pressure fluctuations and the blinking of the related LOW PRESSURE lights.

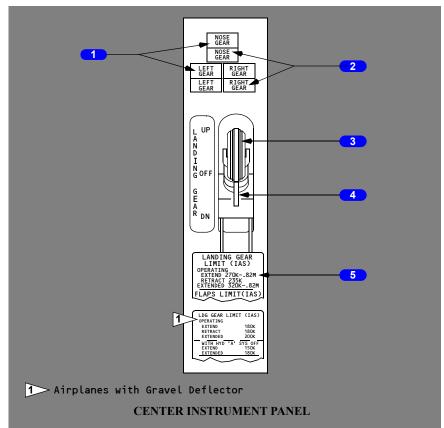


Intentionally Blank

737 Flight Crew Operations Manual

| Landing Gear                                      | Chapter 14  |
|---------------------------------------------------|-------------|
| Table of Contents                                 | Section TOC |
| Controls and Indicators                           |             |
| Landing Gear Panel                                |             |
| Manual Gear Extension                             |             |
| Main Gear Viewer                                  |             |
| Nose Gear Viewer                                  | 14.10.4     |
| Alternate Gear Safe Lights (Cargo Airplanes only) |             |
| Autobrake and Antiskid Controls                   |             |
| Parking Brake                                     |             |
| Hydraulic Brake Pressure Indicator                |             |
| Rudder/Brake Pedals                               |             |
| Nose Wheel Steering Wheel                         |             |
| Tire Screens                                      | 14.10.8     |
| Nose Gear Gravel Deflector                        |             |
| System Description                                |             |
| Introduction                                      |             |
| Landing Gear Operation.                           |             |
| Landing Gear Retraction.                          |             |
| Landing Gear Extension                            |             |
| Landing Gear Manual Extension                     |             |
| Nose Wheel Steering                               |             |
| Nose Gear Gravel Deflector (As Installed)         |             |
| Tire Burst Protection                             |             |
| Brake System                                      |             |
| Brake Accumulators                                |             |
| Antiskid Protection                               |             |
| Autobrake System                                  |             |
| Parking Brake                                     |             |
| Air/Ground System                                 |             |
| Air/Ground System Logic Table                     |             |




Intentionally Blank

737 Flight Crew Operations Manual

Landing Gear Controls and Indicators Chapter 14

Section 10

## **Landing Gear Panel**



### **1** Landing Gear Indicator Lights (top)

Illuminated (red) -

- landing gear is not down and either thrust lever is retarded to idle
- related landing gear is in disagreement with LANDING GEAR lever position (in transit or unsafe)
- gear is down and locked and lever is not in the down detent

Extinguished -

- · landing gear is up and locked with landing gear lever UP or OFF
- landing gear is down and locked with landing gear lever DN.



#### 737 Flight Crew Operations Manual

### **2** Landing Gear Indicator Lights (bottom)

Illuminated (green) - related gear down and locked.

Note: Landing gear warning horn is deactivated with all gear down and locked.

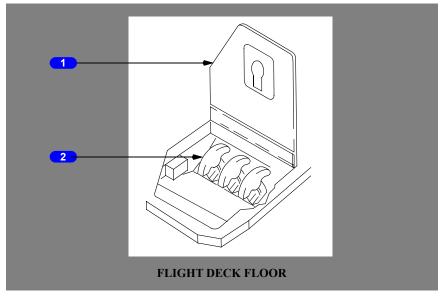
Extinguished - landing gear is not down and locked.

### LANDING GEAR Lever

UP - landing gear retract.

OFF - hydraulic pressure is removed from landing gear system.

DN - landing gear extend.


### **4** Override Trigger

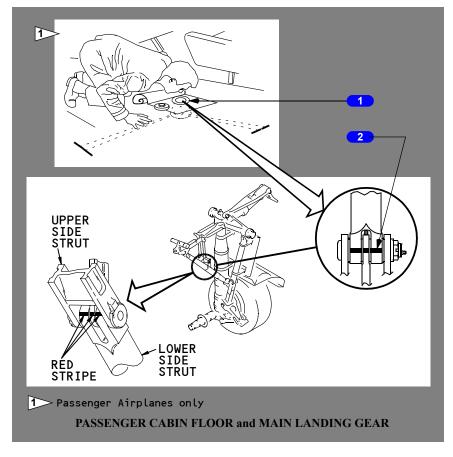
Allows LANDING GEAR lever to be raised, bypassing lever lock.

### **5** LANDING GEAR LIMIT Speed Placard

Indicates maximum speed while operating landing gear and after gear extension.

## **Manual Gear Extension**




### **1** Manual Extension Access Door

737 Flight Crew Operations Manual

### **2** Manual Gear Extension Handles

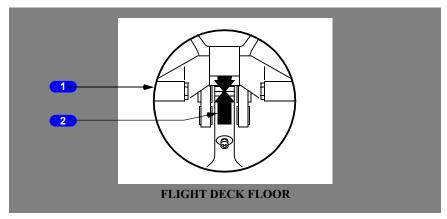
Right main, nose, left main– With LANDING GEAR lever in the OFF position, each landing gear uplock is released when related handle is pulled to its limit, approximately 18 inches (45 cm) for the main gear, approximately 8 inches (20 cm) for the nose gear.

### Main Gear Viewer



### **1** Main Gear Viewer Access (Passenger airplanes only)

Opposite the 3rd window behind the aft overwing exit and one foot left of center. Pull up the carpet identified by a metal button to sight through viewer. Before leaving the cockpit, position the WHEEL WELL light switch ON.


Note: In some installations viewer may be under the aisle seat.

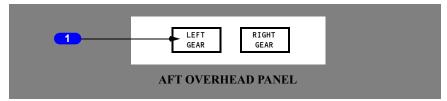


### Paint Stripes (red)

Indication that the landing gear is down and locked is provided by observing the alignment of red paint stripes, located on the down lock and the side struts.

## Nose Gear Viewer




#### 1 Viewer Access –

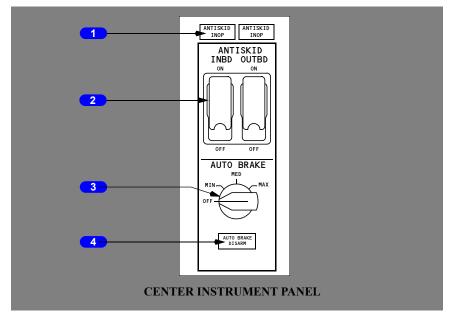
Cover plate for the nose landing gear viewer is located on the floor just inside the cockpit door. The WHEEL WELL light switch must be ON.

### **2** Arrow Head (red) –

Indication that the nose gear is down and locked is provided by observing the two red arrow heads on the down lock strut are in contact.

## Alternate Gear Safe Lights (Cargo Airplanes only)




### **1** Alternate Gear Safe Lights

Illuminated (green) – provides alternate indication that the main gear is down and locked

Extinguished - main gear is not down and locked.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## Autobrake and Antiskid Controls



### **1** Antiskid Inoperative (ANTISKID INOP) Light

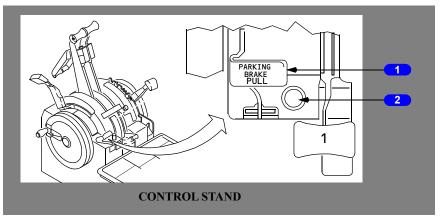
Illuminated (amber) – a system fault is detected by antiskid monitoring system. Extinguished – antiskid system operating normally.

### 2 ANTISKID Control Switch

ON – guarded position.

OFF – turns off antiskid system to respective wheels and illuminates respective ANTISKID INOP light.

### **3** AUTO BRAKE Select Switch


Used to select the level of desired braking. The switch must be pulled out to select MAX deceleration.

### **4** AUTO BRAKE DISARM Light

Illuminated (amber) – a malfunction exists in the automatic braking system.

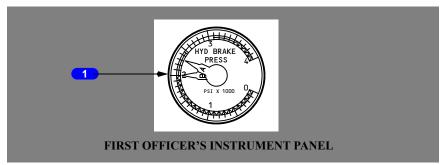


## **Parking Brake**



### **1** PARKING BRAKE Lever

Forward – parking brake is released.


Aft – sets parking brakes when either Captain's or First Officer's brake pedals are fully depressed.

### **2** Parking Brake Warning Light

Illuminated (red) - parking brake is set (lights operate from battery power).

Extinguished – parking brake is released.

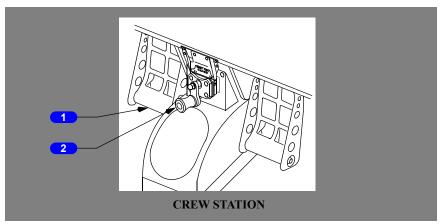
## Hydraulic Brake Pressure Indicator



### **1** Hydraulic (HYD) BRAKE Pressure (PRESS) Indicator

Indicates system A and B brake system pressure:

- normal pressure 3000 psi
- normal precharge 1000 psi.


Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

14.10.6

D6-27370-200A-TBC

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

## **Rudder/Brake Pedals**



### **1** Rudder/Brake Pedals

Push full pedal - turns nose wheel up to 7 degrees in either direction.

Push top of pedal only - activates wheel brakes.

Refer to Chapter 9 Flight Controls for rudder description.

### **2** RUDDER PEDAL ADJUSTMENT Crank

AFT (counter-clockwise) - adjusts rudder pedals aft.

FWD (clockwise) – adjusts rudder pedals forward.

## **Nose Wheel Steering Wheel**

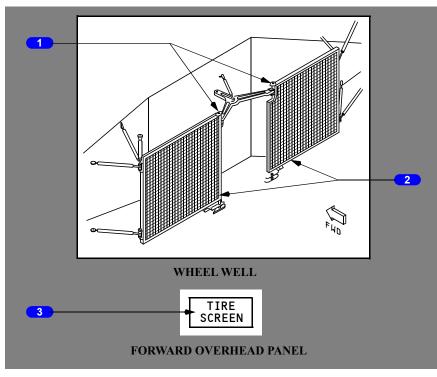




### **1** Nose Wheel Steering Wheel

Rotate -

- turns nose wheel up to 78 degrees in either direction
- overrides rudder pedal steering.


### **2** Nose Wheel Steering Indicator

LEFT - indicates nose wheel steering displacement left of center position.

CENTER - normal straight ahead position.

RIGHT - indicates nose wheel steering displacement right of center position.

## **Tire Screens**

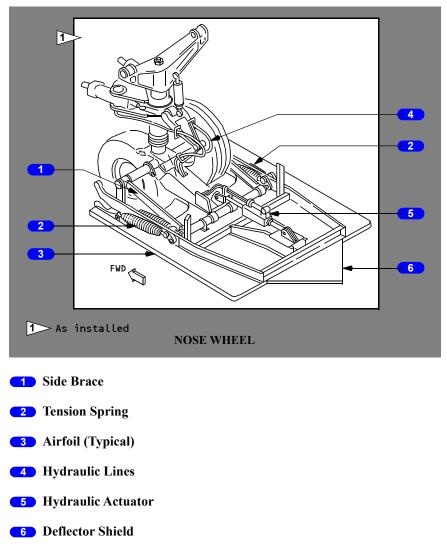


### **1** Screen Locking Pins

If unlocked, will cause illumination of the Tire Screen light.

### **2** Tire Screen

Provides protection for critical hydraulic and flight control equipment in the event of tire burst upon landing gear retraction.


Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.14.10.8D6-27370-200A-TBCApril 5, 2002

### 737 Flight Crew Operations Manual

### **3** TIRE SCREEN Light

Illuminated (amber) – indication that the tire screens are not secure.

## Nose Gear Gravel Deflector





Intentionally Blank

737 Flight Crew Operations Manual

## Landing Gear System Description

Chapter 14 Section 20

## Introduction

The airplane has two main landing gear and a single nose gear. Each main gear is a conventional two–wheel landing gear. The nose gear is a conventional steerable two–wheel unit.

Hydraulic power for retraction, extension, and nose wheel steering is normally supplied by hydraulic system A. A manual landing gear extension system is provided.

Normally, brakes are powered by hydraulic systems A and B. Antiskid protection is provided on all brakes. When the autobrake is selected, pressure is automatically applied in conjunction with the antiskid system.

## Landing Gear Operation

The landing gear are normally controlled by the LANDING GEAR lever. On the ground, a landing gear lever lock prevents the LANDING GEAR lever from moving to the up position. An override trigger in the lever may be used to bypass the landing gear lever lock. In flight, the air/ground system energizes a solenoid which opens the lever lock.

## Landing Gear Retraction

When the LANDING GEAR lever is moved to UP, the landing gear begins to retract. During retraction, the brakes automatically stop rotation of the main gear wheels. After retraction, the main gear are held in place by mechanical uplocks. Rubber seals and oversized hubcaps complete the fairing of the outboard wheels.

The nose wheels retract forward into the wheel well and nose wheel rotation is stopped by snubbers. The nose gear is held in place by an overcenter lock and enclosed by doors which are mechanically linked to the nose gear

Hydraulic pressure is removed from the landing gear system with the LANDING GEAR lever in the OFF position.

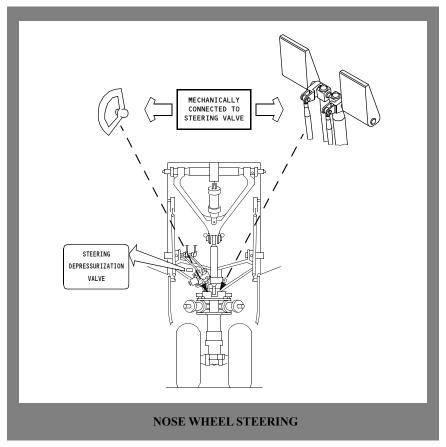
## Landing Gear Extension

When the LANDING GEAR lever is moved to DN, hydraulic system A pressure is used to release the uplocks. The landing gear extends by hydraulic pressure, gravity and air loads. Overcenter mechanical and hydraulic locks hold the gear at full extension. The nose wheel doors stay open when the gear is down.



## Landing Gear Manual Extension

If hydraulic system A pressure is lost, the manual extension system provides another means of landing gear extension. Manual gear releases on the flight deck are used to release uplocks that allow the gear to free–fall to the down and locked position. The forces that pull the gear down are gravity and air loads.


## **Nose Wheel Steering**

The airplane is equipped with nose wheel steering which is powered by hydraulic system A. Nose wheel steering is operative only when hydraulic system A is pressurized and the landing gear lever is in the down position.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Primary steering is controlled through the nose wheel steering wheel. Limited steering control is available through the rudder pedals. A pointer on the nose steering wheel assembly shows nose wheel steering position relative to the neutral setting. Rudder pedal steering is deactivated as the nose gear strut extends.

A lockout pin may be installed in the towing lever to depressurize nose wheel steering. This allows airplane pushback or towing without depressurizing the hydraulic system.



## Nose Gear Gravel Deflector (As Installed)

The gravel deflector shield prevents engine gravel ingestion and reduces damage to the underside of the airplane. The deflector consists of a plywood sheet faced with corrosion resistant steel, a hydraulic actuator and four springs. The hydraulic actuator is supplied by hydraulic system A and functions to keep the deflector streamlined during gear retraction or extension.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. April 3, 2015 D6-27370-200A-TBC 14.20.3

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

The deflector shield covers the forward portion of the nose wheel well when the gear is retracted; the remaining portion is enclosed by clamshell doors mechanically linked to the nose gear. The four tension springs hold the deflector in the proper position during gear transit in the event that system A pressure is not available. The deflector is in effect an airfoil.

In the event that manual extension is required, the airspeed must be restricted to 150 knots for extension and 180 knots for gear-extended operation to insure that the springs maintain the deflector in the desired position.

The nose gear spray pattern is directly affected by taxi speed, runway condition and use of nose wheel steering. Under normal conditions, spray patterns become inherently safer as speed increases, deep ruts or soft gravel increase the nose gear spray, and large nose wheel steering inputs aggravate spray patterns.

## **Tire Burst Protection**

The tire screens provide protection for critical hydraulic and flight control equipment in the event of tire burst when the main landing gear is retracted.

The TIRE SCREEN light monitors the screen locking pins in the wheel well.

Illumination of the TIRE SCREEN amber caution light activates the DOORS system annunciator and MASTER CAUTION lights on the light shield, indicating the screens are not secure. Pushing either MASTER CAUTION light to RESET extinguishes the DOORS annunciator and MASTER CAUTION lights. The TIRE SCREEN amber caution light remains illuminated until the fault is cleared.

### CAUTION: If the tire screen light is illuminated and the cause is a tire burst screen not secure, equipment damage could result when the gear is retracted.

## Brake System

Each main gear wheel has a multi-disc hydraulic powered brake. The brake pedals provide independent control of the left and right brakes. The brakes are powered by the two independent hydraulic systems. Hydraulic system A supplies pressure to the inboard brakes and hydraulic system B supplies pressure to the outboard brakes. The nose wheels have no brakes. The brake system includes:

• brake accumulator

autobrake system

• antiskid protection

parking brake

## **Brake Accumulators**

Each brake system has an accumulator which stores hydraulic pressure and is used as a backup system in the event of a system hydraulic failure. If normal system pressure is lost, trapped hydraulic pressure in the brake accumulator can still provide several braking applications or parking brake application.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.14.20.4D6-27370-200A-TBCApril 3, 2015

## **Antiskid Protection**

The brake system provides each main gear wheel with individual antiskid protection. The ANTISKID control switches control power to the antiskid controllers. When the system detects a skid, the associated antiskid valve modulates brake pressure until skidding stops. The antiskid system also provides locked wheel, touchdown, and hydroplane protection.

An ANTISKID INOP light illuminates anytime there is a system malfunction. Both ANTISKID INOP lights illuminated indicates there is a disagreement between the PARKING BRAKE lever position and the parking brake shutoff valve position.

Antiskid protection is available even with loss of hydraulic pressure.

## Autobrake System

The autobrake system uses hydraulic system B pressure to provide automatic braking at preselected deceleration rates immediately after touchdown. The system operates only when the normal brake system is functioning. Antiskid system protection is provided during autobrake operation.

### Landing

The digital autobrake system arms for landing when:

- air/ground safety sensor is in the flight mode
- ANTISKID control switches are ON
- AUTO BRAKE select switch is positioned to MIN, MED, or MAX.

Three levels of deceleration can be selected for landing. However, on dry runways, the maximum autobrake deceleration rate in the landing mode is less than that produced by full pedal braking.

After landing, autobrake application begins when:

- both Thrust Levers are retarded to near IDLE, and
- the main wheels spin-up.

To maintain the selected landing deceleration rate, autobrake pressure is reduced as reverser thrust is applied. The total deceleration of reverse thrust and braking is equal to the selected deceleration rate. The autobrake system brings the airplane to a complete stop unless the braking is terminated by the pilot.

### Autobrake – Disarm

The pilots may disarm the autobrake system by moving the selector switch to the OFF position. This action does not cause the AUTO BRAKE DISARM light to illuminate. After braking has started, any of the following pilot actions disarm the system immediately and illuminate the AUTO BRAKE DISARM light:

- moving the SPEED BRAKE lever to the down detent
- · advancing the Thrust Levers (as for go-around), or
- applying manual brakes.

## **Parking Brake**

The parking brake is set by depressing both brake pedals, pulling the PARKING BRAKE lever back, then releasing the pedals. This mechanically latches the pedals in the depressed position and commands the parking brake valve to close.

The parking brake is released by depressing the pedals until the PARKING BRAKE lever releases. A fault in the parking brake system may cause the ANTISKID INOP lights to illuminate.

## **Air/Ground System**

In-flight and ground operation of various airplane systems are controlled by the air/ground system.

The system receives air/ground logic signals from sensors located on the right main gear and on some airplanes on the nose gear. These signals are used to configure the airplane systems to the appropriate air or ground status.

| SYSTEMS                              | NORMAL INFLIGHT<br>OPERATION                                                  | NORMAL ON GROUND<br>OPERATION                                                  | REFER<br>TO CH |
|--------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Main Cargo<br>Door (as<br>installed) | Electric door control inoperative.                                            | Door system control fully operative.                                           | 1              |
| Control Cabin<br>Fan                 | Does not operate                                                              | Operates whenever only<br>one air conditioning pack<br>is operating.           | 2              |
| Pressurization                       | Allows programmed<br>pressurization in the<br>standby and automatic<br>modes. | Allows pressurization on<br>the ground as determined<br>by the FLT/GRD switch. | 2              |

## Air/Ground System Logic Table

737 Flight Crew Operations Manual

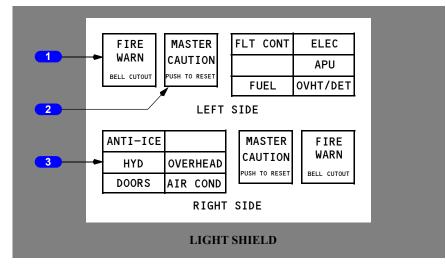
| SYSTEMS                                                             | NORMAL INFLIGHT<br>OPERATION                                                                               | NORMAL ON GROUND<br>OPERATION                                                                | REFER<br>TO CH |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|
| Ram Air                                                             | Turbofan(s) operate only<br>when air conditioning<br>packs operate and flaps<br>are not up.                | Turbofans operate<br>whenever air conditioning<br>packs operate. Deflectors<br>are extended. | 2              |
| Wing<br>Anti–ice (As<br>Installed)                                  | Control valves open<br>when switch is ON.                                                                  | Control valves do not<br>open except during ground<br>test.                                  | 3              |
| Wing<br>Anti–ice<br>Ground<br>Operating<br>System (As<br>Installed) | Control valves open<br>when switch is ON.<br>Thrust setting and duct<br>temperature logic are<br>bypassed. | With switch ON, valves<br>cycle open and closed.<br>Switch trips to OFF at<br>lift-off.      | 3              |
| Voice<br>Recorder                                                   | Prevents tape erasure.                                                                                     | Allows tape erasure when parking brake is set.                                               | 5              |
| Standby<br>Inverter                                                 | Automatically activated<br>if either AC transfer bus<br>No. 1 or DC bus No. 1 is<br>lost.                  | Automatic operation disabled.                                                                | 6              |
| APU Control                                                         | APU operation possible with battery switch OFF.                                                            | APU shutdown if battery switch is positioned OFF.                                            | 7              |
| APU<br>Generator                                                    | May be connected to only one generator.                                                                    | May be connected to two generator buses.                                                     | 7              |
| Thrust<br>Reverser                                                  | Deflector deployment<br>prevented if override is<br>not used.                                              | Deflector doors may be deployed.                                                             | 7              |
| Vortex<br>Dissipator (as<br>installed)                              | ON position disabled.                                                                                      | ON position enabled.                                                                         | 7              |
| APU Fire<br>Horn                                                    | Wheel well horn disabled.                                                                                  | Wheel well horn enabled.                                                                     | 8              |

### 737 Flight Crew Operations Manual

| SYSTEMS                             | NORMAL INFLIGHT<br>OPERATION                             | NORMAL ON GROUND<br>OPERATION                                                                                                                   | REFER<br>TO CH |
|-------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Speed Brake<br>Lever<br>Actuator    | Can be armed to raise<br>ground spoilers for<br>landing. | Activates SPEED<br>BRAKE lever on landing<br>if armed. Rejected<br>take–off feature available.<br>Drives to DOWN when<br>thrust lever advanced. | 9              |
| Flight<br>Recorder                  | Operates anytime<br>electric power is<br>available.      | Operates anytime electric<br>power is available and<br>either engine is operating.                                                              | 10             |
| Hydraulic<br>Ground<br>Interconnect | System disabled.                                         | System enables when parking brake is set.                                                                                                       | 13             |
| Antiskid                            | Releases normal brakes<br>for touchdown<br>protection.   | Allows normal antiskid<br>braking after wheel<br>spin–up.                                                                                       | 14             |
| Autobrake                           | Allows selection of landing mode.                        |                                                                                                                                                 | 14             |
| Landing Gear<br>Lever Lock          | Lever Lock solenoid released.                            | Lever Lock solenoid latched.                                                                                                                    | 14             |
| Stall Warning                       | Enabled.                                                 | Disabled.                                                                                                                                       | 15             |
| Takeoff<br>Warning                  | Disabled.                                                | Enabled.                                                                                                                                        | 15             |

737 Flight Crew Operations Manual

| Warning Systems                                     | Chapter 15  |
|-----------------------------------------------------|-------------|
| Table of Contents                                   | Section TOC |
| Controls and Indicators                             | 15.10       |
| Fire Warning and Master Caution System              | 15.10.1     |
| Mach/Airspeed Warning and Stall Warning Test Switch | nes 15.10.2 |
| Landing Gear Warning Cutout Switch                  | 15.10.3     |
| Altitude Alert                                      | 15.10.4     |
| GPWS Controls and Indicators                        | 15.10.4     |
| Transponder Panel (TCAS)                            | 15.10.6     |
| System Description                                  |             |
| Introduction                                        | 15.20.1     |
| Master Fire Warning Lights                          |             |
| Master Caution Lights                               |             |
| System Annunciator Lights                           | 15.20.2     |
| Warning Systems                                     | 15.20.5     |
| Intermittent Cabin Altitude/Takeoff Configuration W | C           |
| Landing Gear Configuration Warnings                 |             |
| Mach/Airspeed Warning System                        |             |
| Stall Warning System                                |             |
| Altitude Alerting System                            |             |
| Ground Proximity Warning System (GPWS)              |             |
| Alert Conditions                                    |             |
| GPWS Annunciations                                  |             |
| Traffic Alert and Collision Avoidance System (TCAS) | •           |
| installed) Advisories and Displays                  |             |
| Inhibits                                            |             |
| Mode Control                                        |             |
| Resolution Advisory Aurals                          |             |




Intentionally Blank

737 Flight Crew Operations Manual

Warning Systems Controls and Indicators Chapter 15 Section 10

## Fire Warning and Master Caution System



### FIRE WARN Lights

Illuminated (red) – indicates a fire warning (or system test) in engine, APU or main gear wheel well

- fire warning bell sounds
- if on ground, remote APU fire warning horn sounds.

Push - extinguishes both master FIRE WARN lights

- silences fire warning bell
- silences remote APU fire warning horn
- resets system for additional warnings.

**Note:** Pushing fire warning bell cutout switch on overheat/fire protection panel results in same actions.

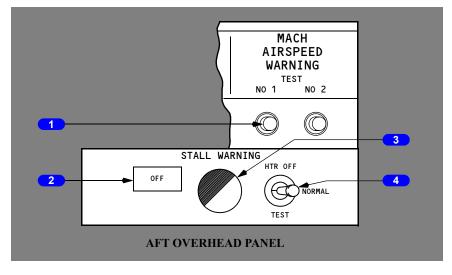
### **2** MASTER CAUTION Lights

Illuminated (amber) – a system annunciator light has illuminated.

Push - extinguishes both MASTER CAUTION lights

- system annunciator light(s) extinguish
- resets system for additional master caution conditions.

### **3** System Annunciator Panel


Illuminated (amber) – an amber light, relating to illuminated system annunciator, has illuminated on forward overhead, aft overhead or overheat/fire protection panel.

To extinguish - push either MASTER CAUTION light.

To recall - push and release either System Annunciator Panel

• if a master caution condition exists, appropriate system annunciator(s) and MASTER CAUTION lights illuminate.

### Mach/Airspeed Warning and Stall Warning Test Switches



### **1** MACH AIRSPEED WARNING TEST Switch

Push - Tests respective Mach/Airspeed warning system

- clacker sounds
- inhibited while airborne.

### **2** STALL WARNING OFF Light

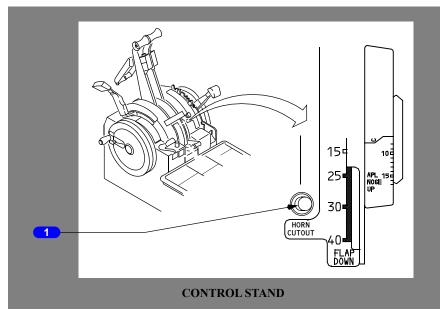
Illuminated (amber)- indicates a failure of the angle airflow sensor heater, a system signal failure, or a power failure.

### **3** TEST INDICATOR

Rotating – indicates electrical continuity through the angle airflow sensor and flap position transmitter during TEST.

737 Flight Crew Operations Manual

### **4** STALL WARNING SWITCH


Normal – heater power for the angle airflow sensor is available only if engine 1 is operating or the air ground safety sensor is in the air mode.

Test – with engine 1 not operating: OFF light extinguishes, Test Indicator rotates, and the control columns vibrate.

- with engine 1 operating: OFF light remains extinguished, Test Indicator rotates, and the control columns vibrate.

HTR OFF (Heater Off) - locked toggle position--for maintenance checks only.

### Landing Gear Warning Cutout Switch



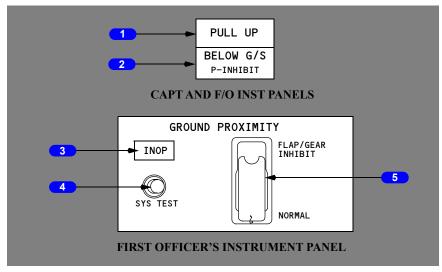
### **1** Landing Gear Warning Cutout Switch

Push – silences landing gear configuration warning aural indication:

- at flaps 1 through 10
- at flaps 15 or 25, when either forward thrust lever is between idle and approximately 10° and opposite forward thrust lever is greater than approximately 30°.

# **Note:** Aural indication cannot be silenced with cutout switch at flaps greater than 25.




## Altitude Alert



### **1** ALTITUDE ALERT Annunciation

Illuminated (amber) – Airplane is within the range of 1000 to 375 feet of the selected altitude.

## **GPWS** Controls and Indicators



### **1** PULL UP WARNING LIGHT

Illuminated (red) - indicates one or more of the following exist:

- excessive descent rate
- excessive terrain closure rate
- altitude loss after takeoff or go-around
- unsafe terrain clearance when not in the landing configuration

737 Flight Crew Operations Manual

# **2** BELOW G/S (Below Glide Slope) Alert Light, P-INHIBIT (Push to Inhibit) Alert Light and Switch

BELOW G/S illuminated (amber) – Indicates that aircraft is more than 1.3 dots below glide slope.

P-INHIBIT illuminated (amber) – Indicates glide slope alert is inhibited.

Push – Inhibits or cancels below glide slope alerting when pressed below 2000 feet AGL. Resets automatically when aircraft ascends above 2000 feet AGL or descends below 30 feet AGL.

# **2** BELOW G/S (Below Glide Slope) Alert Light, P-INHIBIT (Push to Inhibit) Alert Light and Switch

BELOW G/S illuminated (amber) – Indicates that aircraft is more than 1.3 dots below glide slope.

P-INHIBIT illuminated (amber) - Indicates glide slope alert is inhibited.

Push – Inhibits or cancels below glide slope alerting when pressed below 2000 feet AGL. Resets automatically when aircraft ascends above 2000 feet AGL or descends below 30 feet AGL.

### **3** GPWS Inoperative (INOP) Light

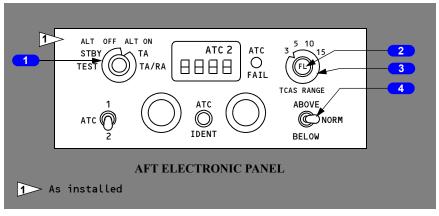
Illuminated (amber) – GPWS computer malfunction or power loss

• invalid inputs are being received from the VHF NAV receiver, ADC, or radio altimeter.

### 4 Ground Proximity System (SYS TEST) Switch

Push –

- momentarily on ground--with landing gear not in landing configuration-- or above 1,000 feet radio altitude in flight--with gear up and flaps in any configuration:
  - illuminates BELOW G/S, PULL UP and INOP lights, and causes the "GLIDE SLOPE" and "WHOOP, WHOOP, PULL UP" aurals to sound
- at least 10 seconds, on ground above indications always occur first, followed by any additional aurals, as installed
- system test is inhibited from lift-off to 1000 feet radio altitude.


### **5** Ground Proximity FLAP/GEAR Inhibit Switch

FLAP/GEAR INHIBIT – inhibits or cancels warnings/alerts caused by flaps not in 30 or 40 position or landing gear not down.

NORMAL (guarded position) – flap and landing gear position logic is provided for GPWS.



## **Transponder Panel (TCAS)**



### **1** Transponder Mode Selector

TEST - tests transponder units.

- STBY disables transponder modes.
- **Note:** Transponder modes are enabled only when airplane is airborne except for Mode S, which operates continuously when the Transponder Mode Selector is out of STBY.

ALT OFF - deactivates altitude reporting.

ALT ON – transponder operates with altitude reporting.

TA - enables display of Traffic Advisory TCAS targets.

TA/RA – enables display of Traffic Advisory and Resolution Advisory TCAS targets.

### **2** Absolute Altitude Display Selector

Press - displays absolute altitudes of TCAS targets for 15 seconds.

### **3** TCAS Range Switch

Selects range for TCAS display when weather radar is operating in TCAS mode only.

### **4** Altitude Range Switch

Allows shifting of TCAS coverage up and down from baseline:

- ABOVE sets TCAS display at upper elevation limit.
- NORM sets TCAS display for normal limit.
- BELOW sets TCAS display at lower elevation limit.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details. **15.10.6 D6-27370-200A-TBC October 15, 2018** 

737 Flight Crew Operations Manual

Warning Systems System Description Chapter 15 Section 20

## Introduction

Aural, tactile and visual warning signals alert the flight crew to conditions requiring action or caution in the operation of the airplane. The character of the signals varies, depending upon the degree of urgency or types of hazards involved. Aural, tactile, and visual signals are used singularly or in combination to simultaneously provide both warnings and information regarding the nature of the condition.

Mach/airspeed warnings, landing gear warnings, takeoff configuration warnings, windshear warnings, and ground proximity warnings are discussed in this section. Cabin altitude warning is discussed in this section and in the Air Systems chapter, and autopilot and autothrottle disconnect warnings are discussed in the Automatic Flight chapter. The conditions which excite the fire warning bell are discussed in the Fire Protection chapter.

Conditions which require the immediate attention of the flight crew are indicated by red warning lights located in the area of the pilots' primary field of vision. These lights indicate APU, engine, or wheel well fires; autopilot and unsafe landing gear conditions.

Conditions which require the timely attention of the flight crew are indicated by amber caution lights.

Blue lights inform the flight crew of electrical power availability, valve position, equipment status, and flight attendant or ground communications. Blue lights are for information and do not require immediate flight crew attention. Some system blue lights indicate a transitional state by illuminating bright as valves or components reposition, then returning to a dim blue when the required configuration is reached.

Green lights indicate a fully extended configuration, e.g., landing gear and leading edge devices.

For specific information regarding red, amber, blue, and green lights refer to the appropriate systems chapters.

Stall warning is provided by a control column shaker on the captain's control column, or-as installed-on each control column.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

Various aural signals call attention to warnings and cautions. An aural warning for airspeed limits is given by a clacker, the autopilot disconnect by a warning tone, takeoff configuration and cabin altitude by an intermittent horn, and landing gear positions by a steady horn. The fire warning is given by a fire warning bell. Ground proximity warnings and alerts–as well as windshear warnings and alerts–are given by voice warnings.

Generally, aurals automatically silence when the associated non-normal condition no longer exists.

## **Master Fire Warning Lights**

Two master FIRE WARN lights illuminate when any fire warning condition occurs. The lights remain illuminated as long as the condition exists. Pushing either master FIRE WARN light or fire warning bell cutout switch extinguishes both lights, silences the fire warning bell and resets the system for future warnings. Further information appears in the Fire Protection chapter.

## **Master Caution Lights**

Two MASTER CAUTION lights illuminate when any caution occurs outside the normal field of vision of the flight crew. The lights remain illuminated as long as the caution condition exists, or until the crew resets the system. Pushing either MASTER CAUTION light extinguishes both lights and resets the master caution system for further cautions. Pushing either annunciator light panel recalls all existing fault annunciations.

A single fault in certain redundant systems–also known as a "simple fault"–does not illuminate the MASTER CAUTION or system annunciator lights. However, this type of fault is stored in the master caution system. Pushing the system annunciator recalls the simple fault on the system annunciator panel.

## System Annunciator Lights

Two system annunciator light panels are located on the glare shield. The annunciator light panels include only those systems located on the forward overhead, aft overhead, and fire control panels. If a caution condition exists, the appropriate system annunciator(s) and MASTER CAUTION lights illuminate.

When MASTER CAUTION recall is pressed, all twelve system lights should illuminate while the press-to-test feature is held. If a system annunciator light does not illuminate, refer to the Dispatch Deviation Guide (DDG).

#### System Annunciators and Related Amber Lights – Left Side

| •               |            | e        |               |
|-----------------|------------|----------|---------------|
| FLT CONT        |            |          | ELEC          |
| FEEL DIFF PRESS |            |          | BUS OFF       |
| LOW PRESSURE    |            |          | HIGH OIL TEMP |
| LOW QUANTITY    |            |          | LOW OIL       |
| MACH TRIM FAIL  |            | 1        | PRESSURE      |
| YAW DAMPER      | FLT CONT   | ELEC     | STANDBY PWR   |
|                 |            | APU      | OFF           |
|                 | FUEL       | OVHT/DET | TRANSFER BUS  |
|                 |            |          | OFF           |
|                 |            |          | APU           |
|                 | LEFT SIDE  |          | HIGH OIL TEMP |
|                 | LIGHT SHIE | LD       | LOW OIL       |
|                 |            |          | PRESSURE      |
|                 |            |          | OVERSPEED     |
| FUEL            |            |          | OVHT/DET      |
| FILTER ICING    |            |          | ENGINE 1      |
| LOW PRESSURE    |            |          | OVERHEAT      |
|                 |            |          | ENGINE 2      |
|                 |            |          | OVERHEAT      |
|                 |            |          | APU DET INOP  |



737 Flight Crew Operations Manual

#### System Annunciators and Related Amber Lights – Right Side

| ANTI-ICE           |              |          |                                       |
|--------------------|--------------|----------|---------------------------------------|
| WINDOW             |              |          |                                       |
| OVERHEAT           |              |          |                                       |
| PITOT HEAT         |              |          |                                       |
| HYD                | ANTI-ICE     |          | OVERHEAD                              |
| OVERHEAT           | НУД          | OVERHEAD | EMER EXIT                             |
| LOW PRESSURE       |              | AIR COND | LIGHTS-NOT                            |
|                    | DOORS        | AIKCOND  | ARMED                                 |
|                    | RIGHT SIDE   |          | EQUIP COOLING-<br>OFF                 |
|                    | LIGHT SHIELD | )        | FLIGHT<br>RECORDER–OFF                |
|                    |              |          | ISOLATION<br>VALVE–THRUST<br>REVERSER |
|                    |              |          | PASS OXY–ON                           |
|                    |              |          | STALL<br>WARNING–OFF                  |
| DOORS              |              |          | AIR COND                              |
| EQUIP              |              |          | DUCT OVERHEAT                         |
| FWD/AFT ENTRY      |              |          | DUAL BLEED                            |
| FWD/AFT CARGO      |              |          | PACK TRIP OFF                         |
| FWD/AFT<br>SERVICE |              |          | WING–BODY<br>OVERHEAT                 |
| AIRSTAIR           |              |          | BLEED TRIP OFF                        |
| TIRE SCREEN        |              |          | AUTO FAIL                             |
|                    |              |          | OFF SCHED<br>DESCENT                  |

## Warning Systems Intermittent Cabin Altitude/Takeoff Configuration Warning

The takeoff configuration warning is armed when the airplane is on the ground and either or both forward thrust levers are advanced for takeoff. An intermittent warning horn sounds if:

- · Leading Edge devices are NOT configured for takeoff, or
- Speed Brake lever is NOT in the DOWN position, or
- Stabilizer Trim is NOT set in the takeoff range, or
- Trailing Edge flaps are NOT in the flaps 1 through 25 takeoff range.

The warning indication is cancelled when the configuration error is corrected.

The Cabin Altitude Warning Horn activates when cabin altitude exceeds 10,000 feet. An intermittent warning horn is heard. The Cabin Altitude Warning Horn may be silenced by momentarily pressing the ALT HORN CUTOUT switch on the Cabin Altitude Panel.

## Landing Gear Configuration Warnings

Visual indications and aural warnings of landing gear position are provided by the landing gear indicator lights and landing gear warning horn.

### **Visual Indications**

The landing gear indication lights are activated by signals from each gear, the LANDING GEAR lever, and the forward thrust lever position as follows:

Green light illuminated – landing gear is down and locked.

Red light illuminated –

- landing gear position is in disagreement with LANDING GEAR control lever position (in transit or unsafe)
- landing gear is unlocked
- landing gear is not down and locked (with either or both forward thrust levers retarded to idle).

All lights extinguished – landing gear is up and locked with the LANDING GEAR lever UP or OFF.

### **Aural Indications**

A steady warning horn is provided to alert the flight crew whenever the airplane is in a landing configuration and any gear is not down and locked. The landing gear warning horn is activated by forward thrust lever and flap position as follows: Flaps 1 through 10–

• either or both forward thrust levers between idle and approximately 10 degrees thrust lever angle; the landing gear warning horn can be silenced (reset) with the landing gear warning HORN CUTOUT switch

Flaps 15 or 25-

- either-but not both-forward thrust levers retarded to idle; the landing gear warning horn can be silenced (reset) with the landing gear warning HORN CUTOUT switch
- both forward thrust levers set below approximately 30 degrees; the landing gear warning horn cannot be silenced with the landing gear warning HORN CUTOUT switch

Flaps greater than 25-

• forward thrust levers in any position; the landing gear warning horn cannot be silenced with the landing gear warning HORN CUTOUT switch.

The warning indication is cancelled when the configuration error is corrected.

## Mach/Airspeed Warning System

Two independent Mach/airspeed warning systems provide a distinct aural warning–a clacking sound–any time the maximum operating airspeed of Vmo/Mmo is exceeded. Each system operates from a mechanism internal to the respective pilot's Mach/airspeed indicator. The warning clacker can be silenced only by reducing airspeed below Vmo/Mmo and can be tested at any time with the test switch.

## **Stall Warning System**

Natural stall warning (buffet) usually occurs at a speed prior to stall. In some configurations the margin between stall and natural stall warning is less than desired. Therefore, an artificial stall warning device–a stick shaker–is used to provide the required warning.

The stall warning "stick shaker" consists of an eccentric, weighted motor on the captain's control column. Designed to alert the pilot before a stall develops, the warning is given by vibrating the control column. The system is armed in flight at all times. The system is deactivated on the ground.

The stall warning system consists of:

- a control column shaker,
- a heated angle of airflow sensor,
- a flap position sensor,
- a stall warning amplifier,
- an air-ground safety sensor, and
- a stall warning test panel on the aft overhead panel.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

## **DO NOT USE FOR FLIGHT** 737 Flight Crew Operations Manual

A test switch is installed in the aft overhead panel. Pushing the switch initiates a self-test of the stall warning channel.

### **Altitude Alerting System**

Altitude alerting compares the altitude selected on the ALTITUDE ALERT CONTROLLER with the altitude shown in the captain's altimeter. Alerting consists of a two-second tone and the illumination of the ALTITUDE ALERT lights—located on the captain's and first officer's instrument panels—when 1000 feet above or below the selected altitude. The lights extinguish when 375 feet from the selected altitude.

## Ground Proximity Warning System (GPWS)

### WARNING: Do not deactivate the GPWS (by pulling the circuit breaker or using the inhibit switch) except for an approved procedure--where use of flaps at less-than-normal-landing-flap position, or leaving landing gear up is specified.

The GPWS provides alerts for potentially hazardous flight conditions. GPWS alerts--to the extent they are installed--are for imminent impact with the ground, detected windshear condition, excessive angle of bank, and glideslope deviation.

GPWS may also provide radio altitude and decision height callouts.

**Note:** GPWS does not provide alerts for flight toward vertically sheer terrain, or of shallow descents when the airplane is in landing configuration.

## **Alert Conditions**

GPWS provides warnings and/ or alerts if one of the following conditions exists:

- excessive barometric descent rate
- excessive terrain closure rate
- altitude loss after takeoff or go-around
- unsafe terrain clearance (when not in the landing configuration)
- · excessive deviation below glideslope

The GPWS alerts and the condition which causes each alert are presented on the following GPWS annunciation chart.



## **GPWS** Annunciations

| AURAL ALERT                                                  | VISUAL ALERT                     | DESCRIPTION                                                                                                                                                                                                                        |
|--------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODE 1, MK II<br>"SINK RATE"                                 | PULL UP lights                   | Excessive descent rate.                                                                                                                                                                                                            |
| MODE 1, MK II<br>(cont)<br>"WHOOP<br>WHOOP PULL<br>UP"       | PULL UP lights                   | Follows "SINK RATE" if<br>excessive descent rate<br>continues or increases.<br>Also follows "TERRAIN"<br>alert if excessive terrain<br>closure rate continues and<br>landing gear and/or flaps<br>not in landing<br>configuration. |
| MODE 2, MK II<br>"TERRAIN"                                   | PULL UP lights                   | Excessive terrain closure rate.                                                                                                                                                                                                    |
| MODE 3, MK II<br>"DON'T SINK"                                | PULL UP lights                   | Excessive altitude loss after takeoff or go–around.                                                                                                                                                                                |
| MODE 4A, MK II<br>"TOO LOW<br>GEAR" or "TOO<br>LOW TERRAIN"  | PULL UP lights                   | Unsafe clearance during<br>approach with landing<br>gear up.                                                                                                                                                                       |
| MODE 4B, MK II<br>"TOO LOW<br>FLAPS" or "TOO<br>LOW TERRAIN" | PULL UP lights                   | Unsafe clearance during<br>approach with flaps not in<br>landing configuration.                                                                                                                                                    |
| MODE 5, MK II<br>"GLIDESLOPE"                                | BELOW G/S w/<br>P–INHIBIT lights | Deviation below<br>glideslope. The volume<br>and repetition rate increase<br>as deviation continues.                                                                                                                               |

# Traffic Alert and Collision Avoidance System (TCAS) (as installed)

TCAS alerts the crew to possible conflicting traffic. TCAS interrogates operating transponders in other airplanes, tracks the other airplanes by analyzing the transponder replies, and predicts the flight paths and positions. TCAS provides advisory and traffic displays of the other airplanes to the flight crew. Neither advisory, guidance, nor traffic display is provided for other airplanes which do not have operating transponders. TCAS operation is independent of ground–based air traffic control.

To provide advisories, TCAS identifies a three dimensional airspace around the airplane where a high likelihood of traffic conflict exists. The dimensions of this airspace are based upon the closure rate with conflicting traffic.

TCAS equipment interrogates the transponders of other airplanes to determine their range, bearing, and altitude. A traffic advisory (TA) is generated when the other airplane is approximately 40 seconds from the point of closest approach. If the other airplane continues to close, a resolution advisory (RA) is generated when the other airplane is approximately 25 seconds from the point of closest approach. The RA provides aural warning and guidance as well as maneuver guidance to maintain or increase separation from the traffic.

Non-transponder equipped airplanes are invisible to TCAS. RAs can be generated if the other airplane has a mode C transponder. Coordinated RAs require both airplanes to have mode S transponders.

## **Advisories and Displays**

Annunciations associated with TCAS and the traffic displays are discussed further in Chapter 10.

TAs are indicated by the aural "TRAFFIC, TRAFFIC" which sounds once and is then reset until the next TA occurs. The TRAFFIC message appears on the traffic display(s). The range and relative bearing of the other airplane are also displayed. Altitude and vertical motion are included if the other airplane is using transponder mode S or C.

RAs are indicated by one or more aural listed in the RA aural table. The other airplane's range, relative bearing, and altitude appear on the traffic display(s). An RA vertical speed restriction or maneuver appears on the VSI.

**Note:** Maneuvering is required if the existing vertical velocity is in the red band (RA VSI).

An OFFSCALE traffic symbol appears during a TA or RA if the traffic's position is outside the selected traffic display's range.

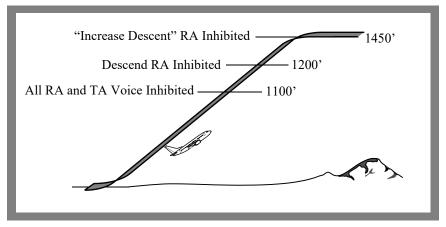


A TA or RA message followed by the traffic's range, altitude, and (if applicable), vertical motion arrow appear on the traffic display if TCAS cannot determine the other airplane's bearing.

## Inhibits

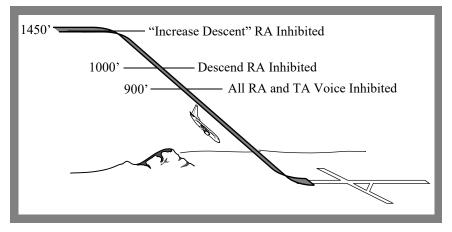
TCAS alerts are inhibited by GPWS, windshear alerts and at low altitudes where traffic avoidance maneuvers are inappropriate.

If an inhibit occurs during an RA, the aural is silenced, vertical pitch commands cease, and the RA symbol changes to a TA symbol. TA aurals are silenced if present when an inhibit occurs.


### **Radio Altitude Inhibits**

INCREASE DESCENT RAs are inhibited below 1,450 feet radio altitude.

DESCEND RAs are inhibited below 1,200 feet radio altitude during climbs, and 1,000 feet radio altitude during descents.


All RAs and TCAS voice alerts are inhibited below 1,100 feet radio altitude during climbs, and 900 feet radio altitude during descents. Aural messages are inhibited below 600 feet while climbing and 400 feet while descending.

### **Climb Radio Altitude Inhibits**



737 Flight Crew Operations Manual

### **Descent Radio Altitude Inhibits**



## **Mode Control**

The TCAS operating mode is controlled from the transponder panel. TCAS is normally operated in the TA/RA mode. However, sometimes it is necessary to operate in the TA ONLY mode to prevent undesired RAs. For example, TA ONLY may be selected when intentionally operating near other airplanes such as might be found in VFR conditions at a busy airport, or on parallel approach.

TCAS equipped transponders communicate between airplanes to provide appropriate coordinated avoidance maneuvers. When performance is limited, such as with an inoperative engine, select TA ONLY to prevent receiving RAs beyond the airplane's capabilities, and to prevent communicating to other airplanes an ability to perform an RA maneuver.

### **Resolution Advisory Aurals**

The following table identifies the possible callouts associated with RAs and the vertical restrictions or maneuver recommended in each case.

| Aural Alerts                                           | Vertical Restrictions/Maneuver                                                                                         |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| MONITOR VERTICAL SPEED,<br>MONITOR VERTICAL SPEED      | Present pitch attitude is outside the<br>TCAS vertical guidance command.<br>Keep pitch attitude away from red<br>area. |
| CLIMB, CLIMB, CLIMB                                    | Climb at the displayed pitch                                                                                           |
| DESCEND, DESCEND, DESCEND                              | Descend at the displayed pitch                                                                                         |
| REDUCE CLIMB,<br>REDUCE CLIMB                          | Reduce climb rate                                                                                                      |
| REDUCE DESCENT,<br>REDUCE DESCENT                      | Reduce descent rate                                                                                                    |
| CLIMB, CROSSING CLIMB,<br>CLIMB, CROSSING CLIMB        | Climb at displayed pitch. Airplane climbs through traffic's altitude.                                                  |
| DESCEND, CROSSING DESCEND<br>DESCEND, CROSSING DESCEND | Descend at displayed pitch. Airplane descends through traffic's altitude.                                              |
| INCREASE CLIMB,<br>INCREASE CLIMB                      | Increase climb rate from initial pitch attitude.                                                                       |
| INCREASE DESCENT,<br>INCREASE DESCENT                  | Increase descent rate from initial pitch attitude.                                                                     |
| CLIMB – CLIMB NOW,<br>CLIMB – CLIMB NOW                | Reversal maneuver from initial descent RA.                                                                             |
| DESCEND – DESCEND NOW,<br>DESCEND – DESCEND NOW        | Reversal maneuver from initial climb<br>RA.                                                                            |
| CLEAR OF CONFLICT                                      | RA encounter terminated. Maneuver guidance no longer displayed.                                                        |